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ABSTRACT

This master thesis gives an introduction to �nite temperature �eld theory
and e�ective �eld theories. The need for resummation at �nite temperature
is discussed, and is used to �nd self-consistent equations for the sigma and
pion masses in the O(N) linear sigma model. Using the O(4) linear sigma
model as an e�ective model of two-�avor QCD, the chiral phase transition
is studied. Both Hartree and large-N approximations are considered. The
gap equations are renormalized using dimensional regularization and the
MS scheme. It is shown that it is possible to renormalize the gap equations
in the large-N approximation with temperature-independent counterterms.
The order of the phase transition and the transition temperature depend on
which approximation is used, and the results agree with results obtained by
other authors.
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1 INTRODUCTION

Zero-temperature �eld theories are �eld theories which neglect temperature
e�ects. At �nite temperature, thermodynamic e�ects become important. At
such temperatures, the particles interact in a thermal bath, and a merger of
statistical mechanics and �eld theories is necessary. Field theories at �nite
temperature and density are called thermal �eld theories. Non-relativistic
�eld theory at �nite temperature and density was invented in the late 1950s
[1] to give a description of condensed matter and non-relativistic nuclear
matter. Fradkin �rst studied relativistic �eld theories at �nite temperature
in 1965 [1]. In the early 1970s, the interest in the problem of symmetry
restoration at high temperature led to new developments. Kirzhnits (1972),
Kirzhnits and Linde (1972), Dolan and Jackiw (1974), and Weinberg (1974)
were the �rst to discuss restoration of spontaneously broken symmetry at
high temperatures [2].

It is believed that a series of phase transitions occurred in the early
Universe. The phase transition of QCD is one of them. There are two
phenomena related to the QCD phase transition; the decon�nement of quarks
and gluons, and the chiral symmetry restoration. It is believed that at some
temperature, a phase transition from the hadronic phase to a decon�ned
phase of quark-gluon plasma takes place. A decon�nement also occurs at
some critical density, when a phase transition between the hadronic phase
and a phase of cold quark matter takes place. At about the same critical
temperature and density at which the decon�nement phase transition takes
place, the chiral phase transition takes place. Chiral symmetry mixes the
�avors and �ip the parity, which means that there should exist pairs of
particles with opposite parity. Such pairs are not found in nature, so chiral
symmetry must be broken at low temperatures. The symmetry is restored
at high temperatures or high density. The relation between the chiral phase
transition and the decon�nement phase transition is at present only partially
understood, and it is not known if the phase transitions take place at the
same critical temperature or density [3].

QCD is believed to give the correct description of strong interactions.
Due to con�nement at low temperatures, analytical calculations in QCD are
impossible in this regime. Several e�ective models for QCD exist, which
describes QCD at low temperatures. An example is the linear sigma model,
which describes fermions interacting with mesons. This model is well suited
for studying the chiral phase transition.

The purpose of this master thesis is to give an overview of thermal �eld
theory, and to study the chiral phase transition using the linear sigma model
as an e�ective theory. Thermal �eld theory can be described using two
di�erent formalisms; imaginary time formalism, or real time formalism. The
real time formalism can be divided into closed time path formalism and
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thermo�eld dynamics [4]. In this thesis the imaginary time, or Matsubara,
formalism is used.

To study the chiral phase transition, two methods can be used; lattice
gauge theories and the method of e�ective �eld theories [5]. The latter is
considered in this thesis. The O(4) linear sigma model is used as an e�ective
model to study the chiral symmetry restoration.

The thesis is organized as follows. In chapter 2 the imaginary time formal-
ism is introduced. The λφ4-theory at �nite temperature is studied in chapter
3. The �rst order corrections to the self-energy and thermodynamic poten-
tial are calculated, and the breakdown of perturbation theory is explained.
An introduction to the idea of renormalization is given. Chapter 4 gives an
introduction to e�ective theories. Resummation is reviewed, and QCD e�ec-
tive models are discussed. The linear sigma model is brie�y presented. The
chiral phase transition is studied in chapter 5. The phase transition in the
case of one scalar �eld is presented as an example. The O(4) linear sigma
model is considered in both Hartree and large N approximation. Finally, a
summary is given in chapter 6.
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2 IMAGINARY-TIME FORMALISM

As mentioned in the introduction, thermal �eld theory can be described
by using the imaginary time formalism or the real time formalism. In this
section, the imaginary time formalism is presented. This formalism is also
called the Matsubara formalism, after the person who �rst set up the dia-
grammatic perturbation theory of the partition function in a �eld-theoretic
manner [6]. As will be seen, this formalism evaluates the partition function
perturbatively using a diagrammatic method which is analogous to that of
zero-temperature �eld theory.

In thermal equilibrium, the statistical behavior of a quantum system is
studied through some appropriate statistical ensemble. The �nite tempera-
ture behavior is given by the partition function

Z = Tr
[
e−βH

]
(2.1)

where ρ(β) = e−βH is the density matrix, β = 1
T in natural units (h̄ = kB =

c = 1), and H is the Hamiltonian of the particular ensemble. The thermal
expectation value of an observable A is given by

〈A〉β =
1
Z

Tr
[
e−βHA

]
(2.2)

The thermal average of the correlation function between two operators A
and B is given by

〈AB〉β =
1
Z

Tr
[
e−βHAB

]
(2.3)

Given an ensemble and a set of operators in the Schrödinger picture,
operators in a Heisenberg picture can be de�ned as [4]

AH(t) = eiHtASe
−iHt. (2.4)

In Eq. (2.4), the subscript H indicates the Heisenberg picture and subscript
S indicates the Schrödinger picture. The thermal average of the correlation
function between two Heisenberg operators is thus written〈

AH(t)BH(t′)
〉
β

=
1
Z

Tr
[
e−βHAH(t)BH(t′)

]
=

1
Z

Tr
[(
e−βHAH(t)eβH

)
e−βHBH(t′)

]
=

1
Z

Tr
[
e−βHBH(t′)AH(t+ iβ)

]
=
〈
BH(t′)AH(t+ iβ)

〉
β
.

(2.5)

If the Hamiltonian of the system is separated into two parts, a free part and
an interaction part, the density matrix can be written as follows [4]
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ρ(β) = e−β(H0+HI) = ρ0(β)S(β), (2.6)

where ρ0(β) ≡ e−βH0 is the density matrix in a noninteracting ensemble.
S(β) is given by

S(β) ≡ e−βHI = ρ−1
0 (β)ρ(β). (2.7)

The density matrix satis�es the following equations in the interval 0 ≤ τ ≤ β
[4]

∂ρ0(τ)
∂τ

= −H0ρ0(τ) (2.8)

∂ρ(τ)
∂τ

= −Hρ(τ) (2.9)

= − (H0 +HI) ρ(τ) (2.10)

These equations can be thought of as the evolution equations of the density
matrix with 0 ≤ τ ≤ β. The evolution equation of S(τ) is thus given by

∂S(τ)
∂τ

= ρ−1
0 (τ) [H0 −H] ρ(τ)

= −eτH0HIe
−τH0S(τ)

= −HI(τ)S(τ)

(2.11)

with the de�nition

HI(τ) = eτH0HIe
−τH0 . (2.12)

For imaginary values of τ , the transformation is unitary. Also, by writing
τ = it, the expression of HI(τ) coincides with the usual interaction picture
HI(t) = eitH0HIe

−itH0 . Eq. (2.12) can be interpreted as an interaction
picture in which the time has been rotated in the complex plane, t → −iτ .
Rotations in the complex plane will be further discussed in section 2.2.

2.1 The S-matrix and diagrammatic representation

Consider a process where the particles are free at the beginning ti and end
tf , but interact over a limited space-time region in the interim. The state
vector at the beginning is denoted Φ(ti) and that at the end Φ(tf ). The
unitary operator U(tf , ti) propagates the system from ti to tf [3],

Φ(tf ) = U(tf , ti)Φ(ti). (2.13)

In zero temperature �eld theory, the S-operator is the following limit of
U(tf , ti) [3]
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S = lim
tf→∞

lim
ti→−∞

U(tf , ti). (2.14)

In the interaction picture the evolution equation of Φ(t) is given by [3]

i
∂Φ(t)
∂t

= HI(t)Φ(t), (2.15)

which can be formally integrated to give

Φ(tf ) = U(tf , ti)Φ(ti)

= e−i
R tf

ti
dt HI(t)Φ(ti).

(2.16)

Since generally [HI(t),HI(t′)] 6= 0, and two operators A and B which do not
commute leads to eA+B 6= eAeB, a time ordering operator is introduced [3].
The time ordering operator Tt has the property [7]

Tt

{
A(t), B(t′)

}
= Θ(t− t′)A(t)B(t′)±Θ(t′ − t)B(t′)A(t), (2.17)

where + represents boson operators and − represents fermion operators. The
time ordering operator writes the operators A and B in chronological order.
This gives

U(tf , t0) = Tt

{
e−i

R tf
ti

dt HI(t)
}
, (2.18)

which leads to the time evolution operator

S = Tt

{
e−i

R∞
−∞ dt HI(t)

}
. (2.19)

The evolution equation of S(τ) is given in Eq. (2.11). When integrated,
remembering the need of a time ordering operator, S(β) is given by

S(β) = Tτ

{
e−
R β
0 HI(τ)dτ

}
, (2.20)

where Tτ is the ordering operator in τ . Similar to the expression for the
usual time ordering, Tτ has the property

Tτ

{
A(τ), B(τ ′)

}
= Θ(τ − τ ′)A(τ)B(τ ′)±Θ(τ ′ − τ)B(τ ′)A(τ), (2.21)

where + represents boson operators and − represents fermion operators.
Comparing Eqs. (2.19) and (2.20), S(β) is interpreted as the time evolu-
tion operator at �nite temperature. It is clear that the �nite-temperature
time evolution operator is analogous to the zero-temperature time evolution
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operator. The di�erence is that in the �nite-temperature case, the time in-
tegration is over a �nite interval along the imaginary axis. In an expansion
of the exponential in Eq. (2.20), each term would give rise to a Feynman
diagram as in the zero-temperature case. Thermal quantities also have a
diagrammatic representation [4].

2.2 Wick rotation

A Wick rotation is a rotation in the complex plane turning a real variable
into an imaginary variable. Wick rotation makes it possible to �nd a solution
to a problem in Minkowski space by �nding a solution to a related problem
in Euclidean space. The Minkowski metric in four dimensions is

ds2 = dt2 − dx2 − dy2 − dz2, (2.22)

or ds2 = −dt2+dx2+dy2+dz2. Here, we will use Eq. (2.22). The Minkowski
metric and that of four-dimensional Euclidean space

ds2E = dt2 + dx2 + dy2 + dz2 (2.23)

are not distinct if t takes complex values. If w = it, the Minkowski metric
reads

ds2 = (−idw)2 − dx2 − dy2 − dz2

= −dw2 − dx2 − dy2 − dz2

= −ds2E ,
(2.24)

where ds2E is the Euclidean metric in real coordinates x, y, z and w.
The operator e−itH propagates a quantum state through a real time in-

terval t [3]. As seen above, the operator that propagates a state through an
imaginary time interval is given by e−τH, where τ = it. This is not a physi-
cal propagation, but the operator is well-de�ned mathematically. It can be
used to �nd the eigenvalues e−Eτ of e−τH, given by E = − 1

τ ln
(
e−τH) [3].

Finding eigenvalues and eigenvectors of e−τH is equivalent to �nding eigen-
values of H. Thus no information is lost when rotating to Euclidean time.
The eigenvalues and eigenvectors of e−τH can be used to �nd the eigenvalues
and eigenvectors of e−itH.

Integrals of the following form can be evaluated by using the routing of
the contour past the poles to perform a Wick rotation into Euclidean space
[8]:

I =
∫

ddk

(2π)d

1

[k2 −m2 + iε]l

=
∫
dΩd

∫
kd−1dk

(2π)d

1

[k2 −m2 + iε]l
.

(2.25)
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Rotating the k0 contour 90o in the complex plane does not change the value
of the integral. The rotation is shown in Fig. 2.1. By letting k0 → ik0

E , the

Figure 2.1: Rotation of the k0 contour to the imaginary axis. The rotation does
not change the value of integral.

integral in Eq. (2.25) can be written

I = i(−1)l Ωd

(2π)d

∫ ∞

0
dkE

kd−1
E[

k2
E +m2

]l
= i(−1)l

∫
ddkE

(2π)d

1[
k2

E +m2
]l ,

(2.26)

where the subscript E indicates Euclidean space. After the rotation the iε-
term in the denominator is not included. The integral is divergent if d > 2l.

2.3 Imaginary-time Green's Functions

In �eld theory, Green's functions are the vacuum expectation values of time-
ordered products of Heisenberg operators [8]

G(n)(x1, . . . , xn) = 〈0|T {φH(x1) . . . φH(xn)} |0〉 . (2.27)

For �nite temperature �eld theories, the vacuum is replaced by a thermal
bath. The two-point thermal Green function can be de�ned as [4]
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Gβ(τ, τ ′) =
〈
Tτ

{
φH(τ)φ†H(τ ′)

}〉
β

=
1
Z

Tr
[
e−βHTτ

{
φH(τ)φ†H(τ ′)

}]
,

(2.28)

where τ = it. In Eq. (2.28), the spatial coordinates have been suppressed
since they are not relevant for the following discussion. Evaluating Gβ(0, τ)
for τ > 0 gives

Gβ(0, τ) =
〈
Θ(0− τ)φH(0)φ†H(τ)±Θ(τ − 0)φ†H(τ)φH(0)

〉
β

= ±
〈
φ†H(τ)φH(0)

〉
β

(2.29)

By using Eq. (2.5) and keeping in mind that the time is rotated to imaginary
time, the following is obtained〈

φ†H(τ)φH(0)
〉

β
=
〈
φH(β)φ†H(τ)

〉
β

= Gβ(β, τ). (2.30)

Thus,

Gβ(0, τ) = ±Gβ(β, τ). (2.31)

The two-point thermal Green's functions are anti-periodic for fermionic �elds
and periodic for bosonic �elds in the imaginary-time formalism.

The thermal Green's functions are de�ned on a �nite time interval with
period β. This means that the Fourier transforms involve discrete frequencies
[4]

Gβ(τ) =
1
β

∑
n

e−iω′nτGβ(ω′n), (2.32)

Gβ(ω′n) =
1
2

∫ β

−β
dτeiω

′
nτGβ(τ), (2.33)

where ω′n = n′π
β for n′ = 0,±1,±2, . . .. Eq. (2.33) can be written as [4]

Gβ(ω′n) =
1
2

∫ 0

−β
dτeiω

′
nτGβ(τ) +

1
2

∫ β

0
dτeiω

′
nτGβ(τ)

= ±1
2

∫ 0

−β
dτeiω

′
nτGβ(τ + β) +

1
2

∫ β

0
dτeiω

′
nτGβ(τ)

=
1
2

(
1± e−iω′nβ

)∫ β

0
dτeiω

′
nτGβ(τ)

=
1
2

(
1± e−iπn′

)∫ β

0
dτeiω

′
nτGβ(τ),

(2.34)
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where the upper sign is for bosons and lower sign is for fermions. When n′ is
odd, Gβ(ω′n) vanishes for bosons, and when n′ is even, Gβ(ω′n) vanishes for
fermions. Thus for nonzero values of Gβ(ω′n), even numbers of n′ are needed
for bosons, written as n′ = 2n where n = 0,±1,±2, . . .. Odd numbers of
n′ are needed for fermions, written as n′ = 2n+ 1 where n = 0,±1,±2, . . ..
The anti-periodicity/periodicity for fermions/bosons thus gives

ωn =

{
2nπ
β bosons

(2n+1)π
β fermions

}
, (2.35)

where n ∈ Z. The frequencies ωn are called Matsubara frequencies [4].

Including the spatial coordinates in the two-point Green's function gives
the following expressions

Gβ(τ, ~x) =
1
β

∑
n

∫
d3k

(2π)3
e−i(ωnτ−~k·~x)Gβ(ωn,~k), (2.36)

Gβ(ωn,~k) =
∫ β

0
dτ

∫
d3x ei(ωnτ−~k·~x)Gβ(τ, ~x), (2.37)

since the spatial coordinates are continuous as in the zero-temperature case.
For a free scalar �eld, the zero-temperature Green's function satis�es(

∂µ∂
µ +m2

)
G(x) = −δ4(x). (2.38)

PerformingWick rotations t→ −iτ and k0 → ik0
E leads toG(x) → −Gβ(τ, ~x)

[4], and Eq. (2.38) reads(
∂2

∂τ2
+∇2 −m2

)
Gβ(τ, ~x) = −δ3(x)δ(τ). (2.39)

Inserting Eq. (2.36) into Eq. (2.39), and using the usual expression of δ3(x)
as well as the representation of δ(τ)

δ(τ) =
1
β

∑
n

e−iωnτ , (2.40)

the two-point Green's function in momentum space at �nite temperature is

Gβ(ωn,~k) =
1

ω2
n + ~k2 +m2

=
1

ω2
n + ω2

k

,

(2.41)

where ω2
k = ~k2 +m2.
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3 λφ4 THEORY

The Lagrangian for a λφ4-theory in Minkowski space is given by

L =
1
2
(∂µφB)(∂µφB)− 1

2
m2

Bφ
2
B −

λB

4!
φ4

B, (3.1)

where the last term is a self-interaction. The abbreviation φB(x) ≡ φB,
where x = (t, ~x), is used. The subscript B indicates that the �eld, mass and
coupling constant are bare parameters. Bare and renormalized parameters
will be discussed in sections 3.5-3.8. When rotating to Euclidean time, t→
−iτ , we obtain for the Lagrangian in Eq. (3.1)

L → −
(

1
2
(∂µφB)2 +

1
2
m2

Bφ
2
B +

λB

4!
φ4

B

)
= −LE .

(3.2)

In Eq. (3.2), we have used that in Euclidean space ∂µ = ∂µ, and ∂0 = ∂
∂τ .

The abbreviation φB(x) ≡ φB is used, where now x = (τ, ~x).

3.1 Diagrammatic representation in the λφ4-theory

A typical diagram consists of pieces connected to external points and pieces
which are not connected to external points [9]. To see how these di�erent
pieces contribute to the correlation functions, consider the thermal two-point
Green's function for the λφ4-theory,

Gβ(x, x′) =
〈
Tτ

{
φH(x)φH(x′)

}〉
β

=
Tr
[
e−βH0S(β)Tτ

{
1

S(τ)φI(x)S(τ) 1
S(τ ′)φI(x)S(τ ′)

}]
Tr [e−βH0S(β)]

,

(3.3)

where the relation between operators in the Heisenberg and interaction pic-
tures AH(τ) = eτHIAI(τ)e−τHI has been used [4] and x = (τ, ~x). Since β
is the largest value of τ , S(β) can be written inside the τ -ordering in the
numerator of Eq. (3.3). Furthermore, the order of the factors inside the
τ -ordering does not matter. Thus, Eq. (3.3) can be written as

Gβ(x, x′) =
Tr
[
e−βH0Tτ {φI(x)φI(x′)S(β)}

]
Tr [e−βH0S(β)]

=
〈Tτ {φI(x)φI(x′)S(β)}〉β,0

〈S(β)〉β,0

,

(3.4)
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where 〈 〉β,0 denotes the thermal average in a non-interacting ensemble.
First, consider the numerator of Eq. (3.4), which we call G1

β(x, x′). Ex-
panding the exponential of S(β) to �rst order in the coupling constant, it
can be written as

G1
β(x, x′) =

〈
Tτ

{
φ(x)φ(x′)e−

R β
0 dτ ′′

R
d3x′′

λB
4!

φ4(x′′)
}〉

β,0

=
〈
Tτ

{
φ(x)φ(x′)

(
1 +

−λB

4!

∫ β

0
dτ ′′

∫
d3x′′φ4(x′′)

)}〉
β,0

,

(3.5)

where the subscript I has been dropped. The �rst term in Eq. (3.5) is
the free �eld propagator, G0(x, x′) = 〈Tτ {φ(x)φ(x′)}〉β,0. Eq. (3.5) can be
written as

G1
β(x, x′) = G0(x, x′)

+ 3
(
−λB

4!

)
G0(x, x′)

∫ β

0
dτ ′′

∫
d3x′′G0(x′′, x′′)G0(x′′, x′′)

+ 12
(
−λB

4!

)∫ β

0
dτ ′′

∫
d3x′′G0(x, x′′)G0(x′, x′′)G0(x′′, x′′).

(3.6)

Eq. (3.6) is shown diagrammatically in Fig. (3.1). In the second line in Eq.

Figure 3.1: The numerator of the thermal two-point Green's function to �rst order
in the coupling constant, given in Eq. (3.6).

(3.6), the points x and x′ are not connected with the point x′′. This term
leads to the disconnected diagram which is the second diagram in the �rst
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line of Fig. 3.1. The last term in Eq. (3.6) connects the points x and x′

with the point x′′ and leads to the third diagram in the �rst line of Fig. 3.1.
This is a connected diagram [9].

Expanding the denominator of Eq. (3.4) to �rst order in the coupling
constant gives

〈S(β)〉β,0 =
〈
Tτ

{
1 +

−λB

4!

∫ β

0
dτ

∫
d3xφ4(x)

}〉
β,0

. (3.7)

Eq. (3.7) is shown diagrammatically in Fig. 3.2. The diagrams in the

Figure 3.2: The denominator of the thermal two-point Green's function to �rst
order in the coupling constant, given in Eq. (3.7).

denominator cancel the disconnected diagrams in the numerator, and the
following is obtained for the two-point Green's function to �rst order in the
coupling constant

Gβ(x, x′) =
〈
Tτ

{
φ(x)φ(x′)

}〉
β

= sum of connected pieces with two external lines.
(3.8)

Gβ(x, x′) to �rst order is shown diagrammatically in Fig. 3.3.

Figure 3.3: The thermal two-point Green's function to �rst order in the coupling
constant.

To show that Eq. (3.8) applies to all orders in the coupling constant, con-
sider the following expression for the diconnected diagrams in the numerator
of Eq. (3.4) to order n [10]:
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〈
Tτ

{
φ(x)φ(x′)

(−1)n

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτnHI(x1) · · ·HI(xn)

}〉
β,0

=
(−1)n

n!

∫ β

0
dτ1 · · ·

∫ β

0
dτm

〈
Tτ

{
φ(x)φ(x′)HI(x1) · · ·HI(xm)

}〉
c

·
∫ β

0
dτm+1 · · ·

∫ β

0
dτn 〈Tτ {HI(xm+1) · · ·HI(xn)}〉β,0 ,

(3.9)

where HI(x) is the interaction Hamiltonian. The 〈. . .〉c connects x and x′ to
some of the points xi and the 〈. . .〉β,0 gives the parts which have no external
lines. Redistribution of the xi's where i = 1, . . . , n among the HI(x)'s in
〈. . .〉c and among the HI(x)'s in 〈. . .〉β,0, gives an overall factor of n!

m!(n−m)! .
Thus, Eq. (3.9) can be written as

(−1)m

m!

∫ β

0
dτ1 · · ·

∫ β

0
dτm

〈
Tτ

{
φ(x)φ(x′)HI(x1) · · ·HI(xm)

}〉
c

× (−1)n−m

(n−m)!

∫ β

0
dτm+1 · · ·

∫ β

0
dτn 〈Tτ {HI(xm+1) · · ·HI(xn)}〉β,0 .

(3.10)

Summing the contribution from the diagrams of all orders which consist of
a particular connected part and an arbitrary disconnected part gives [10]

(−1)m

m!

∫ β

0
dτ1 · · ·

∫ β

0
dτm

〈
Tτ

{
φ(x)φ(x′)HI(x1) · · ·HI(xm)

}〉
c

·
〈

1−
∫ β

0
dτm+1Tτ {HI(xm+1)}+ · · ·

〉
β,0

.

(3.11)

Thus, all connected parts in the numerator are multiplied with a factor
〈S(β)〉β,0, which cancels against the 〈S(β)〉β,0 in the denominator. The result
we obtained above for �rst order in the coupling constant is general, and Eq.
(3.8) applies to all orders.

Eq. (3.8) can be generalized to n-point Green's functions [9]

Gβ(x, . . . , xn) = 〈Tτ {φ(x1) · · ·φ(xn)}〉β
= sum of connected pieces with n external lines.

(3.12)

〈S(β)〉β,0 contains no external points, so the diagrams in the expansion
of 〈S(β)〉β,0 have no external lines. In general, the contribution from order
n can be written as a sum of disconnected parts, each of which is a product
of connected pieces [2]. Assume that each contribution in the expansion
consists of ki diagrams of type Vi. The total expansion gives [9]
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∑
{ki}

∏
i

1
ki!

(Vi)ki = e
P

i Vi , (3.13)

where {ki} is all ordered sets {k1, k2, k3 . . .} of nonnegative integers, and
the factor 1

ki
comes from interchanging the ki Vi's. Thus, only the connected

diagrams are left, and 〈S(β)〉β,0 is the exponential of the sum of all connected
diagrams with no external lines. These diagrams are called vacuum diagrams,
and contribute to the thermodynamic potential as seen in the following.
From Eq. (2.7), the denominator of the two-point Green's function reads

〈S(β)〉β,0 =
〈
e−βHI

〉
β,0

=
Tr
[
e−βH0e−βHI

]
Tr [e−βH0 ]

=
Tr
[
e−βH]
Z0

=
Z

Z0
.

(3.14)

Using Eq. (3.14), the thermodynamic potential is given by

Φ = −T lnZ
= −T lnZ0 − T ln 〈S(β)〉β,0

= Φ0 + Φ′.

(3.15)

where Φ0 is the potential for the non-interacting ensemble and Φ′ are the
corrections to the potential from the interactions. It was found above that

〈S(β)〉β,0 = e
P

i Vi . (3.16)

Thus, Φ′ = −T
∑

i Vi is the sum of the connected diagrams with no external
lines.

3.2 Self-energy

At zero temperature, the self-energy is the contribution to a propagating
particle from vacuum �uctuations. At �nite temperature, thermal contri-
butions must be included as well. Each contribution to the propagating
particle consists of free propagators separated by di�erent scattering pro-
cesses. The full propagator is shown in Fig. (3.4), where 1PI represents
one-particle irreducible diagrams. A 1PI diagram is a diagram which does
not fall apart when cutting a line [9]. Each circled 1PI in Fig. (3.4) is a sum
of all 1PI diagrams. Fig. (3.5) shows the 1PI diagrams for the λφ4-theory,
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Figure 3.4: The full propagator of a particle. Each circled 1PI is a sum of all 1PI
diagrams.

Figure 3.5: One- and two-loop 1PI diagrams for λφ4-theory.
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from perturbative expansion of the S-matrix. In momentum space, the full
propagator Gβ(ωn,~k) can be written as

Gβ(ωn,~k) = Gβ +Gβ(−Σ(k))Gβ +Gβ(−Σ(k))Gβ(−Σ(k))Gβ + . . .

= Gβ

∞∑
n=1

(−Σ(k)Gβ)n−1 =
1

(Gβ)−1 + Σ(k)
,

(3.17)

where Gβ is the propagator found in Eq. (2.41). Σ(k) is the self-energy of
the λφ4-theory, and −Σ(k) represents the sum of all 1PI diagrams. Using
the expression for the free thermal propagator of the λφ4-theory, Eq. (3.17)
reads

Gβ(ωn,~k) =
1

ω2
n + ω2

k + Σ(k)
. (3.18)

3.2.1 First-order correction

Consider the �rst-order correction shown in Fig. (3.6). The self-energy is

Figure 3.6: First-order correction to the self-energy in λφ4-theory.

given by

Σ =
λB

2
∑∫

k

1
ω2

n + ω2
k

. (3.19)

where
∑∫

k = T
∑

n

∫
d3k

(2π)3
and ω2

k = ~k2 +m2
B. To �rst order, the self-energy

is independent of external momenta.
To evaluate the sum in Eq. (3.19) it can be rewritten as a sum of residues

of a suitable function. The residue theorem states that for a function f(z)
which is analytic inside a simple closed path C, except for �nitely many sin-
gularities in z1, z2, . . . , zk, the integral of f(z) taken counterclockwise around
C is given by [11] ∮

C
f(z)dz = 2πi

k∑
j=1

Resz=zjf(z). (3.20)
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The residues at simple poles are given by [11]

Resz=zjf(z) = lim
z→zj

(z − zj)f(z). (3.21)

The frequency sum can written as

∑
n

1
ω2

n + ω2
k

=
∑

n

1
(ωk − iωn) (ωk + iωn)

≡
∑

n

h(iωn). (3.22)

The idea behind the evaluation of the frequency sum, is to introduce a func-
tion g(z) which has simple poles at z = iωn. For bosons the Matsubara
frequency is given by ωn = 2πnT . The function g(z) = coth

(
z

2T

)
can be

used to evaluate the frequency sum in the case of bosons, as it generates
poles at z = i2πTn = iωn. The function h(z) has no poles on the imaginary
axis. The contour integral of the product g(z)h(z) is given by

∮
C

dz

2πi
g(z)h(z) =

∑
n

Resz=iωng(z)h(z)

=
∑

n

lim
z→iωn

(z − iωn)g(z)h(z)

=
∑

n

lim
z→iωn

(z − iωn)h(z)
e

z
2T + e−

z
2T

e
z

2T − e−
z

2T

=
∑

n

lim
z→iωn

(z − iωn)h(z)
e

z
T + 1

e
z−iωn

T − 1

≈
∑

n

lim
z→iωn

(z − iωn)h(z)T
e

z
T + 1

z − iωn

= 2T
∑

n

h(iωn),

(3.23)

where C is given in Fig. 3.7(a). The contour can be deformed into that
shown in Fig. 3.7(b). Thus, we can write

2T
∑

n

h(iωn) =
∫ −i∞−ε

i∞−ε

dz

2πi
g(z)h(z)

+
∫ i∞+ε

−i∞+ε

dz

2πi
g(z)h(z).

(3.24)

Doing the substitution z → −z in the �rst integral, Eq. (3.24) can be written
as
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Figure 3.7: Deformation of the contour in the evaluation of the Matsubara sum.
(a) The sum of residues of the function g(z)h(z) corresponds to an
integration around a contour which encloses each pole individually.
(b) The contour can be deformed to run along the imaginary axis a
distance +ε to the right and a distance −ε to the left. (c) If |g(z)h(z)|
vanishes at in�nity, the contour can be closed.
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2T
∑

n

h(iωn) =
∫ i∞+ε

−i∞+ε

dz

2πi
[−g(−z)h(−z) + g(z)h(z)] . (3.25)

By using that g(−z) = −g(z) and h(−z) = h(z), we obtain

2T
∑

n

h(iωn) = 2
∫ i∞+ε

−i∞+ε

dz

2πi
g(z)h(z). (3.26)

g(z) can be written as g(z) = 1 + 2 1
eβz−1

, which gives the following

2T
∑

n

h(iωn) = 2
∫ i∞+ε

−i∞+ε

dz

2πi
h(z)

[
1 + 2

1
eβz − 1

]
. (3.27)

h(z) has no poles on the imaginary axis. Thus, Eq. (3.27) can be written as

2T
∑

n

h(iωn) = 2
∫ i∞

−i∞

dz

2πi
h(z)

+ 4
∫ i∞+ε

−i∞+ε

dz

2πi
h(z)

1
eβz − 1

.

(3.28)

The frequency sum splits into a temperature-independent part and a temperature-
dependent part. The temperature-independent part can be calculated di-
rectly and gives 2

∫ i∞
−i∞

dz
2πih(z) = 1

ωk
. To calculate the temperature-dependent

part, we can close the contour in the right half plane as shown in Fig. 3.7(c).
When the radius goes to in�nity, the function g(z)h(z) goes to zero, so the
contribution from the semicircle vanishes at in�nity. h(z) has a pole inside
C located at z = ωk. The temperature-dependent part is given by

4
∮

C

dz

2πi
1

eβz − 1
= −4Resz=ωk

h(z)
1

eβz − 1

= −4 lim
z→ωk

(z − ωk)h(z)
1

eβz − 1

=
2
ωk

1
eβωk − 1

(3.29)

Thus, the frequency sum can be written as

T
∑

n

h(iωn) =
1

2ωk

[
1 + 2

1
eβωk − 1

]
. (3.30)
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Inserting the expression for the Matsubara sum, the self-energy Σ is given
by

Σ =
λB

2

∫
d3k

(2π)3

[
1

2ωk
+
nB(ωk)
ωk

]
, (3.31)

where nB(ωk) = 1
eβωk−1

is the distribution function for bosons. Eq. (3.31)
has a term which is temperature-independent, corresponding to zero tem-
perature, and a term which is explicitly temperature-dependent. The zero-
temperature term is divergent when |~k| → ∞. Sections 3.5-3.8 give a short
introduction to renormalization, and how to get rid of this divergence.

3.3 Thermodynamic potential

As seen from Eq. (3.31) the �rst-order correction to the self-energy is given
by

Σ =
λB

2
∑∫

k

1
ω2

n + ω2
k

=
λB

4

∫
d3k

(2π)3
1
ωk

+
λB

2

∫
d3k

(2π)3
1
ωk

1
eβωk − 1

≡ Σ0 + ΣT

(3.32)

By multiplying Eq. (3.32) by 2mB and integrating overmB, the temperature-
independent term gives

∫
dmB 2mBΣ0 =

λB

4

∫
d3k

(2π)3

∫
dmB 2mB√
~k2 +m2

B

=
λB

2

∫
d3k

(2π)3

√
~k2 +m2

B,

(3.33)

where a constant independent of mass and momentum has been omitted.
The temperature-dependent term gives

∫
dmB 2mBΣT =

λB

2

∫
d3k

(2π)3

∫
dmB 2mB√
~k2 +m2

B

1

eβ
q

~k2+m2
B − 1

=
λB

2

∫
d3k

(2π)3
2T
∫
dx

1
ex − 1

(3.34)

where in the last equality the substitution x = β
√
~k2 +m2

B has been used.
Using
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n∑
k=0

qk =
1− qn

1− q
(3.35)

Eq. (3.34) can be written as

∫
dmB 2mBΣT =

λB

2

∫
d3k

(2π)3
2T
∫
dx

∞∑
n=0

e−(n+1)x

=
λB

2

∫
d3k

(2π)3
2T

∞∑
n=1

−1
n

(
e−β

q
~k2+m2

B

)n

=
λB

2

∫
d3k

(2π)3
2T

∞∑
n=1

−1
n

(1− w)n ,

(3.36)

where w = 1−e−β
q

~k2+m2
B . A constant independent of mass and momentum

is omitted. Expressing the sum in Eq. (3.36) using

ln(x) =
∞∑

n=1

(−1)n+1 (x− 1)n

n
=

∞∑
n=1

−1
n

(1− x)n 0 ≤ x ≤ 2, (3.37)

the equation can be written as

∫
dmB 2mBΣT = λBT

∫
d3k

(2π)3
ln
(

1− e−
1
T

q
~k2+m2

B

)
. (3.38)

Thus,

∫
dmB 2mBΣ = λB

∫
d3k

(2π)3

[
1
2
ωk + T ln

(
1− e−

ωk
T

)]
, (3.39)

up to a mass- and momentum-independent constant. Inserting Σ = λB
2

∑∫
k

1
ω2

n+ω2
k

on the left-hand side of Eq. (3.39) and performing the integration, the fol-
lowing is obtained

1
2
∑∫

k
ln
[
ω2

n + ω2
k

]
=
∫

d3k

(2π)3

[
1
2
ωk + T ln

(
1− e−βωk

)]
. (3.40)

The right-hand side of Eq. (3.40) can be recognized as the sum of the zero-
point vacuum energy and the grand canonical potential Φ of a massive ideal
bose gas, divided by the volume.
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The thermodynamic potential can be expressed as a power series of the
coupling constant [12]:

Φ = Φ0 + Φ1 + Φ2 + . . . , (3.41)

where Φ0 is the thermodynamic potential for the free �eld given in Eq.
(3.40), Φ1 is the correction to �rst order in the coupling constant, and so on.
As shown above, the corrections to the grand potential come from vacuum
diagrams.

3.3.1 First-order correction

The �rst-order correction to the thermodynamic potential is from the double-
bubble in Fig. (3.8). This bubble diagram yields the correction

Figure 3.8: The �rst-order contribution to the thermodynamic potential.

Φ1

V
=
λB

8

(∑∫
k

1
ω2

n + ω2
k

)2

(3.42)

Using the expression for the Matsubara sum found in section 3.2.1, Eq. (3.42)
can be written as

Φ1

V
=
λB

8

(∫
d3k

(2π)3
1

2ωk

[
1 + 2nB(~k)

])2

=
λB

8

(∫
d3k

(2π)3
1

2ωk

)2

+
λB

8

(∫
d3k

(2π)3
nB(~k)
ωk

)2

+
λB

8

(∫
d3k

(2π)3
1
ωk

)(∫
d3k

(2π)3
nB(~k)
ωk

)
.

(3.43)

The �rst term in Eq. (3.43) is temperature-independent and divergent when
|~k| → ∞, the second term is temperature-dependent and �nite, and the third
term is temperature-dependent and divergent when |~k| → ∞. As mentioned
above, sections 3.5-3.8 show how to get rid of the divergences.



3 λφ4 THEORY 26

3.4 The idea of renormalization

Higher-order diagrams without loops are called tree diagrams, and generally
for weakly interacting theories the tree level diagrams give accurate results.
For stronger interactions, or for very precise results, higher-order diagrams
containing closed loops must be included. However, most loop diagrams are
divergent [3]. The idea of renormalization appeared due to the understand-
ing of the limited nature of the idealization of a free particle in quantum
theory [13]. Particles interact with vacuum. The result of such interactions
are the change of charge and mass of the particles. The observed charges
and masses are the sum of these interactions. Renormalization was intro-
duced to eliminate the divergences of higher-order diagrams. It is based on a
simple idea. Consider an electron. The parameters mB and eB representing
the mass and charge of the non-interacting, bare electron has no physical
meaning. Observable magnitudes, m and e, characterizing electrons are the
result of interactions between the electrons and the vacuum. The observable
magnitudes are thought of as the sums m = mB +∆m and e = eB +∆e [13],
where ∆m and ∆e absorb the in�nities occuring in calculations involving
mB and eB. In�nities may be systematically eliminated by relating bare
quantities to physical quantities [3].

3.5 Regularization

For dimensions close to d = 4, many higher-order Feynman integrals diverge
when the momentum goes to in�nity, or for very short wavelengths [14].
These divergences are called ultraviolet (UV) divergences and are the only
divergences for massive �elds. For dimension d, integrals of the two-point
function as shown in Eq. (2.26) diverge for large momenta when 2l < d.
This is a UV divergence.

For massless �elds, another type of divergences occur at small momenta
or long wavelengths - infrared (IR) divergences. Considering Eq. (2.41) these
divergences can easily be seen. For the zeroth Matsubara mode for bosons,
ωn = 0. If the mass is also zero, integrals of the two-point function are
divergent when the momentum goes to zero. This is an IR divergence.

The divergences can be contolled by some regularization procedure. Reg-
ularization is essentially a mathematical trick to make divergent integrals
well-de�ned. There are several regularization procedures [14]. Only two of
them are mentioned here, momentum cuto� and dimensional regularization.
The latter will be used throughout this thesis.

3.5.1 Momentum cuto� regularization

In this regularization procedure, a cuto� Λ represents a particular energy
scale. The integral
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I =
∫ ∞

0
dk F (k), (3.44)

which is UV divergent, is written as

IΛ =
∫ Λ

0
dk F (k), (3.45)

which is �nite. All momenta are limited to |~k| < Λ, and no UV divergences
occur in IΛ. The integral in Eq. (3.45) can in general be calculated as [14]

IΛ = f(Λ) + g

(
1
Λ

)
+ C, (3.46)

which is divergent when Λ → ∞. This divergence re�ects the divergence of
the integral in Eq. (3.44). The regularization procedure makes it possible
to carry out the integral and writing an expression depending on the cut-
o� Λ. However, in the limit Λ → ∞,the expression is still divergent, and
renormalization is needed to get rid of the divergences.

An undesirable feature of the momentum cuto� procedure is that the
translation invariance is destroyed. Problems may also arise if the symme-
tries of a theory correspond to local transformations, like in gauge theories
[14].

3.5.2 Dimensional regularization

From Eq. (2.26) it is seen that the integral converges for small enough d.
Computing the Feynman integral in terms of the dimension d, and assuming
it being convergent for any value of d, the integration should be well-de�ned
when d = 4− ε for in�nitesimal ε [3]. The integral

I =
∫
d4k F (k) → Id =

∫
ddk F (k), (3.47)

and can be written as

Id = f(O(ε)) + g

(
1
ε

)
+ C. (3.48)

Analytically continuing back to d = 4, i.e. ε → 0, the original logarithmic
divergences occur as poles in ε, and power divergences disappear. This will
be shown in the end of this section.



3 λφ4 THEORY 28

To take a closer look at dimensional regularization, consider the temperature-
independent term in the �rst-order correction to the self-energy

Σ0 =
λB

2

∫
d3k

(2π)3
1

2ωk
. (3.49)

To �nd an expression of the integral in Eq. (3.49), dimensional regularization
can be used. The integral in Eq. (3.49) is written as

I = µ4−d

∫
dd−1k

(2π)d−1

1

2
√
k2 +m2

B

= µ4−d Ωd−1

2(2π)d−1

∫ ∞

0
dk

kd−2√
k2 +m2

B

,

(3.50)

where k2 = ~k2. µ is an arbitrary mass parameter introduced to make the
�nal expression have correct dimensions [9]. If d is small enough, the integral
converges. The d-dimensional angular integral can be found in the following
way [9]

∫
ddx e−x2

= Ωd

∫ ∞

0
dx xd−1e−x2

= Ωd
1
2

∫ ∞

0
du u

u
2
−1e−u =

1
2
ΩdΓ

(
d

2

)
.

(3.51)

In the last line we have made the substitution x2 = u. By writing

∫
ddx e−x2

=
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 · · ·

∫ ∞

−∞
dxd e

−(x2
1+x2

2···+x2
d)

=
(∫ ∞

−∞
dx e−x2

)d

= (
√
π)d,

(3.52)

the d-dimensional angular integral reads

Ωd =
2π

d
2

Γ(d
2)
. (3.53)

Inserting this result into Eq. (3.50), we obtain

I =
µε

2(2π)3−ε
π

3−ε
2 (m2

B)1−
ε
2
Γ
(

1
2 −

3−ε
2

)
Γ
(

1
2

)
=

m2
B

16π2
2εµεπ

ε
2 (m2

B)−
ε
2 Γ
(
−1 +

ε

2

)
,

(3.54)
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where we have used ε = 4− d. Using xε = 1+ ε ln(x)+O(ε2) and expanding
the gamma-function around ε = 0, the integral reads

I =
m2

B

(4π)2

[
−2
ε
− 1 + γE + ln

(
m2

B

4πµ2

)]
(3.55)

in the limit ε → 0. Thus, the divergent part of the �rst-order correction to
the self-energy reads

Σ0 =
λB

2
m2

B

(4π)2

[
−2
ε
− 1 + γE + ln

(
m2

B

4πµ2

)]
(3.56)

in the limit ε → 0. The integral diverges and the 1
ε -term must be canceled

by renormalization.
The integral in Eq. (3.49) goes as

I ∼
∫ Λ

0
dk

k2√
k2 +m2

B

, (3.57)

where Λ is a momentum cuto�. Expanding the integrand around m2
B = 0,

the integration will lead to terms ∼ Λ2 and ∼ m2
B lnΛ which are divergent in

the Λ →∞ limit. Compared to Eq. (3.55), only the logarithmic divergence
occurs after using dimensional regularization, and the power divergence has
disappeared, as claimed above.

Considering the temperature-independent term of the thermodynamic
potential given in Eq. (3.40), the following is obtained by using dimensional
regularization

∫
d3k

(2π)3
1
2
ωk → µ4−d

∫
dd−1k

(2π)d−1

1
2

√
k2 +m2

B

=
µε

2(2π)3−ε
π

3−ε
2 (m2

B)2−
ε
2
Γ
(
−1

2 −
3−ε
2

)
Γ
(
−1

2

)
= −

m4
B

32π2
2εµεπ

ε
2 (m2

B)−
ε
2 Γ
(
−2 +

ε

2

)
=

m4
B

64π2

[
−2
ε
− 3

2
+ γE + ln

(
m2

B

4πµ2

)]
(3.58)

in the limit ε→ 0.

3.6 Counting of UV divergences

To localize the UV divergences, naive counting of momentum power is used.
Roughly speaking, a diagram diverges if the powers of momentum in the
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numerator is larger than or equal to the powers of the momentum in the
denominator. The super�cial degree of divergence is de�ned as follows [9]

D = power of k in numerator − power of k in denominator. (3.59)

Naively, it would be expected that a diagram diverges as ∼ ΛD if D > 0 and
as ∼ lnΛ if D = 0. If D < 0 no divergence occurs. However, these naive
expectations are often wrong [9].

In a scalar theory with a φn interaction term, the Euclidean Lagrangian
in d dimensions reads

L =
1
2

(∂µφB)2 +
1
2
m2

Bφ
2
B +

λB

n!
φn

B. (3.60)

From dimensional analysis, the action S =
∫
ddx L is dimensionless, since

h̄ = 1. In terms of mass dimension, S has dimension [S] = 0. The mass
dimension of ddx is

[
ddx
]

= −d, which leads to the mass dimension [L] = d of
the Lagrangian. From Eq. (3.60) it can be found that φB has mass dimension
[φB] = d−2

2 , and λB has mass dimension [λB] = d−nd−2
2 . Consider a diagram

with N external lines, which could originate from the interaction term αφN .
From the mass dimension for λB found above, the parameter α has mass
dimension [α] = d − N d−2

2 . If a diagram in the λφn-theory has V vertices,
its divergent part is proportional to λV

BΛD [9], where Λ is some cuto� with
mass dimension [Λ] = 1 and D is the super�cial degree of divergence. Thus,
the following is obtained

d−N
d− 2

2
= V

[
d− n

d− 2
2

]
+D. (3.61)

The class of theories in which the divergences can be systematically elimi-
nated from observable quantities are called renormalizable [3]. The degree
of renormalization can be characterized as follows [9]

• If the coupling constant has positive mass dimension, the theory is
super-renormalizable.

• If the coupling constant is dimensionless, the theory is renormalizable.

• If the coupling constant has negative mass dimension, the theory is
non-renormalizable.

In super-renormalizable theories only a �nite number of Feynman diagrams
super�cially diverge. The same is true in renormalizable theories, but the di-
vergences occur at all orders in perturbation theory. All amplitudes are diver-
gent at a su�ciently high order in perturbation theory in non-renormalizable
theories [9].
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For d = 4 and n = 4, the super�cial degree of divergence is

D = 4−N, (3.62)

where N is the number of external legs in a diagram. As mentioned above,
divergences occur when D ≥ 0. In order for this to be true N ≤ 4. For
the λφ4-theory, the diagrams which are divergent are shown in Fig. 3.9. In

Figure 3.9: Divergent diagrams in λφ4-theory.

the λφ4-theory in four dimensions the coupling constant is dimensionless.
Thus, this theory is renormalizable. The amplitudes in Fig. 3.9 contain
three in�nite constants [9], which could be absorbed in the bare mass, bare
coupling and bare �eld. In the next section, the Lagrangian is reformulated
in order for the bare quantities to not appear explicitly in the Lagrangian.

3.7 Counterterms

By adding so-called counterterms to the Lagrangian, it can be written as
[14]

L =
1
2

(∂µφ)2 +
1
2
m2φ2 +

λ

4!
φ4

+ cφ
1
2

(∂µφ)2 + cm
1
2
m2φ2 + cλ

λ

4!
φ4

=
1
2
(1 + cφ) (∂µφ)2 +

1
2
(1 + cm)m2φ2

+
1
4!

(1 + cλ)λφ4

(3.63)

in Euclidean space. In Eq. (3.63) φ, m and λ represents the renormalized
quantities. The renormalized parameters are �nite and are de�ned by a set
of renormalization conditions [14]. De�ning Zφ = 1 + cφ, Zm = 1 + cm and
Zλ = 1 + cλ the Lagrangian reads
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L =
1
2
Zφ (∂µφ)2 +

1
2
Zmm

2φ2 +
1
4!
Zλλφ

4. (3.64)

The Z's convert the bare parameters into the renormalized parameters. To
obtain the initial bare Euclidean Lagrangian in Eq. (3.2) the following is
de�ned

φB = Z
1
2
φ φ, (3.65)

m2
B =

Zm

Zφ
m2 (3.66)

and

λB =
Zλ

Z2
φ

λ. (3.67)

After using dimensional regularization to write the integral in Eq. (3.49)
as the expression given in Eq. (3.55), the integral diverge in a certain way
when ε → 0. If the number of loops N increases, the Feynman integrals
contain singularities of the type 1

εi , where i = 1, . . . , N [14]. In this regular-
ization procedure, it should be possible to write the Z's in the form [14]

Z = 1 +
N∑

k=1

λk
k∑

i=0

cki
εi
. (3.68)

The coe�cients cki are chosen to cancel the divergences 1
εi , order by order in

λ.
The counterterms contributes to the diagrammatic expansion. The con-

tributions are shown in Fig. 3.10 [9]. The �rst contribution is the mass
and �eld counterterms cm and cφ. The second contribution is the coupling
constant counterterm cλ. The counterterms are introduced to absorb the
in�nite shift between the bare parameters and the physical parameters, and
are chosen so that all divergences are subtracted.

3.8 Minimal subtraction

After employing dimensional regularization, the Feynman integral can be
written as an expression containing poles in ε. The expression can be renor-
malized by subtracting the terms containg ε-poles. The minimal subtraction
(MS) scheme was invented by G. t'Hooft to renormalize nonabelian gauge
theories of weak and electromagnetic interactions [15]. In the MS scheme,
the counterterms acquire the form in Eq. (3.68) [14]. The counterterms
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Figure 3.10: Diagrammatic contributions from the counterterms.

are independent of the mass m (except for an overall factor m2 in the mass
counterterm) and the renormalization parameter µ. In the MS scheme, the
following is obtained

m2
B

(4π)2

[
−2
ε
− 1 + γE + ln

(
m2

B

4πµ2

)]
→

m2

(4π)2

[
−1 + γE + ln

(
m2

4πµ2

)]
.

(3.69)

The �rst term in Eq. (3.69) is obtained from the use of dimensional regu-
larization of the bare Lagrangian. The last term is obtained from the use of
dimensional regularization of the Lagrangian with counterterms in the MS
scheme. To see how this is obtained, consider the �rst-order correction to
the self-energy. From the bare Lagrangian this correction reads

Σ =
λB

2

∫
d3k

(2π)3

[
1

2ωk
+
nB(ωk)
ωk

]
, (3.70)

where ω2
k = ~k2 + m2

B. λB and mB are the bare coupling constant and
bare mass, respectively. The �rst term is UV divergent. Using dimensional
regularization, we start with writing Eq. (3.70) as

λB

2

∫
d3k

(2π)2

[
1

2ωk
+
nB(ωk)
ωk

]
→ λB

2
µ4−d

∫
dd−1k

(2π)d−1

[
1

2ωk
+
nB(ωk)
ωk

]
= I1 + I2.

(3.71)
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The �rst integral is the zero-temperature integral calculated in section 3.5.2,
and gives

I1 =
λB

2
m2

B

(4π)2

[
−2
ε
− 1 + γE + ln

(
m2

B

4πµ2

)]
, (3.72)

where ε = 4− d. The second integral in Eq. (3.71) is

I2 =
λB

2
µε

∫
d3−εk

(2π)3−ε

nB(ωk)
ωk

. (3.73)

The temperature-dependent term in Eq. (3.70) is UV �nite, and I2 con-
tains no poles in ε. However, evaluating I2 would give O(ε)-terms. In cases
where the temperature-independent term is multiplied with the temperature-
dependent term, such as in the double-bubble contribution to the thermody-
namic potential, the O(ε)-terms in the temperature-dependent term could
cancel the ε-poles in the temperature-dependent term. We will not encounter
calculations of such terms in the rest of this thesis, so in the following we let
ε→ 0 and write

I2 =
λB

2

∫
d3k

(2π)3
nB(ωk)
ωk

. (3.74)

In general, one should be careful when doing this.
Eq. (3.70) is thus written as

Σ =
λB

2
m2

B

(4π)2

[
−2
ε
− 1 + γE + ln

(
m2

B

4πµ2

)]
+
λB

2

∫
d3k

(2π)3
nB(ωk)
ωk

.

(3.75)

Starting from the Lagrangian with counterterms, the counterterm con-
tribution to �rst order in λ is the �rst contribution in Fig. 3.10 [14]. This
leads to

Σ =
λ

2
m2

(4π)2

[
−2
ε
− 1 + γE + ln

(
m2

4πµ2

)]
+
λ

2

∫
d3k

(2π)3
nB(ωk)
ωk

+ counterterms,
(3.76)

where ω2
k = ~k2 +m2. λ and m are the renormalized parameters. There is no

term proportional to k2 in Eq. (3.70), so cφ = 0. cm is �xed to cancel the

ε-pole, leading to a mass counterterm equal to λ
2

m2

(4π)2
2
ε . This gives
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Σ =
λ

2
m2

(4π)2

[
−1 + γE + ln

(
m2

4πµ2

)]
+
λ

2

∫
d3k

(2π)3
nB(ωk)
ωk

.

(3.77)

3.9 First order correction in the massless case

In the massless case, the temperature-independent term of the self-energy
is zero by use of dimensional regularization. Considering the temperature-
dependent term and inserting m = 0, the self-energy reads

Σ =
λ

(2π)2

∫ ∞

0

dk k

eβk − 1
, (3.78)

where k = |~k|. By use of the substitution u = βk, Eq. (3.78) reads

Σ =
λ

(2π)2
T 2

∫ ∞

0

du u

eu
1

1− e−u
. (3.79)

From Eq. (3.35) the integral in Eq. (3.79) can be expressed as

Σ =
λ

(2π)2
T 2

∞∑
n=0

∫ ∞

0
du u e−(1+n)u

=
λ

(2π)2
T 2

∞∑
n=1

1
n2
.

(3.80)

The sum in Eq. (3.80) is the Riemann-Zeta function of two, and is given by

∞∑
n=1

1
n2

=
π2

6
. (3.81)

Thus, the �rst-order correction to the self-energy in the massless case is

Σ =
λT 2

24
. (3.82)

Using dimensional regularization, the temperature-independent term of
the thermodynamic potential given in Eq. (3.40) is zero in the massless case.
The pressure to zeroth order in λ in the massless case thus reads

P = −Φ
V

= −T 2
(2π)2

∫ ∞

0
dk k2 ln

[
1− e−βk

]
= T 4 4

(2π)2

∞∑
n=1

1
n4

=
π2T 4

90
,

(3.83)
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where the sum is recognized as the Riemann-Zeta function of four, which
equals π4

90 . Eq. (3.83) is the pressure of an non-interacting massless bose
gas.

In Eq. (3.43), a term where the temperature-independent contribution
is multiplied with the temperature-dependent contribution occurs. As men-
tioned above, in such terms the temperature-dependent integral should not
simply be written as in Eq. (3.74). The integral should be evaluated before
taking the limit ε→ 0. However, since the temperature-independent integral
is zero in the massless case when using dimensional regularization, the �rst
and the third term in Eq. (3.43) vanish in the massless case. Insertingm = 0
into the second term of Eq. (3.43) gives

Φ1

V
=
λ

8

[
2

(2π)2

∫ ∞

0
dk k

1
eβk − 1

]2

. (3.84)

By making the substitution u = βk as above, Eq. (3.84) reads

Φ1

V
=
λ

8
4

(2π)4
T 4

[∫ ∞

0
dx x

e−x

1− e−x

]2

=
λ

8
4

(2π)4
T 4

[∫ ∞

0
dx x

∞∑
n=0

e−x(1+n)

]2

=
λ

8
4

(2π)4
T 4

[ ∞∑
n=1

1
n2

]2

=
λT 4

1152
.

(3.85)

The pressure in the massless case to �rst order in λ is given by

P = −Φ
V

= T 4

(
π2

90
− λ

1152

)
. (3.86)

3.10 Higher-order corrections and breakdown of perturba-

tion theory

In ordinary perturbation theory the next contribution to the self-energy is
expected to go as λ2, from the second and third diagrams in Fig. 3.5. This
is not correct, as will be shown in the following discussion.

When m = 0, the second diagram in Fig. 3.5 is infrared divergent for the
n = 0 mode, as it goes as ∼

∫∞
0

dk
k2 , where k = |~k|. It is the �rst diagram of

an in�nite series of daisy diagrams [12], each of which is increasingly infrared
divergent. The daisy diagrams are shown in Fig. 3.11
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Figure 3.11: The �rst two infrared divergent diagrams in the in�nite series of
daisy diagrams in λφ4-theory.

The one-loop correction to the self-energy is a thermal mass generated
by the interactions with the thermal bath. In the massless case it is given by
λT 2

24 . The problem of infrared divergences arises because the bosons acquire
thermal mass, and the free, massless propagator 1

ω2
n+~k2

should be replaced

by the e�ective propagator 1

ω2
n+~k2+M2

where M2 is a thermal mass. The

thermal �uctuations change the propagator into that of a massive particle.
As will be seen in the following, the e�ective propagator resums the daisy

diagrams. The e�ective propagator would correspond to a free Lagrangian
given by

Lfree =
1
2

(∂µφ)2 +
1
2
M2φ2. (3.87)

The subscriptB is omitted for the �eld, since Zφ = 1 in �rst-order corrections
which are considered here. In the massless λφ4-theory, the Lagrangian reads

L =
1
2

(∂µφ)2 +
λB

4!
φ4. (3.88)

To obtain the free Lagrangian in Eq. (3.87), we add and subtract a term
1
2M

2φ2, giving an e�ective Lagrangian which is written as

Leff = (∂µφ) (∂µφ) +
1
2
M2φ2 − 1

2
M2φ2 +

λB

4!
φ4

= Lfree + Lint.
(3.89)

Lfree is given by Eq. (3.87) and

Lint = −1
2
M2φ2 +

λB

4!
φ4. (3.90)

The term −1
2M

2φ2 is treated as an interaction term. To �rst order, the
contributions to the e�ective potential are shown in Fig. 3.12. The e�ective
potential reads
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Figure 3.12: First-order contributions to the e�ective potential.

Veff =
1
2
∑∫

k
ln
(
ω2

n + ω2
kM

)
− M2

2
∑∫

k

1
ω2

n + ω2
kM

+
λB

8

(∑∫
k

1
ω2

n + ω2
kM

)2

,

(3.91)

where ω2
kM = ~k2 +M2. The e�ective potential is minimized with respect to

M2. The following is obtained

Veff

∂M2
=

1
2
∑∫

k

1
ω2

n + ω2
kM

− 1
2
∑∫

k

1
ω2

n + ω2
kM

− M2

2
∑∫

k

−1(
ω2

n + ω2
kM

)2
+
λB

4
∑∫

k

1
ω2

n + ω2
kM

∑∫
k

−1(
ω2

n + ω2
kM

)2 = 0,

(3.92)

which gives

M2 =
λB

2
∑∫

k

1
ω2

n + ω2
kM

=
λB

2
∑∫

k

1

ω2
n + ~k2 +M2

. (3.93)

Expanding the right-hand side of Eq. (3.93) around M2 = 0, we obtain

M2 =
λB

2
∑∫

k

1

ω2
n + ~k2

−M2λB

2
∑∫

k

1(
ω2

n + ~k2
)2

+M4λB

2
∑∫

k

1(
ω2

n + ~k2
)3 − . . . .

(3.94)

Eq. (3.94) shows that the thermal mass which the bosons acquire, leads to a
resummation of daisy diagrams with a massless propagator. Except for the
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�rst diagram which is the tadpole, the diagrams are infrared divergent, but
the sum of the diagrams is infrared �nite.

Eq. (3.93) can be written as

M2 =
λB

2

∫
d3k

(2π)3

(
1

2ωkM
− nB(ωkM )

ωkM

)
. (3.95)

The �rst term is UV divergent. Using dimensional regularization, Eq. (3.95)
can be written as

M2 =
λB

2
M2

(4π)2

[
−2
ε
− 1 + γE + ln

(
M2

4πµ2

)]
+
λB

2

∫
d3k

(2π)3
nB(ωk)
ωk

.

(3.96)

In the limit ε → 0, the expression is divergent, and the term 1
ε should be

removed by renormalization.
How will the MS scheme work for the resummation? Compared to the

cases above, the divergent term is now −λBM2

16π2ε
, where M2 is temperature

dependent. This requires a temperature-dependent mass counterterm. In
general, resummation and renormalization can be in con�ict. Resummation
rearranges the perturbation series and reorganizes the diagrams by their IR
relevance. The IR relevance is not necessarily the same as the UV rele-
vance, and the counterterms may be separated from the diagrams in the
resummation [16]. The UV divergences are not removed, leading to a UV
inconsistent theory. For a UV consistent theory, it is also necessary to resum
the counterterm diagrams.

Eq. (3.96) can actually be renormalized using temperature-independent
counterterms. This is done by de�ning the renormalized coupling constant
as

1
λ

=
1
λB

+
1

16π2ε
. (3.97)

The above de�nition of the renormalized coupling constant is discussed for
the more general case in section 5.1. Using Eq. (3.97), the renormalized
expression for M2 reads

M2 =
λ

2
M2

(4π)2

[
−1 + γE + ln

(
M2

4πµ2

)]
+
λ

2

∫
d3k

(2π)3
nB(ωkM )
ωkM

,

(3.98)
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By doing the coupling constant renormalization in Eq. (3.97), the mass
counterterm in this case is zero. Thus, Eq. (3.96) has been renormalized
using counterterms which are independent of temperature.

Consider the integral in Eq. (3.98). It can be written as

M2
T =

λ

4π2
M2

∫ ∞

1
du
√
u2 − 1

1
eβMu − 1

(3.99)

by doing the substitution u =
√

~k2

M2 + 1. Using [1]

∫ ∞

1
du
√
u2 − 1

1
eau − 1

=
2π2

a2

[
1
12
− a

4π
+O(a2 ln a)

]
, (3.100)

M2
T can be written as

M2
T =

λ

2
T 2

[
1
12
− 1

4π
M

T
+ . . .

]
. (3.101)

The leading order term goes as ∼ λT 2. Next to leading order goes as ∼
λ3/2T 2, not ∼ λ2T 2 as would be expected from naive perturbation theory.
This re�ects the breakdown of perturbation theory due to IR divergences.

Eq. (3.98) can be solved numerically. Dividing Eq. (3.98) by T 2, we
obtain the following equation for M̃2 = M2

T 2

M̃2 =
λ

2
M̃2

(4π)2

[
−1 + γE + ln

(
M̃2 T 2

4πµ2

)]
+
λ

2
1

2π2

∫ ∞

0
dx

x2√
x2 + M̃2

1

e
√

x2+fM2 − 1
,

(3.102)

where we have used the substitution x = k
T . M̃

2 as a function of λ is shown

in Fig. 3.13. Normalizing M to its weak-coupling value λT 2

24 the following is
obtained

M
2 =

λ

2
M

2

(4π)2

[
−1 + γE + ln

(
λM

2

24
T 2

4πµ2

)]

+
6
π2

∫ ∞

0
dx

x2√
x2 + λM

2

24

1

e

q
x2+λM

2

24 − 1
,

(3.103)

where M
2 = M2

λT 2/24
. Fig. 3.14 shows M

2
as a function of λ. At some

given temperature, T 2

4πµ2 is just a constant. Since we are interested in the

qualitative behavior of M̃ and M as a function of λ, T 2

4πµ2 is given the value
T 2

4πµ2 = 1 here.
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Figure 3.13: M̃ = M
T as a function of λ.

Figure 3.14: M = M√
λT 2/24

as a function of λ.
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4 EFFECTIVE THEORIES

An e�ective theory is a theory which describes the physics at a given length
scale or energy scale. For lengths smaller than or energies larger than this
scale, one can no longer focus only on the degrees of freedom relevant at
this scale. For example, describing the Earths motion around the sun, the
correct e�ective theory is classical mechanics, although quantum mechanics
is a more fundamental theory. Only when the lengths become small enough,
classical mechanics cannot describe the system, and quantum mechanics is
the correct theory.

An e�ective theory is thus a theory where the degrees of freedom which
are relevant at higher energies, do not explicitly appear. An example is that
of a heavy particle; at energies smaller than the mass of the particle, the
particle cannot be created. The Lagrangian valid at such small energies does
not contain this degree of freedom. The advantage of constructing e�ective
theories is that it simpli�es many calculations considerably [17].

4.1 Resummation

The free propagator in the imaginary time formalism reads 1
ω2

n+ω2
k
, where

ω2
n = (2πnT )2 is the Matsubara frequency for bosons and ω2

k = ~k2 + m2.
When m = 0, the free propagator is 1

~k2
for the n = 0 mode. For the n 6= 0

modes, the Matsubara frequency acts as an IR cuto� mass m2 ∼ T 2. As
shown in the previous section, the �rst-order correction to the self-energy
is a thermal mass generated by thermal �uctuations and goes as ∼

√
λT

in the massless case. For T >>
√
λT , the thermal mass is just a small

perturbation to the n 6= 0 modes, and can be neglected for these modes.
For the n = 0 mode, the thermal mass is not negligible for momenta of
order

√
λT or smaller, and perturbation theory breaks down. This requires

resummation of daisy diagrams.
As explained above, there are two separated energy scales, which go

as ∼
√
λT and ∼ T . Leff given in Eq. (3.89) is the Lagrangian of an

e�ective theory which includes energies smaller than or equal to
√
λT . The

e�ective theory is appropriate for calculations for such low energies, while
the high-energy e�ects enter through the parameters of Leff . For example,

the one-loop correction to the self-energy, Σ = λT 2

24 , is determined by the
n 6= 0 modes [12].

4.2 E�ective theories for QCD

There are several e�ective theories for QCD. The goal for these theories are
to describe QCD at low temperatures to a desired accuracy. Some basic
assumptions must be made. The QCD e�ective theory at low temperatures
should con�ne the quarks and gluons; only colorless states exist. This is
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due to asymptotic freedom in QCD; the coupling constant increases as the
distance decreases or as the energy decreases. The coupling constant becomes
too large at low energies for the interaction between quarks and gluons to
be described as a small perturbation, and an e�ective theory is needed.

A second assumtion is that the e�ective theory describes a spontaneous
breaking of chiral symmetry. Consider QCD with two massless quarks, u
and d. The �eld is written as

ψ =
(u
d

)
, (4.1)

and the Dirac Lagrangian reads

L = ψ (iγµ∂µ)ψ. (4.2)

ψ can be decomposed into a right-handed �eld, ψR = 1
2 (1 + γ5)ψ, and a

left-handed �eld, ψL = 1
2 (1− γ5)ψ, giving

ψ =
(
uL

dL

)
+
(
uR

dR

)
= ψL + ψR. (4.3)

This leads to the Lagrangian

L = ψL (iγµ∂µ)ψL + ψR (iγµ∂µ)ψR. (4.4)

L is invariant under independent U(2) transformations, UL(2) and UR(2).
The symmetry UL(2)×UR(2) can be written as SUL(2)×SUR(2)×UA(1)×
UV (1) [3], where the subscript A represents the axial symmetry and V rep-
resents the vector symmetry. UV (1) is related to the conservation of baryon
number, while UA(1) is broken by axial anomaly [9]. The symmetry which
is left, SUL(2) × SUR(2), must be spontaneously broken down to SUV (2)
for low temperatures, due to the fact that pairs of particles with opposite
parity are not found in nature. For example, there is no parity partner of the
proton. The three broken generators correspond to three massless Goldstone
bosons.

In QCD, the quarks do have nonzero masses. The nonzero masses of
the quarks explicitly breaks the SUA(2)× SUV (2) symmetry. However, the
masses of u and d quarks are small, so the axial symmetry can be considered
as approximate. Three pseudo-Goldstonde bosons with small, but nonzero
masses, should appear. All hadrons have masses ≥ 0.5 GeV [18], except
the pions. Pions have much smaller masses than other hadrons, and are
interpreted as pseudo-Goldstone bosons.
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4.3 The linear sigma model

The linear sigma model has been widely used as an e�ective QCD model
at low temperatures. The model is a theory of fermions (quarks and nucle-
ons) interacting with mesons [5], and is an e�ective theory well-suited for
describing both the physics of mesons and the chiral phase transition. The
mesonic part of the model contains four scalar �elds, the sigma �eld and
three pion �elds. They form the chiral �eld (σ, ~π)T [5]. The order parameter
of the chiral phase transition is the quark condensate

〈
ψψ
〉
where ψ is the

quark �eld [1]. In the O(4) linear sigma model, the sigma �eld can be used
to represent the quark condensate since both behave in the same manner
under chiral phase transition [5]. The symmetry of QCD with two massless
�avors is SUR(2)× SUL(2), which is isomorphic to O(4). The mesonic part
of the linear sigma model is invariant under O(4) symmetry, and considering
mesons only, the O(4) linear sigma model can be used as an e�ective theory.
By studying the phase transition when O(4) is broken down to O(3), one
might gain insight into the chiral symmetry breaking of QCD. The phase
transition in the O(4) linear sigma model will be closer examined in section
5.
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5 PHASE TRANSITIONS AT FINITE TEMPER-
ATURE

Spontaneous symmetry breaking and phase transitions induced by temper-
ature are important ingredients of the early Universe. The period from the
Planck time tpl ≈ 10−43 s corresponding to the temperature Tpl ≈ 1019 GeV,
to the time tQCD ≈ 10−5 s corresponding to TQCD ≈ 200− 300 MeV can be
divided into intervals separated by the phase transitions which characterize
them, as follows [19]

• Tpl > T > TGUT ≈ 1015 GeV

In this period, the physics is described by a grand uni�ed theory
(GUT), which uni�es the strong and electroweak interactions. At
T = TGUT corresponding to t = tGUT ≈ 10−37 s, there is a spon-
taneous breaking of the GUT symmetry and a phase transition takes
place.

• TGUT > T > TEW ≈ 100 GeV

In this period the strong and electroweak interactions are no longer
uni�ed. Due to the large temperature range of this period, it is possi-
ble that other phase transitions occur for temperatures between TGUT

and TEW . At T = TEW corresponding to t = tEW ≈ 10−11 s, the
electroweak phase transition takes place. Leptons acquire masses, and
the intermediate vector bosons give rise to photons and the massive
W+, W− and Z bosons.

• TEW > T > TQCD

Electromagnetic and weak interactions are no longer uni�ed. W+,
W− and Z bosons disappears rapidly through decay and annihilation
when the temperature falls below 90 GeV. Quarks and gluons occur as
quark-gluon plasma, and the chiral symmetry applies. At T = TQCD

corresponding to t = tQCD, the QCD phase transition takes place.
The quarks and gluons are con�ned and the chiral symmetry is bro-
ken. As mentioned in the introduction, the relation between the chiral
phase transition and con�nement is only partially understood. It is
not known if Tconfinement = Tchiral. Compared to the large temper-
ature ranges between the various phase transitions mentioned above,
it is su�cient to assume that the chiral phase transition and con�ne-
ment takes place at the same temperature T = TQCD in this rough
description of the early Universe.

In this section the O(4) linear sigma model will be studied. This model is
an e�ective model of QCD, and by studying the phase transition when O(4)
symmetry is broken down to O(3) symmetry, one might gain some insight
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into the chiral phase transition of QCD. We start with the λφ4-theory for
one scalar �eld as a simple example. Then the O(4) linear sigma model will
be studied in the Hartree and large-N approximations.

The �nite-temperature terms do not introduce any new UV divergences
in ordinary perturbation, so renormalization of zero-temperature UV diver-
gences is su�cient to make the theory �nite. As discussed in section 3.10,
resummation leads to a breakdown of perturbation theory, and temperature-
dependent counterterms seem necessary to renormalize the theory. It was
shown that de�ning the renormalized coupling constant 1

λ = 1
λB

+ 1
16π2ε

and

the renormalized mass m2 = λ
λB
m2

B, the gap equation Eq. (3.93) could be
renormalized with temperature-independent counterterms. Andersen uses
this approach in [20] to renormalize the gap equations for the two-particle
irreducible (2PI) 1

N expansion. The 2PI formalism, also called the Cornwall-
Jackiw-Tomboulis (CJT) formalism, only takes into account 2PI diagrams.
The 2PI formalism will not be further discussed here, and the reader is re-
ferred to e.g. [21]. The renormalized coupling constant and mass de�ned
above are used to renormalize the large-N approximation, but it does not
work in the Hartree approximation. To renormalize the Hartree approxima-
tion, temperature-dependent counterterms are used. In [22], Lenaghan and
Rischke study the O(N) model using the 2PI formalism. They renormalize
the gap equations by using temperature-dependent counterterms, both for
the Hartree and the large-N approximations.

The results of the renormalized thermal masses for the sigma and pion
�elds are compared to the case where the the zero temperature contributions
have been discarded, referred to as the nonrenormalized case.

5.1 One scalar �eld

The Lagrangian density of λφ4-theory at zero temperature is given in Eq.
(3.1) and reads

L =
1
2

(∂µφ) (∂µφ)− 1
2
m2

Bφ
2 − λB

4!
φ4, (5.1)

where the abbreviation φ(x) ≡ φ is used. The subscript B on the �eld is
omitted since to �rst order Zφ = 1, and we will only consider �rst-order
corrections here. The Lagrangian density in Eq. (5.1) is invariant when
φ→ −φ. The potential is

V (φ) =
1
2
m2

Bφ
2 +

λB

4!
φ4. (5.2)

The potential has a minimum at φ0 = 〈0|φ|0〉 = 0 if m2
B > 0, and two

minima at φ0 = 〈0|φ|0〉 = ±
√
−6m2

B
λB

ifm2
B < 0. In the latter case, invariance

under the symmetry operation φ → −φ no longer applies when the system
is in the vacuum state. The symmetry is spontaneously broken. At �nite
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temperature, interactions with the thermal bath contributes to the mass
proportional to T . At some temperature Tc the vacuum expectation value
of the �eld changes from nonzero to zero due to the thermal �uctuations.

To evaluate the symmetry breaking at �nite temperature, the Euclidean
Lagrangian density for a single scalar �eld is considered

LE =
1
2

(∂µφ)2 +
1
2
m2

Bφ
2 +

λB

4!
φ4. (5.3)

As in section 3.10, a term 1
2M

2φ2 is added and subtracted,

LE =
1
2

(∂µφ) (∂µφ) +
1
2
m2

Bφ
2 +

1
2
M2φ2 − 1

2
M2φ2 +

λB

4!
φ4. (5.4)

Assuming m2
B < 0, the Lagrangian density in Eq. (5.4) has (at least at

low temperatures) a nonzero value φ0 of the vacuum expectation value. By
making the shift φ → φ0 + φ, where φ are �uctuations about the classical
vacuum φ0 with zero vacuum expectation value such that 〈0|φ0 + φ|0〉 = φ0,
the Lagrangian can be separated into the free part

L0 =
1
2

(∂µφ) (∂µφ) +
1
2
M2φ2, (5.5)

and the interaction part

Lint = V0 −
1
2

(
M2 −m2

B −
λB

2
φ2

0

)
φ2

+
λB

6
φ0φ

3 +
λB

4!
φ4,

(5.6)

where V0 = 1
2m

2
Bφ

2
0 + λB

4! φ
4
0. In Eq. (5.6) the terms linear in φ have been

omitted since they only enter as a constant in the minimum of the potential.
Up to two loops, the contribution to the potential is shown in Fig. 5.1. In
the Hartree approximation, the contributions to the potential come from the
diagrams on the �rst line in Fig. 5.1. The potential reads

Veff = V0 +
1
2
∑∫

k
ln
(
ω2

n + ω2
kM

)
− 1

2

(
M2 −m2

B −
λB

2
φ2

0

)∑∫
k

1
ω2

n + ω2
kM

+
λB

8

(∑∫
k

1
ω2

n + ω2
kM

)2

,

(5.7)

where ω2
kM = ~k2 + M2. Minimizing Veff with respect to φ0 and M2 gives

the following equations
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Figure 5.1: One- and two-loop contributions to the e�ective potential of one scalar
�eld.

φ0

(
m2

B +
λB

6
φ2

0 +
λB

2
∑∫

k

1
ω2

n + ω2
kM

)
= 0 (5.8)

M2 = m2
B +

λB

2
φ2

0 +
λB

2
∑∫

k

1
ω2

n + ω2
kM

, (5.9)

respectively. The �rst two terms in Eq. (5.9) are the tree-level mass, and
the third term is the tadpole correction. Eq. (5.9) is the general case of
Eq. (3.93), where the tree level mass was zero. To see that Eq. (5.9) can
be renormalized with temperature-independent counterterms, we start with
writing the equation as

Σ =
λB

2
∑∫

k

1

ω2
n + ~k2 +m2

B + λB
2 φ

2
0 + Σ

. (5.10)

In Eq. (5.10) we have used that M2 = m2
B + λB

2 φ
2
0 + Σ, where Σ is the

self-energy. Eq. (5.10) can be expanded around Σ = 0 to give
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Σ =
λB

2
∑∫

k

1

ω2
n + ~k2 +m2

B + λB
2 φ

2
0

− Σ
λB

2
∑∫

k

1(
ω2

n + ~k2 +m2
B + λB

2 φ
2
0

)2

+ Σ2λB

2
∑∫

k

1(
ω2

n + ~k2 +m2
B + λB

2 φ
2
0

)3 − · · · .

(5.11)

Eq. (5.11) is a series of daisy diagrams with a massive propagator. The
self-energy is written as a power series in the coupling constant

Σ = Σ1 + Σ2 + · · · , (5.12)

where Σ1 ∼ λB, Σ2 ∼ λ2
B, and so on. The bare parameters can be written

as [20]

m2
B = m2 +

∞∑
n=1

δm2
n (5.13)

λB = λ+
∞∑

n=1

δλn. (5.14)

Inserting Eqs. (5.12), (5.13) and (5.14) into Eq. (5.11), we can �nd Σn, δm2
n

and δλn by iteration. The �rst iteration gives

Σ1 =
λ

2
∑∫

k

1

ω2
n + ~k2 +m2 + λ

2φ
2
0

+ δm2
1 +

δλ1

2
φ2

0.

(5.15)

Using dimensional regularization, Eq. (5.15) can be written as

Σ1 =
λ

2
m2 + λ

2φ
2
0

(4π)2

[
−2
ε
− 1 + γE + ln

(
m2 + λ

2φ
2
0

4πµ2

)]

+
λ

2

∫
d3k

(2π)3
1√

~k2 +m2 + λ
2φ

2
0

1

e
β
q

~k2+m2+λ
2
φ2

0 − 1

+ δm2
1 +

δλ1

2
φ2

0.

(5.16)
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Thus, the counterterms in the �rst iteration is chosen as δm2
1 = λm2

16π2ε
and

δλ1 = λ2

16π2ε
in order to cancel the divergent terms. The renormalization

procedure can be carried out iteratively to all orders. The n'th counterterms
are given by [20]

δm2
n =

λnm2

(16π2ε)n
, (5.17)

δλn =
λn+1

(16π2ε)n
. (5.18)

Summing the counterterms to all orders gives

m2
B = m2 +

∞∑
n=1

λnm2

(16π2ε)n
= m2

∞∑
n=0

λn

(16π2ε)n
=

m2

1− λ
16π2ε

, (5.19)

λB = λ+
∞∑

n=1

λn+1

(16π2ε)n
= λ

∞∑
n=0

λn

(16π2ε)n
=

λ

1− λ
16π2ε

. (5.20)

Eqs. (5.19) and (5.20) give the following relation between the renormalized
and bare parameters

m2
B

λB
=
m2

λ
. (5.21)

Returning to Eq. (5.9), we get

M2 = m2
B +

λB

2
φ2

0 +
λB

2
M2

(4π)2

[
−2
ε
− 1 + γE + ln

(
M2

4πµ2

)]
+
λB

2

∫
d3k

(2π)3
nB(ωkM )
ωkM

,

(5.22)

when using dimensional regularization. Dividing the equation by λB and
inserting Eqs. (5.20) and (5.21), the following renormalized expression for
M2 is obtained

M2 = m2 +
λ

2
φ2

0 +
λ

2
M2

(4π)2

[
−1 + γE + ln

(
M2

4πµ2

)]
+
λ

2

∫
d3k

(2π)3
nB(ωkM )
ωkM

.

(5.23)

Eq. (5.8) has the trivial solution φ0 = 0 and the solution
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λB

2
φ2

0 = −3m2
B −

3λB

2
∑∫

k

1
ω2

n + ω2
kM

. (5.24)

From Eqs. (5.9) and (5.24), it is found that λB
2 φ

2
0 = 3

2M
2 before renormal-

ization, and

λ

2
φ2

0 =
3
2
M2 (5.25)

after renormalization. Inserting Eq. (5.25) into Eq. (5.23), the expression
for M2 reads

M2 = −2m2 − λ
M2

(4π)2

[
−1 + γE + ln

(
M2

4πµ2

)]
− λ

∫
d3k

(2π)3
nB(ωkM )
ωkM

(5.26)

when T < Tc. λφ4-theory is not a physical model, so there is no particular
value to assign to m. Instead, de�ning M̃2 ≡ M2

−m2 and T̃ 2 ≡ T 2

−m2 makes it
possible to write

M̃2 = 2− λ
M̃2

(4π)2

[
−1 + γE + ln

(
M̃2(−m2

r)
4πµ2

)]

− λ
T̃ 2

2π2

∫ ∞

0
du

u2√
u2 − fM2eT 2

1

e

r
u2− fM2

eT2 − 1

,

(5.27)

by making the substitution u = k
T in the integral in Eq. (5.26).

When T = 0 the last term in Eq. (5.27) vanishes and

M̃2 = M̃2
0 = 2− λ

M̃2
0

(4π)2

[
−1 + γE + ln

(
M̃2

0 (−m2)
4πµ2

)]
(5.28)

Choosing M̃2
0 = 2 gives 4πµ2 = eγE−1

(
−m2M̃2

0

)
. With this value inserted

in Eq. (5.27), the following expression for M̃2 at �nite temperature is ob-
tained

M̃2 = 2− λ
M̃2

(4π)2

[
−1 + γE + ln

(
M̃2

2eγE−1

)]

− λ
T̃ 2

2π2

∫ ∞

0
du

u2√
u2 − fM2eT 2

1

e

r
u2− fM2

eT2 − 1

,

(5.29)
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From Eq. (5.25) the expression λ
2 φ̃

2
0 = 3

2M̃
2 is derived, where φ̃2

0 ≡
φ2

0
−m2 .

When φ0 = 0 the symmetry is restored. In this case the expression for
M2 reads

M2 = m2 +
λ

2
M2

(4π)2

[
−1 + γE + ln

(
M2

4πµ2

)]
+
λ

2

∫
d3k

(2π)3
nB(ωkM )
ωkM

.

(5.30)

By using the de�nition of M̃ and T̃ above, the following is obtained

M̃2 = −1 +
λ

2
M̃2

(4π)2

[
−1 + γE + ln

(
M̃2

2eγE−1

)]

+
λ

2
T̃ 2

2π2

∫ ∞

0
du

u2√
u2 − fM2eT 2

1

e

r
u2− fM2

eT2 − 1

.

(5.31)

Eqs. (5.29) and (5.31) can be solved numerically. A plot of M̃ as a function
of T̃ is shown in Fig. 5.2, and a plot of φ̃0 as a function of T̃ is shown in
Fig. 5.3. The coupling constant has been given the value λ = 3. The results
are compared with the case where the zero temperature integrals have been
discarded. Renormalization does not a�ect the mass or order parameter. For
a small interval of T̃ , both solutions φ̃0 = 0 and φ̃0 6= 0 exist. This means
that there are two local minima. At the start of the interval, φ̃0 6= 0 is the
global minimum of the potential, and at the end of the interval φ̃0 = 0 is the
global minimum. At some point in the interval, the global minimum goes
from φ̃0 6= 0 to φ̃0 = 0 and a phase transition occurs. The phase transition
is of �rst order.

5.1.1 Explicitly broken symmetry

By subtracting a term hφ from the Lagrangian in Eq. (5.3), the symmetry
φ → −φ is explicitly broken. The result of this is that the solution φ0 = 0
no longer exists, and instead of Eq. (5.8) the following is obtained

h = φ0

[
m2

B +
λB

6
φ2

0 +
λB

2
∑∫

k

1
ω2

n + ω2
kM

]
= φ0

[
M2 − λB

3
φ2

0

]
.

(5.32)

M2 is given by Eq. (5.9), as before. After renormalization, M2 is given by
Eq. (5.23). Eq. (5.32) can be rewritten to give
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Figure 5.2: M̃ as a function of T̃ . The renormalized case (solid line) does not
di�er from the nonrenormalized case (dotted line).

Figure 5.3: φ̃0 as a function of T̃ . The renormalized case (solid line) does not di�er
from the nonrenormalized case (dotted line). The order parameter
indicates a �rst order phase transition.
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φ2
0 =

3
λ

[
M2 − h

φ0

]
(5.33)

after renormalization. With the above de�nitions of M̃ , T̃ and φ̃0, Eq. (5.23)
can be written as

M̃2 = −1 +
λ

2
φ̃2

0 +
λ

2
M̃2

(4π)2

[
−1 + γE + ln

(
M̃2(−m2)

4πµ2

)]

+
λ

2
T̃ 2

2π2

∫ ∞

0
du

u2√
u2 − fM2eT 2

1

e

r
u2− fM2

eT2 − 1

.

(5.34)

When T = 0, M̃2 = M̃2
0 and φ̃0 = φ̃0. φ0 can be found from the minimum

of the classical potential V0 and is given by

φ
2
0 =

6
λ

(−m2). (5.35)

Thus φ̃
2

0 = 6
λ , and inserting this into Eq. (5.34) at zero temperature gives

M̃2
0 = 2 +

λ

2
M̃2

0

(4π)2

[
−1 + γE + ln

(
M̃2

0 (−m2)
4πµ2

)]
. (5.36)

Again, choosing M̃2
0 = 2 gives 4πµ2 = eγE−1

(
−m2M̃2

0

)
. The expressions

for nonzero temperature thus read

M̃2 = −1 +
λ

2
φ̃2

0 +
λ

2
M̃2

(4π)2

[
−1 + γE + ln

(
M̃2

2eγE−1

)]

+
λ

2
T̃ 2

2π2

∫ ∞

0
du

u2√
u2 − fM2eT 2

1

e

r
u2− fM2

eT2 − 1

,

(5.37)

and

φ̃2
0 =

3
λ

[
M̃2 − h̃

φ̃

]
, (5.38)

where h̃ ≡ h

(−m2)
3
2
. Eqs. (5.37) and (5.38) can be solved numerically. A plot

of M̃ as a function of T̃ is shown in Fig. 5.4, and a plot of φ̃0 as a function
T̃ is shown in Fig. 5.5. As above, the coupling constant has the value λ = 3,
and h̃ is given the value h̃ = 0.01. There is no phase transition for h 6= 0,
but rather a smooth crossover. Again, renormalization does not a�ect the
results.
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Figure 5.4: M̃ as a function of T̃ for h = 0.01. There is no di�erence between the
case where M̃ is renormalized (solid line) and the nonrenormalized
case (dotted line).

Figure 5.5: φ̃0 as a function of T̃ for h̃ = 0.01. There is no phase transition, but
rather a smooth crossover. The renormalized case (solid line) does
not di�er from the nonrenormalized case (dotted line).
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5.2 N scalar �elds

The Euclidean Lagrangian density of an N -component scalar �eld ~φ =
(φσ, ~φπ)T is

LE =
1
2
(∂µφi)2 +

1
2
m2

B
~φ2 +

λB

2N
(~φ2)2, (5.39)

where repeated indices indicates summation and ~φ2 =
∑N

i=1 φ
2
i . Expanding

around the classical �eld ~φ0 = (φ0, 0, . . . , 0)T , the Lagrangian density reads

LE =
1
2
(∂µφi)2 +

1
2
m2

Bφ
2
0 +

1
2
m2

B
~φ2

+
λB

2N

(
4φ2

0φ
2
σ + φ4

0 + (~φ2)2 + 4φ0φσ
~φ2 + 2φ2

0
~φ2
)
.

(5.40)

In Eq. (5.40) the terms Cφσ, where C is some constant, has been omit-
ted. Adding and subtracting the terms 1

2M
2
σφ

2
σ and 1

2M
2
πφ

2
π, the Lagrangian

density can be separated into the free parts

Lσ
0 =

1
2
(∂µφi)2 +

1
2
M2

σφ
2
σ (5.41)

and

Lπ
0 =

1
2
(∂µφi)2 +

1
2
M2

π
~φ2

π, (5.42)

and the interaction part

Lint = V0 −
1
2

(
M2

π −m2
B −

2λB

N
φ2

0

)
~φ2

π −
1
2

(
M2

σ −m2
B −

6λB

N
φ2

0

)
φ2

σ

+
2λB

N
φ0φ

3
σ +

2λB

N
φ0φσ

~φ2
π +

λB

2N
(φ2

σ + ~φ2
π)2

= V0 −
1
2
M

2
σφ

2
σ −

1
2
M

2
π
~φ2

π

+
2λB

N
φ0φ

3
σ +

2λB

N
φ0φσ

~φ2
π +

λB

2N
(φ2

σ + ~φ2
π)2,

(5.43)

where V0 = 1
2m

2
Bφ

2
0 + λB

2N φ
4
0, M

2
σ = M2

σ − m2
B − 6λB

N φ2
0 and M

2
π = M2

π −
m2

B −
2λB
N φ2

0. The one- and two-loop corrections to the potential are shown
in Fig. 5.6. Solid lines correspond to φσ and dashed lines correspond to φπ.
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Figure 5.6: One- and two-loop corrections to the e�ective potential for N scalar
�elds. Solid lines correspond to φσ and dashed lines correspond to
φπ.

5.2.1 Hartree approximation

The contributions in the Hartree approximation are the diagrams in the �rst
two lines of Fig. 5.6. This gives the following expression of the e�ective
potential

Veff = V0 +
1
2
∑∫

k
ln
(
ω2

n + ω2
kσ

)
+
N − 1

2
∑∫

k
ln
(
ω2

n + ω2
kπ

)
− 1

2
M

2
σ

∑∫
k

1
ω2

n + ω2
kσ

− N − 1
2

M
2
π

∑∫
k

1
ω2

n + ω2
kπ

+
3λB

2N

(∑∫
k

1
ω2

n + ω2
kσ

)2

+ 2(N − 1)
λB

2N
∑∫

k

1
ω2

n + ω2
kσ

∑∫
k

1
ω2

n + ω2
kπ

+ (N − 1)(3 +N − 2)
λB

2N

(∑∫
k

1
ω2

n + ω2
kπ

)2

,

(5.44)

where ω2
kσ = ~k2 +M2

σ and ω2
kπ = ~k2 +M2

π . Minimizing the e�ective potential
with respect to φ0 gives

∂Veff

∂φ0
= m2

Bφ0 +
2λB

N
φ3

0 +
6λB

N
φ0
∑∫

k

1
ω2

n + ω2
kσ

+ (N − 1)
2λB

N
φ0
∑∫

k

1
ω2

n + ω2
kπ

= 0.
(5.45)
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Eq. (5.45) has the trivial solution φ0 = 0 and the solution

2λB

N
φ2

0 = −m2
B −

6λB

N

∑∫
k

1
ω2

n + ω2
kσ

− (N − 1)
2λB

N

∑∫
k

1
ω2

n + ω2
kπ

.

(5.46)

Minimizing the e�ective potential with respect to M2
σ and M2

π gives

∂Veff

∂M2
σ

= −1
2
M

2
σ

∑∫
k

−1(
ω2

n + ω2
kσ

)2
+

3λB

N

∑∫
k

1
ω2

n + ω2
kσ

∑∫
k

−1(
ω2

n + ω2
kσ

)2
+

(N − 1)λB

N

∑∫
k

1
ω2

n + ω2
kπ

∑∫
k

−1(
ω2

n + ω2
kσ

)2
= 0

(5.47)

and

∂Veff

∂M2
π

= −N − 1
2

M
2
π

∑∫
k

−1(
ω2

n + ω2
kπ

)2
+

(N − 1)(N + 1)λB

N

∑∫
k

1
ω2

n + ω2
kπ

∑∫
k

−1(
ω2

n + ω2
kπ

)2
+

(N − 1)λB

N

∑∫
k

1
ω2

n + ω2
kσ

∑∫
k

−1(
ω2

n + ω2
kπ

)2
= 0.

(5.48)

Eq. (5.47) gives the following expression for M2
σ

M2
σ = m2

B +
6λB

N
φ2

0 +
6λB

N

∑∫
k

1
ω2

n + ω2
kσ

+
2(N − 1)λB

N

∑∫
k

1
ω2

n + ω2
kπ

,

(5.49)

and Eq. (5.48) gives the following expression for M2
π

M2
π = m2

B +
2λB

N
φ2

0 +
2λB

N

∑∫
k

1
ω2

n + ω2
kσ

+
2(N + 1)λB

N

∑∫
k

1
ω2

n + ω2
kπ

.

(5.50)
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For temperatures T < Tc, φ0 is given by Eq. (5.46) and the O(N)
symmetry of the Lagrangian density is broken down to O(N − 1). N − 1
massless bosons should occur according to Goldstone's theorem; M2

π should
be zero. Inserting Eq. (5.46) into Eq. (5.50), M2

π can be written as

M2
π =

4λB

N

(∑∫
k

1
ω2

n + ω2
kπ

−
∑∫

k

1
ω2

n + ω2
kσ

)
. (5.51)

If M2
π = 0, then

∑∫
k

1
ω2

n+ω2
kπ

=
∑∫

k
1

ω2
n+ω2

kσ
, which implies M2

π = M2
σ . First,

this is undesirable since the masses should not be equal in the broken phase.
We know this from the zero temperature values ofMσ andMπ, which are not
equal. In the real world, pions are interpreted as pseudo-Goldstone bosons
with small masses mπ = 139.6 MeV [18]. The zero temperature value of the
sigma mass is in the range mσ = 400− 1200 MeV [18]. Second, M2

σ is given
by

M2
σ =

6λB

N
φ2

0 −
2λB

N
φ2

0 =
4λB

N
φ2

0 6= 0, (5.52)

and thus M2
π = 0 is not a solution. Goldstone's theorem is not saties�ed at

all temperatures in the Hartree approximation. As will be shown in section
5.3, after proper renormalization Mπ can be chosen to be zero at zero tem-
perature, but it will become nonzero at nonzero temperatures in the broken
phase [22].

For N >> 1 in the Hartree approximation, the following expression is
obtained for φ2

0 in the broken phase

2λ
N
φ2

0 = −m2
B − 2λB

∑∫
k

1
ω2

n + ω2
kπ

. (5.53)

The expressions for M2
σ and M2

π are given by

M2
σ = m2

B +
6λB

N
φ2

0 + 2λB
∑∫

k

1
ω2

n + ω2
kπ

(5.54)

M2
π = m2

B +
2λB

N
φ2

0 + 2λB
∑∫

k

1
ω2

n + ω2
kπ

. (5.55)

Inserting Eq. (5.53) into Eq. (5.55) we see thatM2
π = 0 in the broken phase.

Goldstone's theorem is satis�ed when N >> 1 in the Hartree approximation.
Subtracting Eq. (5.55) from Eq. (5.54) gives

M2
σ −M2

π =
4λB

N
φ2

0. (5.56)

φ0 = 0 in the phase where the O(N) symmetry is restored, which implies
M2

σ = M2
π . The masses become degenerate in this phase.
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5.2.2 Large-N approximation

Consider all diagrams in Fig. 5.6. For large N , 1/N contributions are
ignored, and the e�ective potential reads

Veff = V0 +
1
2
∑∫

k
ln
(
ω2

n + ω2
kσ

)
+
N − 1

2
∑∫

k
ln
(
ω2

n + ω2
kπ

)
− 1

2
M

2
σ

∑∫
k

1
ω2

n + ω2
kσ

− N − 1
2

M
2
π

∑∫
k

1
ω2

n + ω2
kπ

+
NλB

2

(∑∫
k

1
ω2

n + ω2
kπ

)2

+ λB
∑∫

k

1
ω2

n + ω2
kσ

∑∫
k

1
ω2

n + ω2
kπ

.

(5.57)

Minimizing this potential as above, leads to Eqs. (5.53), (5.54) and (5.55).
The large-N approximation leads to the same expressions for φ2

0, M
2
σ and

M2
π as the Hartree approximation with N >> 1. Thus, Goldstone's theorem

is satis�ed in the large-N approximation.

5.3 The O(4) linear sigma model in the Hartree approxima-

tion

The Euclidean Lagrangian of the O(4) linear sigma model is obtained from
Eq. (5.39) by inserting N = 4. In addition, a term hφσ is subtracted, giving

LE =
1
2
(∂µφi)2 +

1
2
m2

B
~φ2 +

λB

8
(~φ2)2 − hφσ. (5.58)

In the real world, pions have small, but nonzero masses. The term hφσ is
introduced to generate masses for the pions [5]. As discussed in section 4.2,
the masses of the pions explicitly break the chiral symmetry. However, the
pion masses are small compared to other hadrons, and the chiral symmetry
can be considered as approximate. In the following sections, the chiral limit
where h = 0 and the physical point where h 6= 0, are studied.

5.3.1 The chiral limit

The equations forM2
σ ,M

2
π and φ2

0 in the chiral limit are obtained by inserting
N = 4 in Eqs. (5.46), (5.49) and (5.50). The following is found for the order
parameter in the broken phase

λB

2
φ2

0 = −m2
B −

3λB

2
∑∫

k

1
ω2

n + ω2
kσ

− 3λB

2
∑∫

k

1
ω2

n + ω2
kπ

.

(5.59)
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The sigma and pion masses are given by

M2
σ = m2

B +
3λB

2
φ2

0 +
3λB

2
∑∫

k

1
ω2

n + ω2
kσ

+
3λB

2
∑∫

k

1
ω2

n + ω2
kπ

(5.60)

and

M2
π = m2

B +
λB

2
φ2

0 +
λB

2
∑∫

k

1
ω2

n + ω2
kσ

+
5λB

2
∑∫

k

1
ω2

n + ω2
kπ

.

(5.61)

The �rst two terms in Eqs. (5.60) and (5.61) are the tree-level masses of the
sigma and pions, respectively. The last two terms are tadpole corrections of
the sigma and pion �elds. As was shown in the previous section, the gap
equation in the case of one scalar �eld could be renormalized by de�ning
the renormalized coupling constant as 1

λ = 1
λB

+ 1
16π2ε

and the renormalized

mass as m2 = λ
λB
m2

B. In the following we show that de�ning 1
λ = 1

λB
+ a

16π2ε

where a is a constant of order unity, and m2 = λ
λB
m2

B, does not work in the
Hartree approximation. Using dimensional regularization, we obtain

M2
σ = m2

B +
3λB

2
φ2

0 +
3λB

2
M2

σ

(4π)2

[
−2
ε
− 1 + γE + ln

(
M2

σ

4πµ2

)]
+

3λB

2
M2

π

(4π)2

[
−2
ε
− 1 + γE + ln

(
M2

π

4πµ2

)]
+

3λB

2

∫
d3k

(2π)3
nB(ωkσ)
ωkσ

+
3λB

2

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

,

(5.62)

and

M2
π = m2

B +
λB

2
φ2

0 +
λB

2
M2

σ

(4π)2

[
−2
ε
− 1 + γE + ln

(
M2

σ

4πµ2

)]
+

5λB

2
M2

π

(4π)2

[
−2
ε
− 1 + γE + ln

(
M2

π

4πµ2

)]
+
λB

2

∫
d3k

(2π)3
nB(ωkσ)
ωkσ

+
5λB

2

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

.

(5.63)

Dividing Eq. (5.62) and Eq. (5.63) by λB and inserting 1
λ = 1

λB
+ a

16π2ε
gives
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1
λ
M2

σ −
a

16π2ε
M2

σ =
1
λ
m2 +

3
2
φ2

0 −
3M2

σ

16π2ε
− 3M2

π

16π2ε

+
3
2
M2

σ

(4π)2

[
−1 + γE + ln

(
M2

σ

4πµ2

)]
+

3
2
M2

π

(4π)2

[
−1 + γE + ln

(
M2

π

4πµ2

)]
+

3
2

∫
d3k

(2π)3
nB(ωkσ)
ωkσ

+
3
2

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

,

(5.64)

and

1
λ
M2

π −
a

16π2ε
M2

π =
1
λ
m2 +

1
2
φ2

0 −
M2

σ

16π2ε
− 5M2

π

16π2ε

+
1
2
M2

σ

(4π)2

[
−1 + γE + ln

(
M2

σ

4πµ2

)]
+

5
2
M2

π

(4π)2

[
−1 + γE + ln

(
M2

π

4πµ2

)]
+

1
2

∫
d3k

(2π)3
nB(ωkσ)
ωkσ

+
5
2

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

.

(5.65)

From Eqs. (5.64) and (5.65), renormalizing by absorbing the divergences in
the coupling constant and mass can only be done if M2

σ = M2
π , which gives

a = 6. As mentioned above, this is undesirable since we know that the in the
broken phase, the masses are not equal. The de�nition of the renormalized
coupling constant and mass used above is not the proper way to renormalize
since it gives only symmetric solutions.

In the following, the equations are renormalized by adding temperature
dependent counterterms. This approach was also used by Lenaghan and
Rischke in [22]. The use of such terms is discussed in section 5.5. Dimensional
regularization and the MS scheme are used. The counterterms are chosen
to cancel both the ε-pole proportional to M2

σ and that proportional to M2
π .

Each integral
∫

d3k
(2π)2

1
2ωkM

requires a counterterm 2M2

16π2ε
. The renormalized

equations for M2
σ and M2

π are given by

M2
σ = m2 +

3λ
2
φ2

0 +
3λ
2

M2
σ

(4π)2

[
−1 + γE + ln

(
M2

σ

4πµ2

)]
+

3λ
2

M2
π

(4π)2

[
−1 + γE + ln

(
M2

π

4πµ2

)]
+

3λ
2

∫
d3k

(2π)3
nB(ωkσ)
ωkσ

+
3λ
2

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

,

(5.66)
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and

M2
π = m2 +

λ

2
φ2

0 +
λ

2
M2

σ

(4π)2

[
−1 + γE + ln

(
M2

σ

4πµ2

)]
+

5λ
2

M2
π

(4π)2

[
−1 + γE + ln

(
M2

π

4πµ2

)]
+
λ

2

∫
d3k

(2π)3
nB(ωkσ)
ωkσ

+
5λ
2

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

.

(5.67)

Adding Eq. (5.59) to Eq. (5.60) givesM2
σ = λBφ

2
0 from the bare Lagrangian,

and

M2
σ = λφ2

0 (5.68)

from the Lagrangian with counterterms. In the phase of broken symmetry,
the expression for M2

σ thus reads

M2
σ = −2m2 − 3λ

M2
σ

(4π)2

[
−1 + γE + ln

(
M2

σ

4πµ2

)]
− 3λ

M2
π

(4π)2

[
−1 + γE + ln

(
M2

π

4πµ2

)]
− 3λ

∫
d3k

(2π)3
nB(ωkσ)
ωkσ

− 3λ
∫

d3k

(2π)3
nB(ωkπ)
ωkπ

.

(5.69)

Inserting Eq. (5.68) into Eq. (5.67) the expression for M2
π reads

M2
π = m2 +

M2
σ

2
+
λ

2
M2

σ

(4π)2

[
−1 + γE + ln

(
M2

σ

4πµ2

)]
+

5λ
2

M2
π

(4π)2

[
−1 + γE + ln

(
M2

π

4πµ2

)]
+
λ

2

∫
d3k

(2π)3
nB(ωkσ)
ωkσ

+
5λ
2

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

.

(5.70)

At T = 0 the equations for M2
σ and M2

π read

m2
σ = −2m2 − 3λ

m2
σ

(4π)2

[
−1 + γE + ln

(
m2

σ

4πµ2

)]
− 3λ

m2
π

(4π)2

[
−1 + γE + ln

(
m2

π

4πµ2

)] (5.71)

and



5 PHASE TRANSITIONS AT FINITE TEMPERATURE 64

m2
π = m2 +

m2
σ

2
+
λ

2
m2

σ

(4π)2

[
−1 + γE + ln

(
m2

σ

4πµ2

)]
+

5λ
2

m2
π

(4π)2

[
−1 + γE + ln

(
m2

π

4πµ2

)]
,

(5.72)

respectively, where mσ is the zero temperature sigma mass and mπ is the
zero temperature pion mass. In the chiral limit, the pions are massless at
zero temperature. Inserting mπ = 0 in Eqs. (5.71) and (5.72) leads to
m2 ≡ −2m2 = m2

σ and

4πµ2 = m2
σe

γE−1. (5.73)

The zero temperature sigma mass is in the range m2
σ = 400 − 1200 MeV

[18], and here the value mσ = 600 MeV is chosen. φ0 = fπ at T = 0, where
fπ = 93 MeV is the pion decay constant [5]. From the minimum of the
classical potential V0, a value for the coupling constant can be found,

λ = −2m2

f2
π

=
m2

σ

f2
π

≈ 41.6. (5.74)

The following is obtained for M2
σ at �nite temperature

M2
σ = m2

σ − 3λ
M2

σ

(4π)2

[
−1 + γE + ln

(
M2

σ

m2
σe

γE−1

)]
− 3λ

M2
π

(4π)2

[
−1 + γE + ln

(
M2

π

m2
σe

γE−1

)]
− 3λ

T 2

2π2

∫ ∞

0
du

u2√
u2 − M2

σ
T 2

1

e

r
u2−M2

σ
T2 − 1

− 3λ
T 2

2π2

∫ ∞

0
du

u2√
u2 − M2

π
T 2

1

e

r
u2−M2

π
T2 − 1

(5.75)

and for M2
π
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M2
π = −1

2
m2

σ +
M2

σ

2
+
λ

2
M2

σ

(4π)2

[
−1 + γE + ln

(
M2

σ

m2
σe

γE−1

)]
+

5λ
2

M2
π

(4π)2

[
−1 + γE + ln

(
M2

π

m2
σe

γE−1

)]
+
λ

2
T 2

2π2

∫ ∞

0
du

u2√
u2 − M2

σ
T 2

1

e

r
u2−M2

σ
T2 − 1

+
5λ
2
T 2

2π2

∫ ∞

0
du

u2√
u2 − M2

π
T 2

1

e

r
u2−M2

π
T2 − 1

.

(5.76)

φ2
0 is given by Eq. (5.68).
When φ0 = 0 the O(4) symmetry is restored. By inserting φ0 = 0 into

Eqs. (5.66) and (5.67) and subtracting the latter from the former, it is easy
to see that M2

σ = M2
π = M2 in this phase. The masses become degenerate.

The renormalized expression for M2 is given by

M2 = −1
2
m2

σ + 3λ
M2

(4π)2

[
−1 + γE + ln

(
M2

m2
σe

γE−1

)]
+ 3λ

T 2

2π2

∫ ∞

0
du

u2√
u2 − M2

T 2

1

e

q
u2−M2

T2 − 1
.

(5.77)

To �nd a value of the lowest temperature at which φ0 = 0 is a minimum of
the e�ective potential, M = 0 is inserted into Eq. (5.77). The following is
obtained

1
2
m2

σ =
λT 2

c1

4
, (5.78)

which gives

Tc1 =

√
2m2

σ

λ
≈ 131.6 MeV. (5.79)

The results from solving Eqs. (5.75), (5.76) and (5.77) numerically are
shown in Fig. 5.7. A plot φ0 in shown in Fig. 5.8. For values of T between
Tc1 ≈ 131.6 MeV and Tc2 ≈ 235 MeV in the renormalized case, and Tc1 ≈
131.6 MeV and Tc2 ≈ 190 MeV in the nonrenormalized case, φ0 has several
values for the same temperature. There are two local minima and a local
maximum of the potential [5]. At T = Tc1 φ0 occurs as a local minimum
of the e�ective potential, but the global minimum is φ0 6= 0. At T = Tc2,



5 PHASE TRANSITIONS AT FINITE TEMPERATURE 66

Figure 5.7: The sigma mass Mσ, pion mass Mπ and the mass in the symmetric
phase, M , as functions of temperature in the Hartree approximation.
The renormalized masses (solid lines) are qualitatively the same as
the nonrenormalized masses (dotted lines).

Figure 5.8: φ0 as a function of temperature in the renormalized (solid line) case
and in the nonrenormalized (dotted line) case. The order parameter is
qualitatively the same in the two cases. φ0 indicates that a �rst-order
phase transition takes place in the Hartree approximation.
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φ0 = 0 is the global minimum. At some temperature T = Tc between Tc1

and Tc2, the global minimum changes from being located at φ0 6= 0 to being
located at φ0 = 0. A �rst order phase transition takes place at T = Tc.

Renormalization does not qualitatively change the order parameter or the
masses. Tc1 is the same for the renormalized case and the nonrenormalized
case, since when M = 0 the contribution from the temperature-independent
term disappears. Tc and Tc2 are di�erent in the two cases. The temperature
at which the phase transition occurs is larger in the renormalized case than
in the case where the zero-temperature contributions have been omitted.

5.3.2 The physical point

The result of a nonzero value of h is that φ0 = 0 is no longer a minimum
of the potential since ∂Veff

∂φ0
→ ∂Veff

∂φ0
− h. The equation for φ2

0 in the broken
phase reads

λB

2
φ2

0 =
h

φ0
−m2

B −
3λB

2
∑∫

k

1
ω2

n + ω2
kσ

− 3λB

2
∑∫

k

1
ω2

n + ω2
kπ

,

(5.80)

The equations forM2
σ andM2

π remain the same and are given by Eqs. (5.60)
and (5.61). The renormalized equations are given by Eqs. (5.66) and (5.67)
Adding Eq. (5.60) to Eq. (5.80) gives h = φ0

[
M2

σ − λBφ
2
0

]
, or from the

Lagrangian with counterterms

h = φ0

[
M2

σ − λφ2
0

]
. (5.81)

At zero temperature φ0 = fπ, M2
σ = m2

σ and M2
π = m2

π. In this case the
zero temperature pion mass is mπ = 139.6 MeV [18]. The zero temperature
values of mσ and φ0 are mσ = 600 MeV and φ0 = 93 MeV as before. From
Eq. (5.81) the following is obtained at zero temperature

λ =
m2

σ − h
fπ

f2
π

(5.82)

Subtracting Eq. (5.67) from Eq. (5.66) at zero temperature, λ can be written
as

λ =
m2

σ −m2
π

f2
π + m2

σ
(4π)2

[
−1 + γE + ln

(
m2

σ
4πµ2

)]
− m2

π
(4π)2

[
−1 + γE + ln

(
m2

π
4πµ2

)] .
(5.83)
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For Eqs. (5.82) and (5.83) to be consistent, m2
π = h

fπ
and

m2
σ

(4π)2

[
−1 + γE + ln

(
m2

σ

4πµ2

)]
=

m2
π

(4π)2

[
−1 + γE + ln

(
m2

π

4πµ2

)]
, (5.84)

giving

λ =
m2

σ −m2
π

f2
π

. (5.85)

By rearranging the terms in Eq. (5.84), the following is obtained

m2
σ ln

(
m2

σ

4πµ2

)
−m2

π ln
(
m2

π

4πµ2

)
= m2

σ ln
(

6002(MeV)2

4πµ2

)
−m2

π ln
(

139.62(MeV)2

4πµ2

)
= m2

π (γE − 1)−m2
σ (γE − 1)

(5.86)

giving

4πµ2 = e
m2

σ(γE−1)−m2
π(γE−1)+m2

σ ln 6002−m2
π ln 139.52

m2
σ−m2

π (MeV)2 . (5.87)

An expression for the renormalized mass parameter m can be found from
Eqs. (5.66) and (5.67) at zero temperature and reads

m2 ≡ −2m2 = m2
σ − 3m2

π

+ 6λ
m2

π

(4π)2

[
−1 + γE + ln

(
m2

π

4πµ2

)]
.

(5.88)

From the values of the zero temperature parameters given above, the follow-
ing is obtained; 4πµ2 = (527.9 MeV)2, λ = 39.37, h = (121.9 MeV)3 and
m = 460.1 MeV.

The results from solving Eqs. (5.66), (5.67) and (5.81) numerically are
shown in Figs. 5.9 and 5.10. At zero temperature, the sigma and pion
e�ective masses appear as the observed masses. At high temperatures the
sigma and pions have the same e�ective mass. They become degenerate
when the thermal contributions to the e�ective masses dominate, since h
is a constant and does not contribute when T → ∞. φ0 decreases with
temperature and approaches zero smoothly at high temperatures. There is
no phase transition in this case, but rather a smooth crossover. Qualitatively,
renormalization does not change the results.
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Figure 5.9: Mσ and Mπ as functions of temperature in the case of explicitly bro-
ken symmetry. The renormalized masses (solid lines) and the non-
renormalized masses (dotted lines) are not qualitatively di�erent.

Figure 5.10: φ0 as a function of temperature in the case of explicitly broken sym-
metry. The renormalized order parameter (solid line) is not qualita-
tively di�erent from the nonrenormalized order parameter (dotted
line). When the symmetry is explicitly broken, there is no phase
transition, but rather a smooth crossover.



5 PHASE TRANSITIONS AT FINITE TEMPERATURE 70

5.4 The O(4) linear sigma model in the large-N approxima-

tion

Above we found that renormalizing the gap equations in the Hartree approx-
imation by de�ning the renormalized coupling constant as 1

λ = 1
λB

+ a
16π2ε

and the renormalized mass as m2 = λ
λB
m2

B, does not work. In the following
section, it is shown that the above de�nitions of the renormalized coupling
constant and mass can be used to renormalize the gap equations in the large-
N approximation. Andersen used this approach in [20]. Both the chiral limit
and the physical point will be studied.

5.4.1 The chiral limit

The equations for φ2
0, M

2
σ and M2

π in the large-N approximation in the
broken phase are found by inserting N = 4 in Eqs. (5.53), (5.54) and (5.55).
The following equation is obtained for the order parameter in the broken
phase

λB

2
φ2

0 = −m2
B − 2λB

∑∫
k

1
ω2

n + ω2
kπ

. (5.89)

The equations for M2
σ and M2

π are given by

M2
σ = m2

B +
3λB

2
φ2

0 + 2λB
∑∫

k

1
ω2

n + ω2
kπ

(5.90)

and

M2
π = m2

B +
λB

2
φ2

0 + 2λB
∑∫

k

1
ω2

n + ω2
kπ

. (5.91)

As seen from Eqs. (5.89) and (5.91), M2
π = 0 in the broken phase. Using

dimensional regularization, the expression for M2
σ can be written as

M2
σ = m2

B +
3λB

2
φ2

0 + 2λB
M2

π

(4π)2

[
−2
ε
− 1 + γE + ln

(
M2

π

4πµ2

)]
+ 2λB

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

= m2
B +

3λB

2
φ2

0 + 2λB

∫
d3k

(2π)3
nB(k)
k

.

(5.92)

The integral in the last line in Eq. (5.92) has been calculated in section 3.9.
It gives T 2

12 . Dividing Eq. (5.92) by λB and using the expression we found
in section 5.1 for the renormalized mass, m2 = λ

λB
m2

B, gives
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1
λB

M2
σ =

1
λ
m2 +

3
2
φ2

0 +
T 2

6
. (5.93)

Adding Eq. (5.89) to Eq. (5.90), M2
σ can be related to the order parameter

by

λBφ
2
0 = M2

σ . (5.94)

By inserting this into Eq. (5.93) the following is obtained

λ

2
φ0 = −m2 − λT 2

6
(5.95)

and

M2
σ = −2m2 − λT 2

3
. (5.96)

At T = 0, φ0 = fπ and M2
σ = m2

σ, which have the values mσ = 600 MeV
and fπ = 93 MeV as before. From Eq. (5.96) at zero temperature it is found
that m2 ≡ −2m2 = m2

σ. As in the Hartree approximation, λ is calculated
from the minimum of the classical potential V0 and is given by λ = 41.6. In
this case, however, it is not possible to �nd a value of 4πµ2 from the zero-
temperature parameters. Thus µ is a free parameter. The �nite-temperature
equation for M2

σ in the broken phase is given by

M2
σ = m2

σ −
λT 2

3
, (5.97)

and the order parameter in the broken phase is given by φ2
0 = M2

σ
λ .

When φ2
0 = 0, Eqs. (5.90) and (5.91) givesM2

σ = M2
π = M2. The masses

become degenerate in the symmetric phase. The equation for M2 is given
by

M2 = m2
B + 2λB

∑∫
k

1
ω2

n + ω2
kM

, (5.98)

Eq. (5.98) can be renormalized in the same way we renormalized Eq. (5.9).
Using dimensional regularization the equation can be written as
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M2 = m2
B + 2λB

M2

(4π)2

[
−2
ε
− 1 + γE + ln

(
M2

4πµ2

)]
+ 2λB

∫
d3k

(2π)3
nB(ωkM )
ωkM

.

(5.99)

Dividing by λB and using the expressions 1
λ = 1

λB
+ 1

4π2ε
and m2 = λ

λB
m2

B

for the renormalized coupling constant and mass, respectively, the following
renormalized equation for M2 is obtained

M2 = −1
2
m2

σ + 2λ
M2

(4π)2

[
−1 + γE + ln

(
M2

4πµ2

)]
+ 2λ

∫
d3k

(2π)3
nB(ωkM )
ωkM

,

(5.100)

where we have used that m2 = −1
2mσ. Inserting M2 = 0 in Eq. (5.100)

gives

1
2
m2

σ = λ
T 2

c

6
. (5.101)

Thus, the value for the critical temperature is

Tc =

√
3m2

σ

λ
≈ 161 MeV. (5.102)

The results from solving Eq. (5.100) numerically are shown in Fig. 5.11,
together with the masses in the broken phase. A plot of φ0 is shown in Fig.
5.12. Here, the renormalization parameter µ is given the value µ = 1 GeV.
This is the value of the symmetry breaking scale, given by Λ ∼ 4πfπ ∼
1 GeV. The O(4) linear sigma model is a low-energy e�ective theory and the
only particles involved are the sigma and pion mesons with masses smaller
than Λ.

In this approximation Goldstone's theorem is satis�ed since the pions
are massless in the broken phase. At high temperatures the masses become
degenerate due to the thermal contributions. The plot of φ0 indicates a
second-order phase transition as it vanishes continuously at Tc.

In the large-N approximation the only divergence in the expression for
Mσ is proportional to Mπ. Since Mπ = 0 in the broken phase, the re-
sults from renormalizing are the same as simply dropping the temperature-
independent term. This is seen in Fig. 5.11. In the symmetric case, the
masses are qualitatively the same in the renormalized case and the non-
renormalized case, but in the renormalized case the masses depend on the
choice of µ. Renormalization does not a�ect the order parameter.
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Figure 5.11: The sigma mass Mσ, pion mass Mπ, and the mass, M , in the sym-
metric phase as functions of temperature. In the broken phase, there
is no di�erence between the renormalized (solid line) and the non-
renormalized (dotted lines) cases. In the phase of restored symmetry,
the renormalized mass depends on the choice of µ.

Figure 5.12: φ0 as a function of temperature. There is no di�erence between the
renormalized and the nonrenormalized cases. The order parameter
indicates a second-order phase transition.
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5.4.2 The physical point

By subtracting a term hφσ from the Lagrangian, the φ0 = 0 solution no
longer exists. Instead, the equation for φ2

0 in the broken phase reads

λB

2
φ2

0 =
h

φ0
−m2

B − 2λB
∑∫

k

1
ω2

n + ω2
kπ

. (5.103)

The equations for M2
σ and M2

π are given by Eqs. (5.90) and (5.91), respec-
tively. Subtracting Eq. (5.91) from Eq. (5.90) gives

M2
σ −M2

π = λBφ
2
0. (5.104)

Eq. (5.91) can be renormalized by using dimensional regularization and
inserting 1

λ = 1
λB

+ 1
4π2ε

and m2 = λ
λB
m2

B. The renormalized equation for

M2
π reads

M2
π = m2 +

λ

2
φ2

0 + 2λ
M2

π

(4π)2

[
−1 + γE + ln

(
M2

π

4πµ2

)]
+ 2λ

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

.

(5.105)

Eq. (5.104) holds in any renormalization scheme. If the left-hand side is a
renormalized expression, so is the right-hand side. This gives the following
renormalized equation for M2

σ

M2
σ = M2

π + λφ2
0

= m2 +
3λ
2
φ2

0 + 2λ
M2

π

(4π)2

[
−1 + γE + ln

(
M2

π

4πµ2

)]
+ 2λ

∫
d3k

(2π)3
nB(ωkπ)
ωkπ

.

(5.106)

From Eqs. (5.91) and (5.103) the order parameter can be related to Mπ by

φ0 =
h

M2
π

. (5.107)

At zero temperature, φ0 = fπ,M2
σ = m2

σ andM2
π = m2

π. As in the explic-
itly broken symmetry case in the Hartree approximation mπ = 139.6 MeV,

h = m2
πfπ = (121.9 MeV)3 and λ = m2

σ−m2
π

f2
π

= 39.37. The pion decay
constant and zero-temperature sigma mass are given by fπ = 93 MeV and
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mσ = 600 MeV, as before. µ is a free parameter as in the chiral limit in the
large-N approximation, and is again chosen to be µ = 1 GeV. An expression
for m2 is found from Eqs. (5.105) and (5.106) at zero temperature and is
given by

m2 ≡ −2m2

= m2
σ − 3m2

π

+ 4λ
m2

π

(4π)2

[
−1 + γE + ln

(
m2

π

4πµ2

)]
= (409.4 MeV)2 .

(5.108)

The results from solving Eqs. (5.105), (5.106) and (5.107) numerically are
shown in Figs. 5.13 and 5.14. As in the explicitly broken case in the Hartree
approximation, the pion and sigma masses start at their observed values at
zero temperature. At high temperatures they become degenerate due to the
contribution from the thermal bath. As mentioned in the explicitly broken
case in the Hartree approximation, this happens because h is independent of
temperature and does not matter when T →∞. There is no phase transition,
but a smooth crossover. Renormalization does not qualitatively change the
results.

Figure 5.13: Mσ and Mπ as functions of temperature in the case of explicitly
broken symmetry. The renormalized masses (solid lines) does not
di�er qualitatively from the nonrenormalized masses (dotted lines).
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Figure 5.14: φ0 as a function of temperature. The order parameter is not qualita-
tively di�erent in the renormalized (solid line) and nonrenormalized
(dotted line) cases. There is no phase transition when the symmetry
is explicitly broken, but rather a smooth crossover.

5.5 Results and discussion of the Hartree and large-N ap-

proximations

Above, the O(4) linear sigma model has been studied in the Hartree and
large-N approximations, both with and without an explicitly symmetry
breaking term hφσ. The term hφσ generates mass for the low temperature
pions [5]. The gap equations are renormalized, and the results are compared
with the case where the zero-temperature contributions have been omitted.
Both approximations restore chiral symmetry at high temperatures, as ex-
pected. The results agree with those obtained by other authors, e.g. [5, 22].

When h = 0 the Hartree approximation predicts a �rst-order phase tran-
sition. At temperature Tc, φ0 6= 0 and φ0 = 0 change role as the global
minimum of the potential. At Tc there are thus two values of the order
parameter φ0 giving the same minimum, which signals a �rst-order phase
transition. In the large-N approximation for h = 0, the order parameter
approaches zero continuously for T < Tc and is zero for T ≥ Tc. In this ap-
proximation the phase transition takes place at Tc = 161 MeV. The large-N
approximation predicts a second-order phase transition. Lattice calculations
and other e�ective models suggest that the chiral phase transition when
considering two massless quarks, is of second order [5]. Thus, the large-N
approximation seems to be in agreement with other models concerning the
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order of the phase transition.
In the Hartree approximation, the pions in the broken phase are not

massless except at T = 0, where mπ = 0 was chosen. Thus, Goldstone's
theorem is violated, and no Goldstone bosons occur in the broken phase.
Throughout this thesis we have used h̄ = 1. Restoring h̄ gives L → 1

h̄L. The
propagator is the inverse of the di�erential operator in the quadratic terms
occurring in 1

h̄L. Thus, each line I contains a factor of h̄. Each vertex V
contains a factor 1

h̄ . This gives the power P in h̄ as P = I −V . The number
of loops L is the number of internal momentum integrations, correspond-
ing to the number of internal lines minus the number of vertices due to the
momentum conserving δ-functions there. Including the overall momentum
conservation of the graph at one of the vertices, gives L = I−V +1 = P +1.
Thus, counting the power of h̄ counts the number of loops and a loop expan-
sion is essentially an expansion in powers of the Lagrangian. This feature
is important for theories containing some symmetry, such as the O(4) linear
sigma model. Individual graphs of such theories do not necessarily obey the
symmetry, but the sum of all graphs containing the same number of loops
represents the symmetry [23]. For a �xed number of loops n, the symmetry
of the Lagrangian is respected if all diagrams containing n loops are included.
In the Hartree approximation, only the double-bubble diagram is included
in the calculations, and the sunset diagram is not considered even though is
has as many loops as the double-bubble. The Hartree approximation is not
consistent in the number of loops. Thus the symmetry of the Lagrangian is
not respected, leading to violation of Goldstone's theorem [2]. The Hartree
approximation includes some, but not all next-to-leading order contributions
in 1

N , and is thus not consistent in 1
N either.

In the broken phase in the large-N approximation, the pions are mass-
less and Goldstone's theorem is satis�ed. All diagrams with two-loops are
included, although only the double-bubble diagrams survive the N → ∞
limit. The sunset diagram is not just simply dropped as in the Hartree
approximation, it disappears when the 1

N terms are neglected.
When h 6= 0, the O(4) symmetry is explicitly broken down to O(3). In

this case there is no phase transition, but rather a smooth crossover. The
pion and sigma masses start at the experimental values at zero temperature.
The masses become degenerate at high temperatures since at high tempera-
tures the thermal contributions dominate. When h = 0 the phase transition
is of �rst order in the Hartree approximation and of second order in the
large-N approximation. This is seen in Fig. 5.15, as the �rst-order phase
transition at h = 0 leaves the order parameter φ0 at h 6= 0 steeper in the
Hartree approximation compared to the large-N approximation. The case
of nonzero h gives a better description of the real world, since pions have
nonzero masses and are considered as pseudo-Goldstone bosons.

As was seen in section 5.3, the gap equations in the Hartree approxima-
tion cannot be renormalized by de�ning 1

λ = 1
λB

+ a
16π2ε

and m2 = λ
λB
m2

B,
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Figure 5.15: The order parameter in Hartree and large N approximation when
h 6= 0. The �rst-order phase transition which is predicted in the
Hartree approximation when h = 0 leaves the order parameter at
h 6= 0 steeper than in the large-N approximation.

because it required Mσ = Mπ for all values of φ0. The equations in the
Hartree approximation are renormalized by adding temperature-dependent
counterterms. However, counterterms should in general not depend on tem-
perature, as the counterterms depend on ε as 1

ε . This is in contradiction
with the physical picture where short distance physics cannot be a�ected by
the physics in the infrared [16]. In addition to the inconsistencies mentioned
above, the Hartree approximation su�ers from renormalization problems.

Renormalization by absorbing the divergence in the coupling constant
and mass does work in the large-N approximation. This approximation does
not su�er from the renormalization problems which the Hartree approxima-
tions su�ers from, and can be renormalized with temperature-independent
counterterms.

Compared to the case where the zero-temperature contributions are not
included in the calculations, renormalization does not qualitatively change
the results. In the broken phase in the large-N approximation, the renormal-
ization does not a�ect the results at all. The reason for this is that Mπ = 0
for all temperatures in the broken phase. As the temperature-independent
integral in the equation forMσ is proportional toMπ after using dimensional
regularization, this contribution disappears. This is thus the same as simply
dropping the temperature-independent contribution. In this approximation,
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µ is a free parameter, and in the phase of restored symmetry, the masses
of the sigma and pions depend on the choice of µ. In the Hartree approxi-
mation, the renormalization parameter µ is �xed in order for the equations
to be consistent with zero-temperature parameters. The �gures throughout
this section show that renormalization quantitatively changes the results in
the Hartree approximation more than in the large-N approximation.
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6 SUMMARY

In section 3.10 it was seen that the �nite-temperature scalar λφ4-theory
su�ers from IR divergences. These divergences arise because the bosons ac-
quire thermal mass when they propagate through the thermal bath. The free
propagator 1

ω2
n+ω2

k
should be replaced by the e�ective propagator 1

ω2
n+ω2

k+M2 ,

which includes the thermal mass M . The problems with IR divergences
lead to a breakdown of ordinary perturbation theory, and a resummation of
an in�nite set of Feynman diagrams, daisy diagrams, is needed. The e�ec-
tive propagator represents the resummation of daisy diagrams. In the high
temperature limit, where the temperature is much larger than the zero tem-
perature mass, thermal �uctuations contribute to the mass as

√
λT at one

loop.
The contribution to the mass from thermal �uctuations is also important

when studying phase transitions. As seen in section 5.1, the symmetry of the
λφ4-theory is spontaneously broken at zero temperature when the parameter
m2

B < 0. As the temperature increases, the thermal �uctuations contribute
increasingly to the mass. At some critical temperature the thermal contri-
butions dominate and the symmetry is restored.

A series of phase transitions is believed to have taken place in the early
Universe. The QCD phase transition is one of them. Decon�nement of
quarks and gluons and restoration of chiral symmetry are related to the
QCD phase transition. The O(4) linear sigma model can be used as an e�ec-
tive theory for QCD at low temperatures. It describes the physics of mesons
and makes it possible to study the chiral phase transition. The model dis-
plays many important aspects of the phase transition. In section 5, the O(4)
linear sigma model was considered in both Hartree and large-N approxi-
mations. The self-consistent equations for the sigma and pion masses were
renormalized. As was seen, the divergent terms depended on the temper-
ature through the e�ective mass M , as the divergences occured as ∼ M2

ε .
Using temperature-dependent counterterms is not a good way to renormal-
ize. The large-N approximation could however be renormalized by de�ning
the renormalized coupling constant 1

λ = 1
λB

+ 1
4π2ε

and the renormalized

mass m2 = λ
λB
m2

B. This approach did not work in the Hartree approxi-
mation, and the gap equations in this approximation was renormalized by
using temperature-dependent counterterms. In addition to the renormaliza-
tion problems, the results obtained in the Hartree approximation are not
consistent with the results obtained in other models as it predicts a �rst-
order phase transition. Goldstone's theorem is violated in this approxima-
tion. The large-N approximation agree with other models, as it predicts
a phase transition of second order. Goldstone's theorem is satis�ed in this
approximation.

Including a term in the Lagrangian which represents the mass of pions,
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there is no phase transition but rather a smooth crossover. Pions are inter-
preted as pseudo-Goldstone bosons with small, but nonzero mass. This case
gives a better description of the real world.

The linear sigma model is only an approximation to the underlying the-
ory, which is QCD, but studying the phase transition in this model might
help in the understanding of the QCD phase transition in the early Universe.
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