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Summary

This thesis is a theoretical investigation and inquiry into the general theory of accretion
disks, and the connection between this theory and the spin-up evolution of accreting X-ray

pulsars.

In Chapter 1, an historical introduction to the discovery of X-ray sources originating from
beyond the solar system is given. The identification of some of these systems as binary
systems with a mass transfer from an evolving star, onto a compact object is important
in this context. Also observations that lead to the idea that some of these mass transfer
systems contain magnetic neutron stars (pulsars) are discussed. Since the accretion disk
model is merely a paradigm (there exist no direct proof as to the existence of these disks),
arguments in support of this model is given.

Once the accretion disk model is established, different modes of mass transfer is discussed
in Chapter 2. The most important (since it will transfer the most angular momentum)
is Roche lobe overflow. Also mass transfer by a stellar wind is considered. By defining
low mass X-ray binaries (LMXB) and high mass X-ray binaries (HMXB), the important
differences between these two types of X-ray binary systems are made clear. Finally the
essential Eddington luminosity, which is considered to be a maximum luminosity (and

thereby also a maximum mass transfer rate) is calculated.

The standard theory of thin Keplerian disks is established in Chapter 3, and a model
is constructed and analyzed. This is the version of the disk in the unperturbed state
without the pulsar magnetic field. The principal mechanics of such a disk, which con-
cerns the internal viscous torques to remove angular momentum, is discussed. Since the
mechanism that generates the viscosity in such disks is dubious, the a-parameterization
is used. Equations for general thin disks are discussed, and then through a choice of
equation of state, opacity and energy transport, a set of disk equations that govern the
disk are presented for three different regions of the disk. Analytical solutions for the disk
parameters are then given, in the same form as Shakura-Sunyaev disks. Many of the
assumptions that went into the construction of the model are then justified, analytically

and with numerical plots. The model returns good and consistent values, both regarding
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xii SUMMARY

timescales and disk parameter values. The exception is in the inner region of the disk,
where the thin disk assumption seems to break down, and also other characteristics built
into the disk model become invalid. This is of no concern however, since calculations of
the disruption radius ro made later (in Chapter 4), indicate that the pulsar magnetic field
will disrupt the disk before this inner region, or at least make the disk solutions in this

region invalid in any case.

The disk spectra radiated from such a disk are essential from a observational point of
view. Therefore an attempt to calculate the dominant spectra from the different parts of
disk is made. This shows that the outer parts of the disk can be well approximated by a
blackbody spectrum, while the middle region can be described by a modified blackbody
spectrum. The spectrum from the inner region (which radiate with highest intensity)
can be crudely described by a Wien cut-off spectrum. The concept of irradiated disks,
and other influences on the spectra are discussed. Towards the end of Chapter 3, a
short outline of the essentials of disk stability is included for completeness, since this is
a vital area of accretion disk research. It is here shown that the inner region of the disk
model (where the radiation pressure is dominant) is thermally unstable. Finally a short

presentation of alternative disk models is given, such as ADAF and optically thin disks.

In Chapter 4, the torque exerted onto the star by the accretion disk and the interaction
between the disk and the magnetic field of the pulsar, is investigated. The essential
assumption is that the magnetic coupling between the disk and the dipolar magnetic field
of the star, is of such a nature that the field is threaded onto the disk. This means that the
magnetic field lines are frozen into the disk plasma, and thus will follow the fluid elements
of the gas. If the disk and the magnetic field (which follows the rotation of the star) is
not rotating at the same angular velocity, then there will be a shearing between the two.
Generally, this shearing motion will generate a toroidal magnetic field B, inside the disk,
and this causes a torque on the star. It is proved in Chapter 4 that the perturbation to
the poloidal component B, of the magnetic field inside the disk, is negligible, and this
simplifies the calculations of the torques considerably.

The value of the torque (negative, positive or zero) at a certain radius depends on the
relative size of the radius compared to the corotation radius r.,. All the important radii
and their relation to the value of the torques, are then defined, including the disruption
radius ry. Also the important fastness parameter w, and the dimensionless fastness func-
tion n(ws) are defined, and their relation to the torque is analyzed. The validity of the
model is then checked by comparing with pulsar data for 10 well known X-ray binary

pulsars, and is found to be satisfactory.

A screening factor is then introduced, and an expression for the toroidal magnetic field
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is found. On basis of the solutions for the middle (gas pressure and electron scattering
dominated region) for the thin disk model developed in Chapter 3, the total torque on
the pulsar is calculated. From this, a rather high value for the critical fastness parameter
we = 0.96 is estimated, and the equilibrium spin period F,, is found. The link between
the torque on the star, and the variation of the important parameters P (pulsar spin),
M (mass accretion rate) and B (magnetic field strength) is outlined, and then calculated
numerically by using an expression for zy = ro/7.,. The latter understanding is then used
to define and find a spin-up line for accreting X-ray pulsars. This spin-up line is plotted
in Chapter 5, and found to be in agreement with regular pulsar data collected from the
ATNF Catalogue. The dramatic and unexpected torque reversals found in such systems
recently by the Compton Gamma Ray Observatory (CGO) are then discussed, and a few

possible explanations are given.

The expression for F,, found in Chapter 4 indicates that if the magnetic field of the pulsar
is weak enough, then the pulsar could be spun up to values of P,, that are in the order
of milliseconds. This is in support of the idea that such accretion X-ray pulsar systems
might be the progenitors of millisecond pulsars. In Chapter 5, the validity of this theory is
discussed, generally and in light of the results from Chapter 4. The millisecond accretion
X-ray pulsars that have been discovered during the last 7-8 years (by the NASA X-ray
Timing Explorer (XTE) and Beppo/SAX satellite), and that might be said to represent

a missing link here, are also discussed (and data are given in Appendix D).

In this thesis, all numerical calculations, figures and plots have been conducted using
Maple 9.5. The exceptions are the more illustrative graphical figures Fig. 2.1, 3.1, 3.2, 4.1
and 4.2, where COREL Representations have been used.
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Chapter 1

Discovery and Identification

1.1 The Birth of X-ray Astronomy

A new era in astronomy was born on June 18 1962, when an Aerobee-rocket carrying
several Geiger-counters lifted off from New Mexico, USA. The objective of the experiment
was to search for X-rays emitted by fluorescence from the Moon. Other X-ray sources
were however soon discovered, originating in the constellation Scorpio. The source Sco
X-1 was the first clear evidence of X-rays coming from beyond the solar system. The
intriguing possibility that there might be intense sources of X-rays other than the Sun
acted as a catalyst in theoretical speculations, and it also encouraged experimenters to

make further observations.

During the 1960’s, astronomers carried out observations during brief rocket- and balloon
flights that lifted experiments above the Earth’s atmosphere. These flights confirmed the
Aerobee observations, refined earlier measurements and identified a number of strong X-
ray sources. The Crab nebula eventually became the first object outside the solar system
to be identified as an X-ray source. It was however much more difficult to identify the
strong point-source that had been discovered in the Scorpio constellation. Unlike the
Crab nebula, there was no obvious sign of a supernova remnant in the area, and thus the

nature of the X-ray source remained a mystery.

Sco X-1 Identification

In 1966 however, an optical counterpart to the Sco X-1 source was located, with a faint
blue 12"-13" magnitude star as a likely candidate. The Sco X-1 system had an X-ray
output 1000 times larger than the output in the optical area, and this made it such
an unusual object that some previously unrecognized energy-mechanism was assumed to
provide the intense X-ray radiation. In this manner optical astronomy provided the clues

as to the energy mechanism in the Sco X-1 source. It was in fact two objects in orbit
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2 DISCOVERY AND IDENTIFICATION

around their common center of gravity.

The theoretical activity concerning the nature of Sco X-1 thus gathered momentum.
Taking into consideration the binary nature of Sco X-1, it was speculated that the X-
ray emission originated from high-temperature gas flowing onto a compact object from
a close binary companion [1]. For this mechanism to work efficiently the star on which
the material falls must be very much smaller, but of comparably solar mass. Due to
the observed soft X-ray spectrum from Sco X-1 many held that the accretion process
was driven by a white dwarf [2]|, which was the only known compact object at that time
with any degree of observational verification. Following these developments others argued
that gas flowing onto a compact object from a binary companion generally would have
too much angular momentum to flow radially (spherical). Instead the gas would form
a thin accretion-disk around the compact object, with approximately Keplerian circular

velocities and a small inward drift [3].

Discovery of Radio Pulsars

Although many contributions to the theory and possible existence of compact objects
were made, the theoretical work on these objects proceeded with moderate pace until the
discovery of radio-pulsars by Bell & Hewish in 1967. They observed rapid and regular
pulsations in a galactic radio source, and this was interpreted as resulting from beams of
radio waves emitted in the magnetic field of a rapidly rotating neutron star [4]. In spite
of the expanding theoretical effort to explain the newly discovered galactic X-ray sources,
there were no compelling evidence at that time, that these sources had anything to do
with close binary systems and compact objects. But the discovery of pulsars made the

notion of such systems a lot more credible.

By the end of the decade over 20 X-ray sources had been discovered, showing a great
variety of properties. The temporal structure of the radiation was found to be highly
variable on every timescale from milliseconds to years, and the variability was both random
and periodic. The great majority of the sources were situated near the galactic plane,
with distances ranging from 50 pc to 10 kpc, establishing the sources as galactic objects.
Several strong extra-galactic X-ray objects have also been observed and identified over
the last decades, giving X-ray astronomy recognition as relevant in the study of the most

distant objects in the Universe as well.

1.2 Identification of X-ray Binaries

Intrigued by these preliminary discoveries astronomers began designing an Earth-orbiting

X-ray satellite, that could make observations continuously. The Uhuru-satellite was en-
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tirely devoted to non-solar X-ray observations, and revolutionized our understanding of
cosmic X-ray sources and compact objects. And when the Uhuru-program was shut down

in 1973, the catalog consisted of 339 X-ray sources.

1.2.1 Pulse Period and Spin Up

The discovery of pulsars was still fresh in everyone’s mind, so the Uhuru-team was very
excited to detect X-ray pulses coming from the constellation Centaurus in early 1971. The
X-ray pulses had a regular period of 4.84 seconds. A few months later, similar pulses were
discovered in the constellation Hercules, they had a period of 1.24 seconds [5]. These two
sources were designated Cen X-3 and Her X-1. Because the periods of these two X-ray
sources were so short, it was suspected that they were rapidly rotating neutron stars.
X-ray pulsations from luminous X-ray binaries provide a clear signature of accretion onto
a magnetized neutron star. If the magnetic field of the neutron star is strong (> 108 G),
the inflowing material from the donor star can be channeled towards the magnetic poles,
where it gives off most of its energy in the form of X-rays. If in addition, the magnetic
and rotational axes are misaligned, this will create an X-ray beam which will sweep across
space as the star rotates. If this beam sweeps across our line of sight, X-ray pulsations
will be observed with the same period as the rotational period of the magnetic field of

the star.

Spin-Up

The pulse period histories of a number of X-ray pulsars have been reliably charted for
almost three decades now [6]. For some systems this monitoring has revealed a linear
decrease of the pulse period with time, so-called spin up. The change of the pulse period
in these cases is not always monotonic on short timescales, but the trend towards a secular
decrease in pulse period seems evident [7]. Other X-ray pulsars show an opposite tendency,
where the pulse period in fact increases, so-called spin down. This can be understood in
terms of torques, which will be exerted by the accretion flow if the right conditions are
present. Many such spin-up systems have been observed among accreting X-ray binary
pulsars, and it seems reasonable to suppose that if conditions allow spin up to proceed far
enough, a millisecond-period pulsar may be the result [8]. In view of this, some millisecond
pulsars (spin period < 10ms) are believed to have acquired their rapid spin via spin-up,
during a phase of accretion from their companions'. Due to the estimated timescales at
which these torques are assumed to operate, it is expected that this spin up phase may

have to be of the order of ~ 10% years to create a millisecond pulsar.

In 1998 the pulsar SAX J1808.4-3658 was discovered. This pulsar has a pulse period of ~ 2.5 ms and
is orbiting a low-mass star with a very small orbital period ~ 2 hours, which makes this an ultracompact

binary system [9]. We shall return to this very interesting system later
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1.2.2 Orbital Period

It soon became clear that the Cen X-3 and Her X-1 systems (and others) were not ordinary
radio-pulsars like the Crab-pulsar. When they were observed for several days, it became
evident that in addition to the pulsations, their X-ray emission was being cut off on a
regular basis. The Her X-1 source turns off for ~ 6 hours every 1.7 days. Apparently Her
X-1 is an eclipsing binary, and it takes ~6 hours for the X-ray source to pass behind its
companion star. Moreover, careful timing of its X-ray pulses shows a periodic Doppler-
shifting every 1.7 days, which is direct evidence of orbital motion about a companion star.
Careful optical searches of the location of Her X-1 soon led astronomers to a variable dim
star with excess emission in the UV-region, that had already been cataloged as HZ Her.
The apparent magnitude of this star varies between 13 and 15 (due to X-ray heating from
the compact object), with a period of 1.7 days. Because this period is exactly the same
as the orbital period of the X-ray source, one can conclude that HZ Her is the companion
star around which Her X-1 orbits [5].

Putting all pieces together, it was realized that the pulsating X-ray sources Cen X-3 and
Her X-1 are binary systems in which one of the components is a pulsar, and the other
visible component is an ordinary star. Similar conclusions have, as we shall see below,

been drawn for many non-pulsating X-ray sources containing a white dwarf or black hole.

1.2.3 Non-Pulsating X-ray Binaries

The list of possible galactic X-ray source-candidates includes all three kinds of known
compact objects. A large part of our information about these compact objects has been
derived from the studies of X-ray binary sources. As for X-ray pulsars, knowledge of pulse
profiles, pulse periods and orbital parameters from such systems provides key information
regarding the physics of neutron stars in general. It is often possible to determine with

some degree of confidence, the type of compact object present in an X-ray binary.

If consistent data on the mass of the components of a binary system exists, the nature
of the compact object might be inferred from that. The theory of compact objects gives
limiting values on the possible masses of compact objects, and we know that a white
dwarf cannot have a mass exceeding the Chandrasekhar-limit (~ 1.4 M). The maximum

mass for neutron stars is however less certain, but probably smaller than 3 M, [10]

Cyg X-1
Considerations of the non-periodic, rapidly varying binary X-ray source Cyg X-1 are
conclusive [11]. The high mass (significantly higher than 5 M) inferred from this source

from the combined optical and X-ray data, excludes the possibility of a white dwarf or
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a neutron star. It is this, together with the compact nature of the object, that leads to
the identification of the Cyg X-1 X-ray source as a black hole. The nature and detailed
structure of such objects are uncertain. But the fact remains: Cyg X-1 and several other
candidates, are with high certainty not a white dwarfs or neutron stars, but they are

almost definitely some kind of compact object.

1.3 The Accretion Disk Model

As T mentioned earlier, the favored mechanism for explaining the observed behavior of
these new systems was a gas accretion-flow from the visible star onto the compact object.
When the gas falls in the gravitational well of a compact object like a neutron star/black
hole, a substantial gravitational energy is lost. In most cases the gas will have too much
angular momentum to fall directly in, and thus the accreting gasflow would form a disklike
structure around the compact object. In 1969 Lyndon-Bell [12] proposed the concept of a
viscous accretion disk. Here the gravitational energy is transformed, through an internal

viscosity, into heat and radiation as the gas spirals towards the compact object.

It is important to realize however that the general description of an accertion disk (and
certain other modes of mass-transfer) is itself a phenomenological model. Observations,
across the whole spectrum, provide the primary data, but they are not immediately
unambiguous. No one has ever directly imaged an accretion disk in a binary X-ray source,
in the sense of producing a resolved photograph of such a system. However in spite of
the lack of direct observational evidence, the accretion model for X-ray binaries must be
credited considerable weight. This model, in addition to basic physical principles, can
explain many qualitative and quantitative details in the observed characteristics of these

sources:

e The rapid variability of the X-ray emission on short timescales implies a small
emitting region. An object cannot be observed to vary in brightness faster than the
time it takes light to travel across the object. It is a fundamental characteristic of

astronomical objects that the larger they are, the less rapidly they can vary.

e Many of the objects are positively identified to be in binary systems, with identified

optical components orbiting invisible counterparts.

e Mass accretion onto a compact object, especially a neutron star or a black hole, is
an extremely efficient means of converting released gravitational potensial energy
into radiation. Imagine a mass m falling from infinity onto a neutron star of radius
R and mass M. If we define its potensial energy to be 0 at r — oo, then the loss in

potential energy of the mass m, which equals the maximum released energy is
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GmM M
ABge = —p— = Gm (—R~) (1.1)

If this infall takes place in an accretion disk, then half of the energy will be released
as the matter spirals inwards, while the other half will be released as the matter
collides with the stellar surface or interacts with the neutron star magnetic fields.
In other words we have Lgisc = Lgurface = %Lm. If we for a neutron star assume:
radius R ~ 10km and M ~ 1M, this gives

R

ABue Gm(%) G (M
A — ‘E( )_0.15 (1.2)

Considerably larger than for nuclear fusion (< 1%).

e The observed Doppler-shifts in certain accretion binaries are consistent with a ro-
tating disk of optically thin gas in the system. [13]. These observations can only be
made in systems where the disk-light dominates all other system components at the
relevant wavelengths. The only systems where such conditions are met are the cata-
clysmic variables (CV), in which the accreting object is a white dwarf and the mass
donor is a small faint low-mass star. The other X-ray binaries (neutron star/black
hole) largely fail to satisfy these conditions. For OB-systems the luminosity of the
mass donor (mostly UV & optical) will completely swamp the disk contribution.
The accretion luminosity (almost entirely hard X-rays) in these systems gives infor-
mation about the accretion process very close to the compact object, but very little

about possible disk flow.

e In Her X-1 cyclic modulations of the overall X-ray and optical flux, that are not
related to the orbital period, have been observed. This lends further qualitative
evidence for an accretion disk in this systems, as this cycle can be interpreted as
occultations of the X-ray source by a precessing and tilted accretion disk. This cycle
in Her X-1 has a period of 35 days [5].

A profound interpretation, supported by these facts, is:

Despite the great variation in the observed phenomena, it appears possible to describe
almost the entire zoo of variable galactic X-ray sources in a general standard model: The
accretion of gaseous matter in binary systems, consisting of a compact object and a non-

compact donor star.

The accretion model (disk accretion in particular), has in general been instrumental to

the understanding of many active phenomena in the Universe, such as the formation of
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planetary systems, the evolution of binary stars, the production of astrophysical jets and
perhaps even the formation of galaxies. Several large-scale accretion disks have been
directly observed around young stars (the protoplanetary dust-disk around (-Pictoris),
and the Hubble Space Telescope reveals images of parsec-scale disks in the cores of active
galactic nuclei (AGN). The most famous accretion disk of all is probably the rings of
Saturn, where the disk is so gas poor its angular momentum transport is dominated by
solid body collisions and disk-moon gravitational interactions. These cases makes the
notion of various types of accretion disks in many systems, including X-ray binaries, more
credible.
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Chapter 2

Interacting Binary Systems

2.1 The Roche Model for Close Binary Systems

The majority of the stars that make up our galaxy are members of binary systems, and
the stars in these systems are usually well separated. However, when either of the stellar
radii is of the same order of magnitude as the orbital radius and/or one of the components
is a neutron star or black hole, the presence of a near companion can dramatically alter
the stars’ appearance and evolution. The problems on the structure of such close binary
systems were first studied by the 19*® century French mathematician Edouard Roche
in connection with the destruction (or survival) of planetary satellites, and is usually
associated with his name. The essence of the Roche approach is to consider the orbit of a
test particle in the gravitational potential due to two massive bodies orbiting each other
under the influence of their mutual gravitational attraction. The two bodies (in our case,
two stars) execute Keplerian orbits in a plane, about each others common center-of-mass
(CM), and the Roche problem assumes these orbits to be circular!. Another restriction on
the Roche problem is the assumption that the two stars can be regarded as point masses

for dynamical purposes (this is normally an excellent approximation).

We take the masses of the two objects to be M (neutron star) and M, (donor star), and
M, will lie in the range 0.1 — 100 M, for most known types of genuine stars. Fig.2.1 is
drawn for ¢ = My/M = 4, and thus the neutron star appears as the object to the right.
The binary separation a is then given in terms of the fundamental observational quantity
the binary period P, through Kepler’s law:

4m?a® = G(M + My)P? (2.1)

It is convenient to work in a frame of reference rotating with the binary system, with

This is usually a good approximation for binary systems, since tidal effects tend to circularize origi-

nally eccentric orbits on timescales that are short compared to those relevant to our problem.

9
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angular velocity w = 2r/P = /G(M + M,)/a® relative to an inertial frame. The forces
acting on a test particle in the system, as seen by an observer rotating with the system,

appear to be

Ftest = FA/I + FJWd + Fcentrifugal + Fcoriolz's (22)

The last two terms take account of the centrifugal and Coriolis forces, that are introduced
as a result of our frame of reference (these are ”pseudoforces” and vanish in an inertial
frame). The first two terms of course, are the Newtonian gravitational attraction from

the individual stars. We introduce the Roche potential ®(r) given by

GM__ GMa 1, (2.3)

w1r~r6\~ \r — 7y 9

(DR(’I') -

where r, and 74 are the position vectors of the compact object and donor star (their
centers). ®p includes the effects of both gravitational and centrifugal forces (caused
by the orbital motion), but some of the forces acting on flowing mass in the system, in
particular the velocity dependent Coriolis-force ~ (w x F') is not represented. To calculate

the detailed motion of mass in the system, we need to consider the Coriolis-force.

However, we gain considerable insight into accretion problems by plotting the equipoten-
tial surfaces of ®g and, in particular, their two-dimensional sections in the orbital plane.
This is seen in Fig. 2.1.

Fig. 2.1 Sections of the Roche equipotentials ®p = constant, in the

orbital plane of a binary system with mass ratio q = 4.
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The shape of the equipotentials is governed entirely by the mass ratio g, while the overall
scale is given by the binary separation a. Fig. 2.1 is drawn for ¢ = 4, but its qualitative
features apply for any realistic mass ratio. Close to each star the potential is dominated
by the gravity of that star, and the equipotential surfaces are spheres around the center
of the star. Further out, the equipotential surfaces are deformed, and this is shown as

highly non-spherical contours.

Lagrange Points

One unique surface intersects itself at the point Li, called the inner Lagrange point.
This surface defines two regions, one surrounding each star, which are called Roche lobes.
Equipotential surfaces surrounding only one star lie within that star’s Roche lobe, but
surfaces outside a Roche lobe will surround both stars in most cases. At Ly, the potential
reaches a critical point where V®g(r) = 0, which means that there is no force F =
—V ®g(r) acting on a particle at rest there. The potential &5 may be regarded as having
two deep valleys centered at r. and r; (the values of ®p are shown on Fig. 2.1), and
the figure shows how these two valleys are connected through the saddle point L;. To
continue the analogy: L, is like a high mountain pass between two valleys. This means
that material inside one of the two lobes in the vicinity of L, finds it much easier to
pass through L; into the other lobe than to escape the critical surface. At other similar
critical points of the potential, Ly and L3, the other lobes ”opens up” much like the Roche
lobes does at L;. The last two Lagrange points in the binary system are the so-called

"Trojan-asteroid” -points L4 and Ls.

2.2 Mass-Transfer Mechanisms

There are three main reasons many binaries transfer matter at some stage of their evolu-

tionary lifetimes:

e In the course of its evolution, one of the stars in a binary system may increase
in radius, and/or the binary separation shrink. This may lead this star to fill its
Roche lobe, to the point where the gravitational pull of the companion can remove

the outer layers of its envelope (Roche lobe overflow).

e One of the stars may, at some evolutionary phase, eject much of its mass in the
form of a stellar wind. Some of this material may be captured gravitationally by

the companion (Stellar wind accretion).

e There is a third well-known type of mass loss among ordinary stars: the irregular
outburst of equatorial mass-ejection observed in rapidly rotating B-stars, so-called

B-emission stars (Irreqular equatorial mass loss).
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The detailed origin and evolution of such close binary systems are issues that generate a
lot of scientific activity. The compact objects in X-ray binaries are remnants of relatively
massive stars that evolved in a binary. Our understanding of the origin and evolution of
X-ray binaries is thus based in good part on our understanding of the evolution of single
massive stars. It is adversely affected by the appreciable uncertainty in our knowledge
of the later evolutionary stages of such stars. Our knowledge about the effects of a
supernova on such binary systems are for example, quite limited. Aspects specifically
related to binaries include mass transfer between the stars, mass loss from the binary and
evolution of stars that have lost or gained an appreciable fraction of their mass. We are
here however mainly concerned with the basic mass-transfer mechanisms, which in some

way are relevant to the study of the accretion process itself.

2.2.1 Roche Lobe Overflow

The most common expulsion mechanism is expansion of the donor star M, beyond its
critical equipotential lobe. The outer part (atmosphere) of the donor star then lies very
close to L;, and any perturbation of this material will cause it to flow into the Roche
lobe of the neutron star, where it is quickly captured. The result is a gas stream from L,
towards M.

In many systems the donor star has such a low mass that its main sequence lifetime
exceeds the Hubble time, and the evolutionary expansion-mechanism cannot operate.
Another possible catalyst for Roche lobe overflow is decrease in binary separation a,
which may arise from loss of orbital angular momentum. A variety of effects can give
J < 0: in short-period systems gravitational radiation is efficient, and so is the loss of
angular momentum through a stellar wind. In some systems with eccentric orbits, the
Roche lobe overflow occurs only when the binary separation is minimal (at perigee), even
though for most of the orbit the stars are too far apart for accretion to occur. This gives
rise to highly transient X-ray sources.

Non-Rotating Frame

As matter flows through the Li-point, the binary system rotates steadily with a period P
(angular velocity w = 27/P) around the CM. The flowing gas however, stops co-rotating
with the system once it is removed from the stellar surface of the donor. In a non-
rotating frame, the gas-stream thus appears to move with an velocity orthogonal to the
line of centers as it emerges from L; (unless the binary period is very long). Further, it
can be shown that the pressure forces driving the gas through L;, and thus giving it a
v,, can be neglected in the trajectory calculations [14]. As the v, is much smaller than

the velocities acquired during the free-fall towards the neutron star, the initial conditions
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near L; have little effect on the trajectory, which therefore is essentially identical for all
test particles in the flow. The stream will thus follow a ballistic trajectory determined
by the Roche-potential ®p (gravitation + rotation) alone. If we assume that before it
entered orbit, the gas had little opportunity to lose its initial angular momentum, it will
tend to the orbit of lowest energy for a given angular momentum, i.e. a circular orbit. We
thus expect the gas to start orbiting the neutron star in the binary plane at a radius Ry,
such that the Keplerian orbit at Ry has the same specific angular momentum J as the

transferring gas had on passing through L. Equating forces in this circular orbit gives

J2

Ry = ——
T oM

(2.4)

The angular momentum J is given by the system parameters ¢ and ¢, and in Fig. 2.1
we would have Ry = 0.06a. Ry is always (typically a factor 2-3 times) smaller than the
Roche lobe-radius Ry, of the accreting object [14]. The captured material will thus orbit
well inside the Roche lobe, unless the accreting object already occupies this space, i.e.
if its radius B > Ry4. In systems where the accreting star is extended, for example a
main-sequence star, it is quite possible that £ > R,;. In this case the gas stream from the
donor would hit the accretor directly. For X-ray binaries however, the accreting object is

always a compact star, for which we have

R < Ry (2.5)

for all realistic binary parameters. It is thus clear that in the Roche lobe overflow scenario,
the captured plasma will always possess sufficient angular momentum to form an accretion
disk around the compact object.

2.2.2 Stellar Wind

In many X-ray binaries the mass-donating star does not fill its Roche lobe (detached
systems), and the compact component must accrete from a wind off the star. Massive stars
may expel significant amounts of gas steadily in a stellar wind. These forms of expulsion
may well be active in addition to Roche lobe overflow [15]. Indeed, any combination of

them is conceivable for stars whose mass is not too low.

The stellar wind consists of particles (electrons and ions) that are driven out from the
donor star at highly supersonic speeds. If we equal the wind speed with the escape velocity

from the surface of the star we get (with Rg, as the donor star radius)
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2GMd>% 26

Uw('r) Z Uesc(Rdon) = ( Rdon
For typical parameters, v, is at least a few thousand kilometers per second. The wind
particles which pass so close to the neutron star that their kinetic energy is less than the
gravitational potential energy, will be captured and ultimately accreted by the neutron

star. This gives

L GM

Tace 2 —3 (2.7

Urel

where v2,, = v2 + v? (v is the neutron star orbital velocity, which may be substantial).

The captured wind thus forms an accretion-cylinder where material within the radius 74

will fall in on the neutron star, forming a bow shaped shock-front around it.

The captured wind material has rather low specific angular momentum compared with
mass overflowing the Roche lobe, it is therefore difficult, on general grounds, to decide
whether disc-formation conditions are satisfied. The captured gas always has some angu-
lar momentum with respect to M, but it may not be sufficient to form an accretion disk,
in which case we have more or less spherical accretion.

However, accretion by stellar wind is an inherently less efficient process than Roche lobe
overflow. Since the stellar wind is approximately isotropic, mass leaves the star in all
directions, not just towards the accretor, and will usually escape the system unless it
passes close to M. If the wind is emitted over a solid angle €2 and has total mass-loss rate
M,, this implies an accretion rate

2.,
Qa2

M ~ M, (2.8)
In most X-ray binaries the winds are isotropic so Q = 4, and have v, ~ 103kms™! (=
Tace ~ 10%°m. Setting the period P ~ 10 days (in some cases it is only a few days, or
as high as ~ 100 days) gives a ~ 10*®m > r,.. This means that only a small fraction
~ 107* M,, of the plasma ejected from M, is gravitationally captured by M. It is thus
only because the mass-loss rates themselves are substantial, that sources powered in this
way are observable.

2.2.3 Irregular Equatorial Mass Loss

Rapidly rotating B-type stars show, at irregular time intervals, eruptive outbursts of

equatorial mass which produces a rotating ring of gas around the star. Some of these
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stars may be rotating as fast as ~ 70% of the break-up velocity. Mass ejection is usually
intrinsic to the B-star (i.e. it is independent of the presence or absence of a companion
star). The star can appear as a normal main-sequence B-star for many years and suddenly
go through a B-emission phase, becoming a Be-star for periods ranging from weeks to

many years, while others are more or less permanent Be-stars.

If such a Be-star has a neutron star companion, this can suddenly become a bright X-ray
transient when the B-star goes through a B-emission phase, and the matter in the ejection

ring (or disk) is transferred onto the neutron star.

2.3 LMXB and HMXB

Binary systems are often divided into two main categories (with several subclasses):

¢« LMXB

In the low-mass X-ray binary systems (My < 2 M), the primary star is later than
type A, usually G, K or M. A late type star does not have a natural stellar wind
strong enough to power the observed X-ray spectra, and significant mass transfer is
considered only to occur through Roche lobe overflow? [16]. The spectral features of
the late type star are usually outshone by the reprocessing, at optical wavelengths,
of the X-ray flux intercepted by the accretion disk. X-ray heating of the accretion
disk thus dominates the optical light, and LMXBs appear as faint blue stars. The
most well known LMXB (in addition to the before-mentioned Her X-1) is perhaps
4U1627-673, which contains a pulsar and the low-mass red dwarf KZ TrA. The
overwhelming majority of LMXBs however, are not pulsars, and thus probably lack
magnetic fields strong enough to affect the accretion flow (B < 10° G).

¢« HMXB

In high-mass X-ray binaries (M, 2 10 M), the donor star is an O or B-star whose
optical /UV-luminosity generally exceeds that generated by the X-ray source. X-ray
heating is minimal, with optical properties dominated by the donor. The OB-
star has a substantial stellar wind, and may in some cases remove as much as ~
1076 M yr—'[18]. A neutron star in a close orbit could capture a significant fraction
of this wind, sufficient to power the X-ray source. Prominent HMXBs containing
pulsars are Vela X-1 (wind fed), Cen X-3 and the Magellanic-cloud sources SMC
X-1 and LMC X-4 (all probably Roche lobe overflow-systems [19]).

2In a LMXB, a stellar wind from the mass donor may be a consequence of the absorption of X-rays
from the compact object. A neutron star (or black hole) may capture as much as ~ 10% of this induced

stellar wind (ISW), and the result could be a self-sustained ISW-driven system [17].
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It is easy to realize that an optical identification, along with orbital parameters of the
system are very useful. They establish the nature (spectral type) of the donor star, the
mode of mass transfer and information on the overall accretion flow {(geometry and rate).

2.4 The Eddington Limit

We have indicated earlier that the radial accretion (or infall) of material onto a neutron
star converts gravitational potential energy into heat and radiation in a very efficient way
(in units of the material’s available rest-mass energy). If we now assume that the flow
is spherical and neglect magnetic fields, the gas will be moving in free-fall radial velocity
until it reaches the neutron star surface. The gas will then be decelerated abruptly, and
its kinetic energy will be converted into heat and radiation. In the event of accretion onto
a black hole this would not necessarily be the case, as the gas would take some part of
its energy with it across the Schwarzchild-radius. This so-called Bondi accretion model
would be a reasonably good approximation in the event of an isolated star accreting from

a large gas cloud (for instance the interstellar medium).

From (1.1) we have the total luminosity Lge. from the neutron star surface and the accre-
tion disk

. GM -
L = Loce = Laisk, + Lsu‘rface = __RTM (29)

Continuing our simple model, let us compute the upward force exerted on the infalling
matter, taken to be ionized hydrogen, by the radiation flux from the surface. Under
these circumstances, the radiation exerts a force mainly on the free electrons through
Thompson-scattering. The scattering cross-section for protons is a factor (m./m,)? =~
2.5-1077 smaller. The protons are however influenced by the upward force, through their
electrostatic coupling to the electrons. Take the mean momentum of the photons to be
P, and since the Thompson-scattering is elastic, this is the mean momentum that will
be transferred per collision. Assuming the photons are moving radially, the number of
photons crossing unit area in unit time at radius r is L, = L/4nr?(pc). The number
of collisions per electron per unit time is then L,o7, where o7 = 6.6 - 1072 m? is the
Thompson cross-section. The force per electron is then the rate at which momentum is

transferred per unit time

Lo T Lo T
Frg, - D= 2.1
¢ Anr?pe LR —r (2.10)

We should note that this expression holds even if the photons are not streaming radially,
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since only the component p, of the momentum is transferred radially per collision. The
radiation pushes out electron-proton pairs against the total gravitational force GM (m, +
my)/r? =~ GMm,/r? acting on each pair at a radial distance r from the center. So the

net inward force on an electron-proton pair is

Lo 1
Fopay = Fraa = (GMmp - Z?Z}:) 3 (2.11)

There is a limiting luminosity, the Eddington luminosity, for which this expression vanishes

4rGM M
Lag — “TCMmC 5 g (—) Js (2.12)
ar M@

At greater luminosities the outward pressure of radiation would exceed the inward grav-
itational attraction, and accretion would be halted unless some form of outside pressure

acted on the infalling gas.

For accretion powered objects the Eddington luminosity implies a limit on the steady

accretion rate M. (or M mad), due to the fact that we must have Lgee < Lggs. The

critical mass-accretion rate Mmt associated with the Eddington luminosity is defined
from (2.9)

. R

My = | =—— | L 2.13

¢ (G M> Fdd (2.13)

Using (1.2) we get for the efficiency factor § = L/Mc* = LggaMeuc® ~ 0.15. We then

have
: LEdd —8 —1

Mc’rit = 7322— ~ 10 M@Y’T’ (214)
Several oversimplifications were made in the above argument, some of them partially
justified. For a more complicated and realistic situation (non-spherical flow etc.) we
cannot expect (2.12) to be any more than a crude estimate. It is interesting though,
to note that no steady galactic X-ray binaries, with known or estimated distances, show
luminosities that exceed a few times 10*' Js™!. The Eddington luminosity is of great
practical importance for the study of X-ray binaries, in particular because certain types
of systems can be used as ”standard candles”, in the sense that their typical luminosities

are always close to their Eddington limits.
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Chapter 3

The Unperturbed Accretion Disk

In contrast to stars, which have been known from ancient eras, the presence of accretion
disks has been recognized only quite recently. In this sense one might say that an accre-
tion disk is a relatively new type of object. Theoretical studies of accretion flows were
initiated as late as in the 1960s. The early history of accretion disk modeling includes
publications by Prendergast [3], Shakura [20] and Pringle & Rees [21]. But the appear-
ance of a monumental paper by Shakura & Sunyaev [22] established the classical picture
of accretion disks. It marked the beginning of attempts to find a detailed self-consistent
model, resolving both the hydrodynamics and the radiation properties of such disks. To-
day this Shakura-Sunyaev model is regarded as the standard model for thin accretion
disks.

However, as a large body of observational data has accumulated, gaps between the classical
models and some of the observations have become clear. More detailed, accurate and
specialized models have been added, and the literature of accretion disks have grown as
our confidence in the accretion model has become more settled. In spite of that, many
of the major uncertainties of the early models are still with us at this time, and a firm

general consensus is lacking.

3.1 Principal Mechanics of the Accretion Disk

The disk that forms under the mass-transfer mechanisms outlined in Chapter 2, has a
definite radius Ry. The magnitude of Ry however depends on the mode of mass-transfer
and the binary parameters. If we were considering a test-particle it would simply orbit the
primary M in an ellipse at R ~ Ry. But for the continuous stream of gas captured from the
donor-star, the corresponding configuration would be a ring of matter at R ~ Ry. Within
such a ring there will be dissipative processes, which will convert some of the orbital

energy of the bulk of matter into internal heat, which in turn is radiated and therefore

19
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lost to the system. This loss of energy leads the gas to sink deeper into the gravitational
potensial of the primary, and thus requires it to lose angular momentum. The timescale
on which the orbiting gas can redistribute its angular momentum is normally much longer
than both the energy-loss timescale ty, (by radiative cooling), and the dynamical timescale
tam (the approximate time for an orbit). Since a circular orbit has the least energy for a
given angular momentum, we will expect most of the gas to spiral inwards towards the
primary through a series of approximately circular orbits in the binary orbital plane. This

configuration would be recognized as an accretion disk.

Outward Flow

In the absence of external torques, this can only occur by transfer of angular momentum
outwards through the disk by internal torques. The matter inside the disk both gives
away and gains angular momentum to gas at other radii. Most of the matter loses more
angular momentum than it gains, and will therefore spiral inwards towards the compact
object. Since however totally (for the whole disk) angular momentum is conserved, some
matter at the outer rim of the disk will gain more angular momentum than it can give
away, and will therefore spiral outwards and out of the disk, where it may or may not be
lost to the binary system. This outwards spiraling (or loss) of gas from the outer parts
of the disc is necessary to carry away the angular momentum from the main body of
the disk. It should be emphasized that the mass of this fraction of the gass is actually
small compared to the mass that actually accretes onto the compact object. We shall
however not dwell into details concerning the disposal of this angular momentum in the
total binary system, we only observe that the outer edge of the disk will in general be at

a radius exceeding Ry (where R; might be referred to as the minimum disk-radius).

3.1.1 Viscous Torques

The case of Keplerian rotation in the disk implies for the angular velocity

Uclr) = (Q—M—)/ (31)

This Keplerian rotation law implies differential rotation in the disk, i.e. material at neigh-
boring radii will move with different 2 (and different v,). Fluid elements in neighboring
streams will slide past each other, and due to random and turbulent motions of these
fluid elements, matter will drift between different radii. Since the material originating in
the two annuli on average will have different specific angular momentum, this will cause a
transfer of angular momentum. This type of transport process is known as shear viscosity,

as the effect must vanish if there is no shearing (or sliding) of adjacent gas streams past
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one another. In for example solid body-rotation, the relative distances between any pair

of fluid/gas elements remains constant, and thus no shear viscosity is generated.

Flow Assumptions

We assume that the gas flow takes the form of an accretion disk, with cylindrical polar
coordinates (r,$,2). We assume azimuthal symmetry, with gas flowing in a Keplerian
fashion in the ¢-direction with angular velocity Qx(r) about the origin. The gas flow lies
between z = +H, where H generally will be a function of r. The basic picture is, as we
have seen, one in which chaotic turbulent elements of the gas move at a typical random
velocity @, and travel a mean free path A before mixing with other materials. This causes
a radial mixing, where gas elements 1 and 2 are constantly exchanged across the surface
with radius . Thus the net angular momentum transfer (or net torque) across a radius r
will be produced by the angular momenta of two streams of gas (Fig.3.1). From material
originating at r — A\ /2 and moving outward across r to mix with annular material centered
at r + \/2, and the other starting at r + A\/2 and moving inward across r into the inner
annulus at r — A/2 (Fig.3.1).

Fig. 8.1 Radial mizing by drift of particles across radius r,

causing angular momentum transfer.

Because the chaotic motion takes place in an equilibrium flow, this process cannot result
in any net transfer of matter between the two annuli. Mass therefore crosses the surface
at r at equal rates in both directions, of the order Hpt per unit arc length, where p(r) is
the mass density. There is however a transport of angular momentum, which effectively
leads to a viscous torque exerted on the outer stream by the inner stream. Consider the

material originating at » — \/2, which is diffusing outwards and has an orbital velocity of

-3) - (a6
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where we have approximated the angular velocity to first order in a Taylor-series. A
similar expression can be found for the matter originating at r 4+ \/2:

o(r2) = (r+2) (o 242) "

We introduce the surface density (mass density per unit area) as

Z(T):[Zpdz:2/Odez=[Zpdz (3.4)

This means that the net outward transfer of angular momentum across r per unit length

according to a corotating observer at P is

)] Kr — %)2 (:2—)\> %g — (r + %)2 (g) dgg] = —Eﬁ/\r’?%g (3.5)

where we have assumed that X is small compared to the scale over which  varies signifi-

cantly. The transport coefficient for kinematic viscosity v is often defined as

V=AU (3.6)

The torque exerted by the inner ring on the outer ring gives the net outward angular
momentum flux. The total torque of the outer annulus on the inner (= —total torque of

the inner on the outer) at r is then

G(r) = 2wr§]ur2%§— = 2777"321/—&—7: (3.7
Note that a negative gradient of angular velocity leads this torque to be negative (opposite
the angular velocity of the flow of gas in the inner annulus), so the faster moving inner
annulus will decelerated, while the slower moving outer annulus will be accelerated. Or in
other words: a positive outward flux of angular momentum. The same result may also be
deduced in another alternative, and perhaps more formal way by use of the Navier-Stokes
equation p(8v /0t + (v - V)v) + Vt = 0 for a viscous fluid, where the viscous stress tensor
t is used. The dominant component of t that contributes in our Keplerian accretion disk
model is

Lrg = i 3.8
o= (39

LThe viscous stress tensor in the Navier-Stokes equation above is t;; = t.; = pv (v, ; + v, ; — 26,05 1),
J 7 P ] Jve 3Vij Yk k

In cylindrical coordinates the dominant component of t is £,4 = 4, = pv (%?Jmﬁ +vg, — 22) [23].

T
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which then becomes the viscous stress (or viscous force per unit area) in the ¢-direction

at r.

Now we will use the result G(r), to consider the net torque on a ring of gas between r
and r — Ar. For practical reasons we choose 7 as the outer limit because (3.7) refers to an
outward angular momentum transport. As this has both an inner and an outer edge it is
stthject to competing torques. The middle annulus is subject to the negative torque G(r)
from the outer, and the positive torque —G(r — Ar) from the inner annulus (Fig.3.2).
We see that the rate of angular momentum loss of the annulus through the outer surface
at r is |G(r)] (it gains G(r) < 0) and the rate of angular momentum gain at r — Ar is
|G(r — Ar| (it gains —G(r — Ar > 0). Then (from definition of the derivative) we get the
net rate of angular momentum gain

G(r—Ar)—-G(r)= Z—G Ar (3.9)

T

The net torque received by the gas in the annulus at r with unit length in the radial
direction is thus dG/dr.

— -G(r)

—> -G(r-Ar)

_— G(r-Ar) ¢—

s

Q(r-An)

Fig. 3.2 Competing torques from larger and smaller radii on annulus ar r.
It is clear that for our accretion disk mechanism to work, we need |G(r — Ar)| < |G(r)].

The total torque on the middle annulus (9G/0r) Ar does an amount of work per unit

time (a rate of working)

d 0G oG 0 dQ
We can here observe that the term
0
é;(GQ) Ar (3.11)

is the rate at which rotational energy is transferred throughout the disk, a convection of

rotational energy if you want. While




24 THE UNPERTURBED ACCRETION DISK

e (%g) Ar (3.12)

is the loss of mechanical energy of the gas. This lost energy will be converted into internal
energy (heat). The disk can deposit this energy in a number of ways, but most of it will
be radiated away from the upper and lower surfaces of the disk. In so-called advection-
dominated diskflows, the heat can be carried with the gas and eventually lost at other
radii, but in most standard models the generated heat is radiated immediately. The disk
has in any case two plane faces, and thus a plane area 47r Ar, and with a dissipation
within the gas at a rate of G(d/dr)Ar per ringwidth Ar, we get the dissipation rate per

unit plane surface area as?
G d0 1 do\?
= = N — )
bir) dardr 2" (dr) (3:13)
We have now seen that the introduction of a viscosity in the disk has two major functions.

e [t leads to the necessary outward angular momentum transfer, so that the gas slowly

spirals towards the primary (compact) object (3.11).

e This type of shear viscosity also inevitably leads to heating of the gas, which makes
the gas radiate and therefore to be readily observable (3.12).

3.1.2 Mass and Angular Momentum Conservation

The fact that the gas flow is limited to move between z = £ H leads us to the definition
of geometrically thin disks

H<r (3.14)

This is called the thin disk condition, and as we shall see it is in some way related to
our assumption of Keplerian rotation. Generally for disks in which 7 ~ 10* K. we have
H/r ~ 0.01, but as T increases the thin disk condition generally becomes less valid, and
may eventually break down. In such cases the accretion disk may expand and become

bloated, and this happens in the central region of many disk models.

As long as the thin disk condition is valid we can then decouple the equations in the z

and r direction into a set of two, separate, one-dimensional descriptions. The first one

*Expression (3.13) may also be derived from the energy equation of the Navier-Stokes description for
a viscous fluid. The D(r) is then identified as the dominant term of the viscous dissipation function ®.
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describing the radial structure and the other describing the vertical structure of the disk.
Also, it is reasonable to use a one-zone approximation for the vertical structure of the

disk. In this one-zone approximation we put

Y =3 = /fo p(r)dz = 2p(r)H (3.15)

And we may also take the vertically integrated viscous stress at r (force per unit area) to
be

Ty = /00 trpdz = 1/27‘51—9— (3.16)

o dr

where (3.8) is used. We now exploit our knowledge of the principal mechanics of the ac-
cretion disk to deduce conservation equations for mass and angular momentum transport
in the disk due to radial drift motions. We take an annulus of the disk material lying
between r and r — Ar. This ring has a total mass 27rAr3 and total angular momentum
2nrArYir?€). The rate of change of both these quantities is given by the net flow from

the neighbouring annuli. Conservation of mass in this annulus gives

%(2#7“1&7"2) = (vp - 27rY),_A, — (vp - 277Y),

7d

0
—QWATB-;(TE’UT) (3.17)

where it should be noted that v, < 0 for inflow. We make the Ar — 0, and get the mass

continuity equation

oy, 0
r—+ —(r¥v,) =0 3.18
ot + Br( ) (3.18)
The conservation equation for angular momentum transfer in this annulus is similar,
except that we must include the transport due to the net effects of the viscous torques

Gr)

(T%(QWTATETQQ) = (v 27rTAr2r2Q)IT~Ar — (v - ZWTATETZQ)V + %?Ar
9 2 oG
o~ —ZWATE;(TEUTT Q) + —5_;AT (3.19)

Again in the limit Ar — 0 we get

r—gt-(ETZQ) + —a—(errrzﬂ) _ 1o

or on Or (3.20)

By combining the two conservation equations and assuming 9§2/9t = 0 (which will hold

in a fixed gravitational potential) we get




26 THE UNPERTURBED ACCRETION DISK

(3.21)

We would like to eliminate v, in our equations by using (3.18) and (3.21), and this brings

cey] e

If we substitute (3.7) for G(r) and use the assumption of Keplerian orbits we get finally

us to

oY 10

TE T 2 or

0¥ 30| 1,0 1
v= _°29Y = (/2 3.23

ot  ror [r or (v2r%) (323)
This is the basic equation (together with a prescription for v) governing the time evolution
of surface density in a Keplerian disk. In general it is a non-linear diffusion equation for

¥, because v may be a function of local variables in the disk.

If we assume that Y.(r,?) is a solution of (3.23), we get v, as

3 0

Up =
Now that we have equation (3.23) we can illustrate the mechanics of the viscous accretion
disk in a very nice way. For some special cases it is possible to solve (3.23) analytically.
Generally if the viscosity is a power-law function of r, then (3.23) can in most cases be
solved [24]. If we consider the case v ~ r for example, and we also assume as boundary
conditions an initial ring of matter of infinite consentration at r = r; — X(r,0) ~
5(r — i), we get an analytical solution?
4T

Yz, m) =

z— )2 - 2
b _ } (3.25)

Yo
where we have x = \/r/—r”: and 7 = {/typ. The parameters ¢, and ¥y are numerical
constants, where ¢, corresponds to the viscous timescale t,;,. = r/v, at 74, that is {5 =
Lyise(Tin) = Tin/Vr(Tin). Fig. 3.3 shows the matter distribution in this system at six different
values of 7 (or £), and nicely demonstrates how the mass accretion process proceeds in a
viscous disk. We can see that the outer part of the matter distribution moves outwards,
taking away the angular momentum of the inner parts, which move inwards towards the
accreting compact object. If we insert >{z, 7) into (3.24) we see that the radius at which
v, changes sign, moves outwards itself. Thus parts of the matter distribution which are at

radii r > r;, just after the initial release of the ring (¢ ~ 0), at first move to larger radii,

3See Appendix B for a general discussion.
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but later begin themselves to lose angular momentum to parts of the disk at still larger
radii and thus drift inwards. A very long time after the initial release (7 = 1.024) we can
see that the density profile begins to resemble one which we perhaps could expect in a
steady version of such an accretion disk. Since we have no sink in which the matter can
disappear in this model (a Schwarzschild radius or a neutron star surface), the matter will
build up at » = 0, and we can see that this is beginning to happen already at 7 = 0.032.
If there is a sink, then after a long time almost all of the original mass will have accreted
on to the compact object (r ~ 0), and all of the original momentum have been carried
to very large radii (back into the circumbinary envelope) by a very small fraction of the

mass.
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Fig. 3.3 A ring of matier placed in orbit at v = 7y, spreads out under the action of viscous forces.
The surface density %/%y is shoun as a function of x = /r/rym and 7 = t/ty

There are several timescales that must be considered when looking at these disk models. It
is now clear from the above that the disk mass gradually drifts inward with a radial velocity
vy (< 0), while at the same time rotating around the compact object with Keplerian

velocity v4. The assumption here is one of rapid rotation with slow inflow, that is

T 1
> tdyfn = —

‘vr| < Vp = toise = Vs = Q_K—

(3.26)

r
Uy

We will later look at other timescales, such as the hydrostatic timescale 5,4 over which
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the vertical disk structure may distribute changes, and the thermal timescale ¢y, over

which energy is transported inside, and out of the disk.

3.2 The a-disk Formulation

The nature of this prominent viscosity is one of the enigmas of accretion disk physics.
We may try to establish the viscous timescale, over which transfer of angular momentum
takes place, by observing that the rate of angular momentum gain in an annulus at
ris ~ G(r)/r ~ 4rrXyvQ, while the angular momentum contained in this annulus is
~ 27r¥r?Q. The viscous timescale is then

ByQ r? r?

Lvise ~ S0 % (3.27)

where r then denotes the typical dimension of the disk. For standard non-turbulent
plasmas we have the proton-proton collision mean free path A = 10°(7T%/N)m [14],
and we equate the mean velocity v with the sound speed in such a plasma, v = ¢; =~
103y/T/104 K ms™ [25]. With T ~ 10*K, p ~ 10-°kgm™ = N ~ 102 m~3 as param-
eter estimates that hold for the outer regions of most accretion disks in binaries (as we
shall confirm later with the Shakura-Sunyaev model), this gives v ~ 1072m?s™!. With
r ~ 108m as the accretion disk radius (about the size of the Earth-Moon distance) we

have

tyise ~ 101 s ~ 10M yr (3.28)

which is 2 Hubble-time tg. It is therefore quite clear that the regular non-turbulent col-
lision viscosity is not by far sufficient to generate the dissipation and angular momentum
transfer that we require for such an accretion disk to operate. We need some other type of
anomalous viscosity based on turbulence and/or magnetic fields. If we try to estimate the
viscosity coefficient v based on turbulence we take 7 ~ ¢, ~ 103ms™ and A ~ H ~ 10°m.
We then get v ~ 103 m?s~?, and thus

tyise ~ 10%s (3.29)

A reasonably short angular momentum viscous timescale estimate (although maybe one

or two orders of magnitude too high).

If we define the Reynolds number for such a system as follows [14]

Inertial U
Re = bl

~ Viscous AT (3.30)
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then this measures the importance of viscosity. We see that if Re < 1 then viscous forces
dominate the flow, and if Re > 1 then viscosity associated with dynamics at the scale of
the given A and # is dynamically unimportant. We also have rvy = vVGMr. If we use the

same estimates for T and 7, and the number density is N ~ 102 m~3 we get

Re > 10" (3.31)

The clue to the right kind of viscosity is provided by this estimate. It is known that if the
Reynolds number in a fluid is gradually increased, there is a critical Reynolds number at
which turbulence sets in. At this point the fluid velocity suddenly begins to exhibit large

and chaotic variations on an arbitrarily short time and length scale.

The o-parameter

Turbulence, especially in the extreme conditions that an accretion disk provides, is one
of the relatively uncharted areas in physics. Our present understanding of the onset of
turbulence is limited, it is therefore difficult to determine the parameters A; and 7; with
any degree of certainty. We can however try to place plausible limits on them. We can
say that the largest turbulent movements (eddies) cannot exceed the disk thickness H,
so M S H. ©; is the velocity of turbulent cells relative to the mean gas motion. It is
expected that shocks will dissipate turbulent kinetic energy into heat whenever the motion
is supersonic [22], so we conclude that ©; < ¢;. Based on all this, we now introduce the

a-prescription of Shakura-Sunyaev:

v=acs H (3.32)

where « is a nondimensional viscosity parameter, for which we expect

0<Sasl (3.33)

Models constructed using this prescription are called a-disks. Such models typically leave
« as a free, constant parameter in the disk structure equations. It is important to realize
that this o is only a measure of the viscosity, not the physics behind it. There is no cogent
reason to believe o to be constant throughout the disk-structure. Even a < 1 might be
violated in regions where some physical phenomena feeds the supersonic turbulence (in
contrast to our assumption that v; < ¢s). It is however quite possible to some degree
to calibrate o empirically from observations. So-called Cataclysmic Variables (CV), are
X-Ray binary systems in which the compact component is a white dwarf. Comparisons
between observations on such systems and a-disk models, puts « in the range 0.1 — 1

[26]. Various models have, more or less successfully, been attempted to derive a physical
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mechanism for the accretion disk viscosity v from first principles, and most of these result

basically in the same constraints on « as above, that is to say they reproduce the a-disk.

The source of viscosity is likely, as I have mentioned, to be small scale turbulence in
the gas-dynamical flow. It is a generally accepted notion that all viscous accretion disks
inhibit at least a weak internal magnetic field, and that this field is necessary for the
generation and maintenance of this turbulence. This is the case for the mechanism sug-
gested by J.F.Hawley and Steven A.Balbus [27], which has generated some interest in
recent years. This is a mechanism where magnetohydrodynamic turbulence is driven by a
magnetorotational instability (MRI). On the basis of this idea, some attempts to answer

fundamental questions about accretion dynamics have been made [46][47).

3.3 Steady Thin Disks

I have mentioned that changes in radial structure in a thin disk occur on timescales
tise ~ /vr. In accretion disk systems many different external conditions may change on
timescales rather longer than t,;.. In these cases the disk will settle into a steady-state
(or semi steady-state) structure. Within this steady-state, there may be temporal changes
in the disk structure and evolution caused by violent or rapid phenomena (on a timescale
shorter than ¢,,s.), but for many of these cases the disk will return to a steady-state on
the same timescale. The most prominent external change is variance in the mass flow rate

M, if this decreases sufficiently it can in fact turn off the disk all together.

3.3.1 Azimuthal Motion

We can examine this by setting 0/0t = 0 in the conservation equations (3.18) and (3.20).
From the first (mass conservation) we get that rYv, is a constant. This represents (as
an integral of the mass conservation equation) the constant inflow of mass through each

point in the disk. Since v, < 0 we write

M= — 27T YU, (3.34)

where M is the accretion rate. From the angular momentum conservation (3.20) we get

(with 9/0t = 0)
G C
St = — 4 — .
20,7 27T+27r (3.35)

where (' is a constant. If we use (3.7) for G(r) we get

ds2 C
N = =Y —— .
Vi Y, + 53 (3.36)
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The constant C' is related to the rate at which angular momentum flows into the compact
object. Let us suppose that the disk extends down to the surface r = R of the compact
object. For material to accrete, the star must be rotating below break-up speed at its

equator, that is we must have
Qg < Qx(R) (3.37)

In this case the angular velocity of the disk material remains Keplerian and thus increases
inwards, until it begins to decrease to the value Q2g. This turnover takes place in a
"boundary layer” of radial extent § < R. Hence there is a radius » = R + ¢ at which
0Q/0r = 0, and we have (since § < R) that ) is very close to its Keplerian value at the

point where the turnover takes place:

1/2
QR +0) = (%‘f—) 1+ 0®6/R) (3.38)

If ¢ is instead comparable to R, then the thin disk approximations all break down at
r = R+4. It is then not any longer a boundary layer, but rather some kind of thick disk.
This would happen if the compact object has sufficiently strong magnetic fields, so that it
can control the flow of the disk material out to radii r such that vy = rQ0p > vg = rQg(R).
We leave however these considerations for later, and observe that at r = R+ ¢ equation
(3.36) becomes

C = 2nR*¥0, QYR +0) 545 (3.39)
If we insert (3.38) and M = —2nrSu, into this, we get the constant C' as

C = -M(GMR)'/? (3.40)

to terms of the order d/R. If we use this value for C' in (3.36) and use the expression for

Q = Qg we have for Keplerian thin disks

. 1/2
= % til - (E)
3w r

This expression for v3} for a steady-state disk can be used further in combination with

(3.41)

(3.13), to give (when we put Q = Q) for the viscous dissipation (viscous energy produc-

tion) per unit disk area for each side of the disk

Dr) = 3GMM [1 - (5)1/2

8mr3 r (342)
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Since all this energy from viscous dissipation is assumed to be lost through the surface,
the energy flux through the faces of a steady thin disk is independent of viscosity. D(r) is
a quantity of prime observational significance, and (3.42) shows its dependence on M,R
and other variables. The independence of D(r) on v has come about because we were
able to use conservation laws to eliminate v. Clearly the other disk properties such as
¥, v, and others, do depend on v. We can use (3.42) to find the luminosity produced by
the disk between radii r; and r

2 GMM [ R\'"*| d
L(ri,ra) = 2/ D(r)2nr dr = 3 / {1 - (—) “72: (3.43)
- 2 - T T
This can easily be evaluated in the limit r; = R and ry — 00 and we get
GMM Ly
=T 44
Ldzsk R 9 (3 )

which shows that matter at r = R still retains half of the potential energy it has lost
in spiraling inwards as as kinetic energy. This half of L, is therefore available to be
radiated from the boundary layer itself, which is therefore just as important as the disk

for the total emission.

3.3.2 Hydrostatic Vertical Balance

We now consider the structure of the disk in the vertical z-direction. Since there is no
net motion of the gas in the vertical direction, momentum conservation reduces to a
hydrostatic equilibrium condition. Here, and in the following, we neglect the self-gravity
of the disk, so that equating the component of the gravitational force of the compact star

along the z-direction to the vertical pressure gradient gives

1op 0 GM
p0z 0z (r? + 22)1/2} (345)
In the limit z < r this becomes
10p GMz
P (8.46)

We now replace the differentials with finite differences. If H is the typical scale height of
the disk, then under the one-zone approximation we put dp/0z ~ p/H and z ~ H. Here
p=p(z=0). We will now need

p/p=cs (3.47)
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where ¢, is (as before) the sound speed in the gas.* Using this ideal gas expression [10]
with (3.46) we have

r \1/2 Cs Cs

A solution of the hydrostatic equation (3.46), whose validity is only limited by the thin
disk assumption, is given by p(r, z) = pe(r) e 2*/2H* with H from (3.48) and where p,(r)
is the density in the central plane z = 0. This function will sink very rapidly to 0 for
values of z larger than H (outside the disk) see Fig. 3.4. In accordance with this, and the
one-zone approximation, we now define with good degree of accuracy, the disk density
p(r) to be the central disk density p(r) = p.(r) =X /2H. Another possible (and common)
solution to this problem is the introduction of a vertically polytropic model, in which
p = K p'™/™ instead of (3.47), which would give a different vertical density profile [29].
Here n would be the polytropic index of the model.
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Fig. 3.4 The density p/p. for a fized r plotted as
Junction of z = z/H.

4Formally this is the isothermal sound speed v,%° which we do not distinguish from the adiabatic
sound speed v,°% in this model. Since the difference is a mere factor \/5/3 & 1.29, this is a very good
approximation within our model.
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3.3.3 TFlow Velocities

The thin disk assumption becomes H < r as we have seen earlier, and (3.48) then gives

M\ Y2
cs K (G ) =rQx = vk (3.49)

T

So we see that for a thin disk we require that that the local Kepler velocity should be
highly supersonic. This is clearly a condition on the temperature of the disk and thus,
ultimately, on the cooling mechanism. It need not hold throughout the disk however,
so we must consider cases where the thin disk approximation breaks down. As I have
mentioned earlier this tends to occur in the central hot regions of some disks. The radial
component of the Navier-Stokes equation p(dv/dt + (v - V)v) + Vi = 0 is then
2
w%—":}i’%-i-%%Jr%—{:o (3.50)

We see that the pressure term (1/p) (Op/0r) ~ ¢*/R, so by (3.49) we can neglect this
term by comparison with the gravity term. We can then use M = —2nr¥w, and (3.41)

Vg = '"%‘VZ [1 _ (-?)UT ) (351)

Adopting the a-parametrization (3.32) we have v, ~ v/r ~ ac,H/r < ¢, for all reasonable

to obtain

viscosities (or value ranges of o). We see that v, is clearly subsonic, and that the term
v (O, /Or) in (3.50) is even smaller than the pressure gradient term. If we define the
Mach number as M = vg/cs we see that (3.50) implies

vy = (%ﬁq v [1+0(M™?)] (3.52)

and we can also rewrite H ~ rM™ ! and v, ~ ac,M™1. From this it is clear that within
the thin disk assumption the circular velocity v, is Keplerian and highly supersonic, while

the radial drift v, and vertical scale-height H are consistently small.

3.4 Shakura-Sunyaev Disks

In different accretion disk models the parameters that we have discussed above do not
give rise to much enlightening variation, and are considered (with the usual inevitable
exceptions) to be the same in most accretion disk models. Even though for example the

vertical description of the disk may be made in a more laborious multi-zone approximation,
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this increases the numerical accuracy of the model, but does not produce models that
differ with any degree of interest to us. The many approaches to the problem of transport
and balance of energy in the disk however, produce a plethora of interesting models, and
an accompanying number of uncertainties of course. The scheme that I follow belongs
largely to Shakura-Sunyaev models, a specific (but important) class of models, that are

considered to be the standard models for thin steady accretion disks.

3.4.1 Equation of State

We need a prescription for the pressure p(r). As the temperature is assumed to exceed
T ~ 10* K, the disk plasmas will consist of pure ionized hydrogen. The total disk pressure
p(r) is essentially the sum of thermal gas and radiation pressure. For ionized hydrogen
this yields

2k 4o
= Pgas rad — T Tc _Tc4 3.53
P = Pgas + Prad mpp +30 (3.53)

Here o is the Stefan-Boltzmann constant. We have assumed that the temperature T'(r, 2)
of the portion of the gas that contributes dominantly to the pressure, is close to the
central temperature T'(r,0) = T.(r) in local thermal equilibrium. This does not mean
that the temperature is assumed the same throughout the vertical z-structure, as we need

a temperature gradient to account for energy transport.

Typically, gas pressure dominates radiation pressure throughout most of the disk, except
in an inner region. Usually, depending upon parameters and boundary layers, there will
exist a radius (or small region) where the dominant pressure changes from pg.s t0 Praq,

and this affects the structure and stability of the disk in a profound way.

3.4.2 Energy Balance- and Transport

As in stars, the vertical energy transport mechanism may be either radiative or convective,
depending on whether or not the temperature gradient required for radiative transport is
smaller or greater than the gradient given by the adiabatic assumption (pp” is constant).
The general assumption (in most standard accretion disk models) is that for typical pa-
rameters, the transport mechanism is by radiative transfer. Attempts have been made
towards the possibility that energy transport by convection (dominantly turbulent) might
be important in accretion disks, and perhaps even dominate, in so-called Convective Dom-
inated Accretion Flow (CDAF). It is possible that convection is much less likely when gas

pressure is dominant, this means that convective transfer is everywhere negligible except
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perhaps in the inner regions of disks [28]. We shall under any circumstances neglect

convective energy transfer in this model.

Energy Balance

As with the pressure p(r) and density Y:(r) the temperature and energy transport is also
handled by using vertically integrated quantities. The mentioned temperature 7, must
be given by an energy equation relating energy flux in the vertical direction to the rate of
generation of energy by viscous dissipation D(r). The potensial energy of accreting gas
is first converted to thermal energy via viscous processes, and is then released out of the

disk as radiation. So the energy balance demand becomes at each radius

U+z'sc = Q;ad (354)

where heating is due to the viscosity and is given by (3.42), and cooling is via the spatial
diffusion of the blackbody radiation. For this to be efficient the thermal timescale s,
must be much shorter than the matter diffusion timescale ty, << ;5. This means that
there is no significant advective transport of thermal energy radially in the disk. In so-
called ADAFs (Advection Dominated Accretion Flows), which many modern accretion
disk models include, this condition is relaxed. This ADAF approach is generally mostly
applicable or relevant to black hole accretion problems and/or systems in which the mass
accretion rate M is almost Eddington. In these cases the inner disk in ADAF-models
naturally becomes much hotter, and the outer (or middle) regions somewhat cooler, for a

given M.

Radiative Flux

Because of the thin disk assumption, the disk medium is essentially plane-parallel at each
radius, so that the temperature gradient is dominantly in the z-direction. The other
components of VF are much smaller in a thin disk, because vertical derivatives of most

quantities are much larger than horizontal derivatives, or

F. H 120E)  (H\®
z Jz

By using (A.15) we get the flux of radiant energy through a surface z = constant as

160712 6T
3kp Oz

F(z)=— (3.56)
where & is the Rosseland mean opacity (as I have defined it in Appendix A). In the way
we use this theory, it is implicit in (3.56) that the disk is optically thick, or that the
optical depth
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PR

T = pHE(p,T.) = 5 > 1 (3.57)

so that the radiation field is close to the blackbody value. This optically thick assumption
applies well to most accretion disks, excluding the inner parts of the hottest disks. Once
this 7 < 1, the expression (3.56) breaks down as the gas is optically thin, and the radiation

can escape freely. In this case the expression (3.56) must be replaced by

F(r)= HA(p,T) (3.58)

where A(p, T) is the average photon emissivity in the disk. Typically A(p,T) is due to
thermal bremsstrahlung (radiation produced when thermal electrons scatter off the ions

in the disk plasma), and Comptonization.

For thermal equilibrium, the divergence of the total flux is equal to the rate of viscous
dissipation per unit volume Q7 so we can write the energy balance as

OF -,

e Qise (3.59)

If we integrate, we get

H
F(H) = F0) = [ Qledz = D) (3.60)

From symmetry we realize that F(0) = 0, and this leads to F(H) = D(r), which could
be anticipated since the optical depth 7 > 1. Here we understand that F'(H) should be
F(H,r). The surface then radiates as a blackbody surface and

F(H)= D(r)=oT} (3.61)

8§

where T characterizes matter at the surface where the blackbody spectrum is generated.
This surface need not necessarily be the outer disk surface, but may be some distance
below, but comparable to it (Ty 2 T(H)). To get a usable energy balance equation we
now need to express the cooling @, in terms of the temperature T (in our model T).
We take (3.56) and get by integration

" Tt 16073
/ RpF(z)dz = — / gT dT (3.62)
0

c

Now we approximate

/OHR/)F(Z)dz ~ FopH [F(H) — F(o)} _ rF(H)

5 5 (3.63)
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and

dT = —(T} =T} ~ =T} (3.64)

/TH 16073 Ao
3 3 Ve

The validity of these approximations depends of course on the steepness of the temperature
and radiation flux gradients. If we assume a linear ”one-zone” connection 07/0z = —T/H
in (3.56) we get T(2) = T - e~*/H which would give T, = e T, = T ~ 100 - T;". Though
this is probably a conservative estimate, other similar models [22] give the same order of
magnitude. The approximation for F(z) assumes a radiation flux gradient profile that is

not to steep.

Putting these things together we get the energy balance equation Q.. = Q.. , as

F(H) = i_jTg — D(r) (3.65)

3.4.3 Opacity

There are in general several different regimes of radiative transport that may apply in
different regions of the disk at different times, depending upon the accretion rate and
other parameters that cause changes in the disk. For the thermodynamic parameters
that govern the Shakura-Sunyaev model we assume that two different types of opacity
will contribute, and which will be dominant in different regions of the disk. I refer to
Appendix A again for a little bit more information. Our two (rivaling) opacity sources

are:

e Absorption by free electrons
In the presence of a proton, a photon may be absorbed by a free electron. This is

so-called (non-relativistic) inverse bremsstrahlung, and gives rise to an opacity
kpp = kop T/ (3.66)
where ko = 7.5 1019 mP kg 2 K72,

e Scattering by free electrons

Thompson scattering of photons on free electrons

Kes = 0.038 m? kg ! (3.67)

and so is constant throughout the disk.
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In the outer regions of the disk £y will dominate the constant ;. Since ks depends on
p and T, it is clear that it will change (we assume that it will decrease monotonically) as
we approach the compact object. There will then be some sort of radius or region, where

the dominant term changes to kKe;.

3.4.4 Assumptions

We can now summarize and gather the assumptions that have been made in the construc-
tion of steady thin Shakura-Sunyaev disks. Some of these assumptions are general, and
applicable to more general classes of disks. Some are however quite specific to Shakura-

Sunyaev disks, and/or thin disks.

e The gravitational field is determined by the central compact object, and the self-
gravity of the disk is ignored. We shall see later that the total mass of the disk is at

all times minimal compared to that of the central compact object.

e The disk is azisymmetric (symmetric to the polar coordinate ¢). This is a very
general assumption, though there are suggested mechanisms that might perhaps lead
to non-axisymmetric disk configurations. These ideas often include some source that
influences the disk in a non-symmetric manner, usually involving some perturbation

related to the donor star (radiation, tidal forces or others).
e We have constructed a steady disk. I have commented on this earlier, in section 3.3.

e The disk is geometrically thin in the sense that H < r. This defines a certain class
of disks, as opposed to so-called slim or thick disks, which I shall briefly discuss
later. As long as H < r we have seen that the vertical and radial structure may be
separated, that the vertical structure calculations can be made easier, and that the

disk is always dominantly Keplerian (|v,| < vy).

o We have assumed that all energy transfer inside the disk structure is radiative trans-

fer in the vertical direction. Convective and advective possibilities also exists.

e The disk is optically thick in the vertical direction, and we have chosen opacity
sources kyy and Ke,. There are other choices for opacity, which make alternative

schemes possible.

o In the equation of state we assume that gas pressure and radiation pressure are the
only contributions. There are models which in addition use a magnetic pressure
term generated by the disk’s own dynamo magnetic field. Of course if the disk is in

a strong outer magnetic field (such as from a pulsar) this will alter the disk structure
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in a very profound way, and disrupt the Shakura-Sunyaev model.

e Finally, we assume the a-disk prescription, described earlier.

These assumptions, together with the appropriate simplifications, lead us to the set of
equations that constitute the quantitative aspect of this model. We will use the solutions

of these equations later, to verify and justify all of the above assumptions.

3.4.5 Disk Equations

We now seek solutions for important disk parameters such as the disk thickness (or semi-
thickness) H, surface density ¥ and temperature T,. We also need information on the
behavior of solutions for opacity % and pressure sources prqq and pges. The governing

equations our disk model become:

M = —27ru.Y

GM\'*
o = ()

. 1/2
vy = %— 1-(E>
3 r
c
H = =
Qg
> = 2pH
80,4 _ 3GMM (R 1/2
3r ¢ 87r3 r
B (p)l/?
cs = |-
P
2k 4
p = mpTc+_UTc4
» 3¢
R o= Kest kopT, "/
.= R
2

v = acH (3.68)




3.4. SHAKURA-SUNYAEV DISKS 41

Now we can obtain expressions for all of our relevant physical quantities, and they will
be functions of the radius r, with a dependence on the parameters M, M and o, which
may be considered as input parameters. M may to some degree be considered a dynamic
system parameter, but that would mean involving a description of the mass flow in the
binary system (between disk and donor star) as a whole. We therefore consider M as
a free input parameter, and we try to give good estimates on the possible and probable

values of M.

3.4.6 Solutions

The good thing is that the equation system (3.68) may be solved analytically to give
explicit solutions for the disk. To achieve this we introduce the following dimensionless

quantities

M . M
m = — T =

T
N M, © M crit R

m (3.69)
where M, is the mass of the sun, M.,y is the critical mass accretion rate defined by (2.14),
and we shall follow standard practice and put My = 1078 Mo yr = 6.4 - 10" kgs™".
The radius scale parameter R is put equal to about one neutron star radius, where we
for most cases believe that R = 10km is a reasonably probable value. We also define the

quantity f=1—(1/ 7)/2. The solutions will have the following form
X = Xgoft mP? P P4 fP5 (3.70)

where X is the physical parameter, X is a numerical constant (which carries the dimen-

sion of X) and p1, pa, p3, P4, ps are constants.

We will seek three different sets of solutions for (3.68). The three different sets will differ
by our choice of equation of state p(p,T’) and opacity k. As I have mentioned earlier,
there will be a radius 7, where the temperature and pressure is so high that radiation
pressure dominates the gas pressure for all r < r;,, and likewise the gas pressure will be
dominant for r > r,,,. We take the region where they are comparable to be small relative
to the disk scale. Also the choice of opacity plays a significant role in determining the
disk structure. Much as the case for p, we define a radius 7,,, to be the radius where
the dominant opacity changes from free-free absorption sy to scattering xe,. Thus for
7 > rme we take K o kyy, and for » < ry, we have £ =~ k5. If we assume that rp, > 74,
(which we will see is a good assumption), then this defines three regions in the disk. The
solution of the disk equations (3.68) for these three different regions is very tedious, but

relatively straight forward, and leads to the following results:
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e Inner region (r < r4y,)
The radius is 7 < 7y, and we have radiation as the dominant pressure term prqq >

Pgas- Also we assume that kes > Kyf.

H = 36-10*mmfm
Y o= 5210 atr Y2 1 kgm?

o] = 14-10° a2 fms™!
T. = 3.2:-10% o Y/*m Y4738 K
Pgas = L1.1-10% a4 m /1 2598 f72 Pa
Praa = 3.3-108 a7 tm 1732 Pa
¢ = 35-10% m7 3?2 fms™! (3.71)

e Middle region (7, <7 < Tmo)
Here 75, < 7 < Tme, and the dominant pressure term is gas pressure pyqs, but we

still retain K o Kes.

H = 1.8-10% o /1010 51/8 521720 £1/5 1y
Y = 5.0-10° oS m! /o35 535 f3/5 kg m 2
vp| = 4.7-103 @5 m /5?5725 =305 g
T, = 2.5-10% @ Y/5m 15 p2/55-9/10 p2/5 K
Pgas = 9.9- 1018 —9/10 4y, —9/10 ,5,4/5 5 —51/20 f4/5 Pa
Drag = 9.8+10%7 o Y/5 /5 485 5 —36/10 y8/5 py
cs = 2.0-10° o /10y 1/1051/5 5=9/20 p1/5 py =1 (3.72)

e Quter region (r > 7,,,)

For r > 7, we have pges > prag, but now the absorption term xy; dominates the

opacity.

H = 1.1-10% o Y10 p/10,53/20 59/8 £3/20
N o= 9.6-10° o VO m/5T/0F 3/ fT/10 ko 2

| = 2.5-10% QMO 8105 1A pT0 gy g
T, = 7.0-107 a /% m 1/5p3/10 5 -3/4 £3/10 ¢

Doas = 11100 o %10y =9/10 5 17/20 5 =21/8 £17/20 py

Praa = 1210 o4 m 450553 85 [pq
cs = 1.1-108 o /10y 1/1053/20 5 =3/8 £3/20 1) g1 (3.73)

First, we note that the unknown parameter o does not enter any of the expressions for

disk quantities with a high power. This means that the very reasonably looking orders
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of magnitude of these quantities are not particularly sensitive to the actual value of «,
which is good since our knowledge of o only limits its likely value to 0.1 S « < 1, and
thus we can have some confidence in the general picture of the disk structure given by
(3.71), (3.72) and (3.73). On the other hand, it also means that we cannot expect to
discover the typical size of a by comparing theory with observations. Also m does not
enter the solutions with high power, and if we take the compact object to be a neutron
star then the expected value of m will be in the vicinity of the Chandrasekhar limit of
1.4 M, (though there have been reports of neutron star masses as high as 2 Mg). We can

therefore take all powers of m to be ~ 1 here.

Some parameters are independent of choice of opacity and equation of state in the disk,
and thus do not depend directly upon disk parameters such as T, or p, therefore their

expressions do not vary for the different regions in the disk:

D(r) = 24-10% m 73 12 Jm s
vy = L12- 108 mY/27F-1/2 mg!

Qp(r) = 1.2-10° m?2F=32 57! (3.74)

We now calculate the radii 7, and rp, by using (3.71), (3.72) and (3.73).

® Tim (prad - pgas)
For 7im we get with preq = pgas from (3.72)

T3\ 20721
FFI82 2 13710710 (7) A R (3.75)

If we set f ~ 1 for radii concerned, and insert the expressions for 7, and p we get
F =135 a¥* m?? p16/2 (3.76)

An identical estimate is produced with (3.71). Now « is in the range 0.1 — 1 =
o ~ 1, and alsom ~ 1 = m?? ~ 1. We then see that at the critical mass flow
rate m ~ 1, the radius 7y, that signifies the transfer from the inner to the middle
region is Ty, =~ 135 = 7y, = 1350km. We can deduce from (3.76) that there are
values for 7 for which the radius r;,, becomes too small for this inner region to exist
at all. If we demand that 7, 2 n, where n = 1 would put 7, at the neutron star

el

surface, we get a limit on 7 for the inner region to exist
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21/16
> (%5-) a8 1/ (3.77)

® Tmo (Kes = Kyf)
The radius r,,, is estimated in the same manner. We use (3.73) and put K. = K¢¢

to get

Ko P

43 [ 2\ Y3
rf2/3:<0'038) (TC ) 3 (3.78)

Based on (3.72) we get a practically identical estimate. If we again set f ~ 1 for
the radii concerned, and insert the expressions for T, and p, and a value for kg, we
get

7 = 2009 1m?/? (3.79)

For i ~ 1 we get Tpmo =~ 2000 = 7o = 2 - 104 km.

In Fig. 3.5 we see prqq and pye, as functions of 7, and the value of r;,, can be read off. It

is, as we can see, about the same order as given by (3.76).
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Fig. 3.5 A graphical depiction of pressure terms prag and Pgas 08 functions of ¥,
for m = 1. Both radii vy, ond 1,,, are marked with vertical lines.
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In Fig. 3.6 we see ks and k¢ as functions of 7, where it is clear that r,,, > 2000.

It should be emphasized that in the very outer regions of an accretion disk the gas may
not be completely ionized, and that other opacity sources also may contribute in these
regions. Bound-free absorption is such a source, it occurs when an atom with bound
electrons absorbs photons of sufficient energy to ionize the atom. There may also be small
contributions from bound-bound line transitions. In the inner region of the disk other
opacity sources must be taken into consideration, such as for instance Comptonizarion.

These matters will be dealt with later, during the discussion of disk spectra.

Log © [m?kg™]

llllllllllllllllllllll;llllll

1 1,5 2 25 3 35 4
Logr

Fig. 3.6 Opacities kes and Kyy as functions of 7 for mm = 1.
Both radii vy, and 1., are marked with vertical lines.

The radii 74, and r,,, and indeed many other parameters in the disk solutions do depend
on the mass transfer rate m. Though we have considered 72 to be an input parameter, it
is a likely (and observed) feature that for most accretion disks (for a number of possible
reasons) the mass transfer rate rm will vary. This variation may cause the disk structure
to change, and the parameters (for instance the disk temperature 7,) will change. This
alteration can affect such things as energy balance and transport, and also the opacity
environment. In Fig.3.7 we see how the different physical regions of the disk change as
a function of 7 and m. For Logm = 0 — 7 = 1, we recover our earlier estimates for 7,

and 7y, and for Logm = —3 — = 1073 M.y we also recover (3.77) forn = 1.
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Fig. 8.7 The different regimes in the disk plotied as functions of T and m.

Some important radii are marked with vertical lines.

We see from the solutions (3.71), (3.72) and (3.73) that the height (or thickness) of the
disk is constant for the radiation pressure dominated (inner) region. This results from the
fact that the radiation pressure force is balancing the z-component of gravity. In Fig. 3.8a
we see a slice of the disk from the side, and it is clear from this that the disk faces
actually are concave. That disks actually are concave is shown in models of the observed
reflection (caused by irradiation) from the disks in the Cataclysmic Variables D@ Her and
UX UMa [43]. This concavity is necessary to obtain hydrostatic equilibrium in the thin
accretion disk, because unlike for stars where the self-gravity secures this equilibrium, a
disk can only rely on the gravity from the compact object. In the absence of self-gravity
this concave shape is the only shape is which the gravity from the compact object has a

z-component to ensure hydrostatic equilibrium.

In Fig.3.8b we see the disk from another perspective, high above (or below) the disk
plane. In Fig.3.9 we see the disk structure in 3-dimensions. It should be stressed that
while Fig. 3.8b is to scale (it portrays the disk on the scale it would appear), the other two
Fig. 3.8a and Fig. 3.9 are not, as can be seen from the axes on the figure. If for instance

Fig. 3.9 was shown to scale, the disk would appear somewhat thinner.




3.4. SHAKURA-SUNYAEV DISKS 47
35 -10: —
7 i -\
: - N
E o ST
[y
A= O§M = o ""llg';‘gg%f%ﬁlﬂ“‘
2 = )
-1 ]
. 5] \\\‘ % ,
27 ]
o - | o N |
10 5 5 -0 10 5 0 5 10
10°F 10°F

Fig. 3.8ab Fig. 3.8a shows the vertical structure through the entire diameter, while
Fig. 3.8b shows the disk from a vantage point high above the disk plane.

Fig. 3.9 The disk structure in 3-dimensions. The disk is plotted with m = m = o =1,
and appears slightly thicker than it really is. The scale can be read off from Fig. 3.8ab.

Several assumptions were made regarding the disk structure, and in the remains of this
subchapter we will now verify and discuss these, using the disk solutions (3.71), (3.72)
and (3.73).
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Self Gravity

At the disk surface z = H the z-component of the gravitational force from the compact
object on an element of mass m at radius r is GMmH/r®. If we assume that the disk
is an infinite uniform plane with density p, then the gravitational force on a mass m at
height H is GpHm. Thus the condition for the neglect of self-gravitation (and therefore

for stability against breaking up into self-gravitating clumps) is
M
pL— =10%F " kgm™® (3.80)
r

From the set (3.71), (3.72) and (3.73), we can see that this is clearly satisfied for all disk
radii, and the neglect of self-gravity of the disk is fully justified.

Timescales and Velocities

There are several good reasons for studying the time dependent behavior of disks. As men-
tioned before, the observable properties of steady-state, optically thick disks are largely
independent of viscosity, this means that observations of steady disks are unlikely to give
much information about the viscosity. The time dependence of disk flow is on the other
hand largely controlled by the viscosity. Hence observations of the time dependent aspects
of disk behavior offer one of the few sources of quantitative information about the disk

viscosity. We here define four different timescales

¢ Viscous timescale
This is the typical timescale on which matter diffuses radially through the disk under
the influence of viscous torques. We put as in (3.26)

—— N e A ———e

Vp M ol

i (3.81)

ro 1 T\ 2
tyise = ( )
e Dynamical timescale

This is the timescale associated with the gas flow in the ¢-direction, that is the gas

flow orbiting the compact object.

r 1

Lgm = — ~ —— .
= (3.82)

¢ Hydrostatic timescale
This measures the time at which deviations from hydrostatic equilibrium in the

z-direction is smoothed out (or communicated). We define

H 1
thyd = — = O~ Layn (3.83)

Cs
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e Thermal timescale
We define this to be the timescale for re-adjustment to thermal equilibrium, if for
instance the dissipation rate is altered. This can be found as the ratio of the heat
content per unit disk area, to the viscous dissipation rate per unit disk area. Since

the heat content per unit volume of the gas is ~ pkT/m, ~ pcs?, we get

Yieg? 1
bth ~ =7 ~ —=— 3.84
h D(r)  aflg (3.84)
From all of the above we may gather
H\2
Layn ~ thyd ™~ Qlgp ~ @ (7) tyise (3.85)

It is thus clear that our demand (3.26) of rapid rotation with slow inflow is satisfied if
the thin disk assumption H < r holds. The thin disk assumption again lends its support
to the relation between the flow velocities. In Fig.3.10 we see the three velocities vy, c;
and v, associated with the flow as functions of 7. We take the non-relativistic limit to be

vg ~ ¢/10, which is marked in the figure.

Relativistic regime

Non—relatrwstlcreglme

Log v [m/s]

P H H
AT T T T T T T T T T T T T T T T T T T T T T T T T T T T T7

1 15 2 25 3 35 4

Logr

Fig. 3.10 The velocities vy, cs and v, as functions of ¥ for m = 1.
Both radii riy, and 1y, are marked with vertical lines.
The non-relativistic limit vy ~ ¢/10 is marked with a horizontal line.
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It is clearly seen that the Kepler-velocity vy > ¢, except for the extreme inner parts
of the disk. Many anomalities arise there, and some aspects of the solutions in that
region are highly questionable. We also see that v, < ¢, for the entire disk. The order
of magnitudes are (with the exception of the extreme inner disk for which r < 10):

vy~ 107ms ! ~ ¢/10, ¢; ~ 10°ms~* and v, ~ 10° ms™'. Generally we would have

| ~ acs—— Vg~ cs% v, ~ 0 (3.86)

and since |v,| € ¢; € vy we deduce that the thin disk assumption H < r holds for all
radii (except possibly for small 7). The fact that v, ~ 10° ms~! means that the timescale
tyise is of the order days (or possibly weeks), which again means that even for very high
mass transfer rates the total mass of the disk My < M at all times. From the fact that
H < r we also conclude that

tdyn ~ thyd 5 Len K tyise (387)

Thin Disk Assumption
We have seen signs that the thin disk assumption may break down in the inner region of
the disk. This is a general feature of thin disks, and in order to quantify this we look at
our equations (3.68). We can try to derive a useful expression for the scale height H of
the region dominated by radiation pressure. If we use

4o 8

2_ P 4 O 4
= — = Prad = ——Tc —T == D .
d=L  pepw=gT TT=D0) (3.85)

we get

. (3.89)

2 3SGMMT {1 B (R)lm

c - —
# 8mr3pc

Since p = %/H and 7 = N kg we get 7 =~ p Hop/m,, and with H = ¢,/ we have

M| R\
o~ 30T [1_(3) } (3.90)

- 8mmpe r

Hence in the inner regions of the disk H is essentially independent of r. This comes about
as a result of the fact that the radiation pressure force is balancing the component of
gravity that pulls the disk together in the vertical direction (i.e. the z-component). We
have seen that the mass accretion rate corresponding to the Eddington-luminosity L zqq

is given by

MCT‘

_ LBaa ( R\ 2rRmyc
or

= () - (3:91)
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then see that (3.123) can be expressed as

where we have used (2.12) for Lggq, and the efficiency § =~ 0.15 for a neutron star. We
H ~ iﬂi m

TR (g)l/z} (3.92)

This equation shows that at accretion rates m = M / Mm-t ~ 1, the thin disk approxi-

mation must break down in the inner region. This is plotted in Fig.3.11 for v = 1 and
B = 0.15. T have used r/H < 10 = H 2 7 as condition for thin disk breakdown. We see
that H = 7 occurs for 7 ~ 60 which is about in the middle of the inner region. For even

greater 1 the thin disk breakdown extends to even larger radii in the disk.
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Fig.3.11 The scale height H for the radiation pressure dominated inner region of
the disk plotted as function of 7. The thin disk breakdown criterium is H 2

Hence for near-critical accretion rates, radiation pressure acts to make the inner parts of
the disk quasi-spherical, or bloated. Other situations where this might happen is if the
temperature 7, becomes very high, for example if the cooling mechanism is inefficient, so
that the disk is heated and greatly exceeds the blackbody temperature.

Opacity
As for the opacity we have assumed that the disk is optically thick, i.e. that the optical

depth 7 > 1. As long as free-free absorption dominates (r > rn,) we take 7 = k¢, but
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when electron scattering dominates (r < r,,,) we use the effective optical depth defined
by 7 = \/Reskfs pH [29]. We then have for the outer, middle and inner region

T, = 5.3 . 101 a—4/5 m1/5 m1/5 f17/10
7 = 920- 101 a~4/5 m1/5 ml/lO,’:S/?O fl7/10
7_7;* = 927. 10—5 01”17/16 m—l/lﬁ m—-? 7793/32 f~«2 (393)

In Fig. 3.12 we see the optical depth 7 plotted as function of ¥. We see that the optical
thickness assumption is justified for the middle and outer region, since 7 > 1 = Logr 2 2.
In the inner region however the optical thickness assumption 7 3> 1 seems to break down.
This may be because the disk actually becomes optically thin, or that there are opacity
sources (such as for instance Comptonization) that needs to be included.

T* (or 1)
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Fig. 8.12 The optical depth T (or 7* for r < rme) as function of 7.
The horizontal line represents LogT = 0 = 7 = 1.

Some of our assumptions and equations regarding the disk structure seems to lose their
validity, or take on strange behavior, in the inner regions of the disk. As we see above,
this is also the case for the optical depth 7. We do not take this to seriously however,
since our following study will concern magnetized neutron stars (pulsars), in which most

(or all) of the inner parts of the disk is probably disrupted or at least heavily perturbed




3.5. DISK SPECTRA 53

by the magnetic field of the pulsar. We shall return to these matters later, but for now
we conclude that all of our solutions and assumptions for the middle and outer regions

(r > Tim) of the disk returns good results.

3.5 Disk Spectra

It is important to be able to verify to what extent the accretion disk paradigm (and the
plethora of different models) presented here, is supported by observations. The main tool
in this undertaking is the observed radiation originating from such systems, that is the
disk spectra and their many different modes of variation. Some of the variations and
modulations that are caused by movement or changes in the binary system are mentioned
in Chapter 1. It is important to realize that the spectrum of radiation which originate
from the body of the disk itself, is sometimes not identical to the observed spectrum. The
radiation may be modified for a number of reasons. Clearly, the radiation from any source
in the Universe as it is observed by an observer on Earth, is affected by such things as
interstellar gas and dust, the Earth’s atmosphere etc., but we here limit our list to sources

within the X-ray system itself.

e In the vicinity of accretion disks there are several luminous radiation sources, which
are often powered by the accretion disk itself. If the intensity of these sources
become high enough, their radiation may influence the disk. This gives rise to

so-called irradiated disks which are discussed to some degree later.

e Around a black hole and a neutron star, the relativistic effects, such as gravitational
focusing (the gravitational bending of light), gravitational redshift and Doppler ef-

fects connected with the disk rotation, may significantly modify the spectra.

e In some disk systems the existence of a disk corona is possible. It appears that the
mass of this corona is very small compared to the disk mass, and that the corona
therefore has very little impact on the disk structure or dynamics. It can however
have a sizable influence on the disk spectra, since radiation will be absorbed and
scattered in this corona. It is assumed that the temperature of this corona (much
like the solar corona) is substantial (T ~ 107 K), and that the corona therefore in
fact is an X-ray source on its own. This is clearly seen in the before mentioned
system Her X-1, where the X-ray producing central parts of the disk is in an off-
state when it is shielded from us, but where about ~ 5% of the intensity remains.
This can be explained as reflection of X-rays by a hot (T ~ 107 K) medium above
the disk plane [41]. Some of the aspects concerning disk coronae are still dubious,

especially the heating mechanisms.
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To study actual accretion flow in X-ray binaries we require binary systems in which the
radiation is dominated by the disk contribution. High luminosity systems containing
neutron stars or black holes largely fail to satisfy this criterium, because the accretion lu-
minosity in these systems is radiated for the most part as hard X-rays, where it gives some
information about the accretion process very close to the compact object, but very little
about any possible disk flow. In addition to this, most of these systems have companions
that are O or B giant or supergiant stars. These stars produce luminosities that are at
least comparable to the non-inner disk luminosity, and often radiate in the same frequency
area (UV, optical) as the non-inner disk, thereby completely swamping the non-inner disk

contribution, and leaving only the X-rays (from the inner disk) to be observed.

Cataclysmic Variables

We clearly need systems where the donor star is lower main sequence (0.1 Mgz < My S
1 Mg). This leaves us with two candidates: The LMXB (discussed in Chapter 2) and
Cataclysmic Variables. Positively identified and well established LMXB that are not to
distant, are very few, and suffer to a certain degree from much of the same shortcomings
as their cousins, the HMXB discussed above. The Cataclysmic Variables (CVs) or dwarf
novae are accretion disk systems containing white dwarfs as compact objects, and donor
stars that are small and faint lower main sequence stars (the name Cataclysmic springs
from the fact that many of them exhibit dramatic outbursts). Many such systems are
observed in the stellar neighbourhood (<1000 ly). These systems are extremely useful
for calibrating accretion disk models, and for gaining knowledge of actual accretion flow.
They radiate with lower luminosities than the X-ray binaries containing neutron stars
and black holes, but the CVs radiate basically with the same spectrum (UV, optical)
as the non-inner parts of more luminous disks, and are therefore very good systems for
checking general basic accretion flow models. Since the outer regions of disks in CVs are
not necessarily completely ionized, these disks may even radiate in the infrared spectrum.
In Chapter 1, facts and observations were mentioned as direct support of the accretion

disk model, most of these come from observations in CVs.

3.5.1 Blackbody Spectra

The temperature T' appearing in the disk structure equations (3.68) refers to the interior
temperature at z = 0. In general T' > Ty, where T is the temperature of the surface at
which the emergent photon spectrum is formed. Due to (3.56) we need a temperature
gradient in order to drive the photon flux. T and T, becomes comparable whenever the
disk becomes optically thin to absorption.

When the disk is optically thick and absorption dominates scattering, the local emission
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will be blackbody. In such regions the spectrum will be described by a Planck function
at a temperature T, using (3.65)

T _ F(r) e _ 7 —1/2 - 1/4 ~—3/4 p1/4

s(r) = {—a—} =5-10" m "/ m r " R K (3.94)
This temperature characterizes the matter at optical depth 77 ~ 1 below the actual
surface. It is at this depth that a typical escaping photon is created before emerging from
the surface. Escaping photons of a particular frequency v are created at 777,. We defined
the (differential) optical depth in Appendix A to be dr, = k,pds, and we therefore put
Tt = Krrup Az, Photons created at larger values of 74, are absorbed prior to escaping
from the outer surface. Accordingly, the intensity of the emerging radiation is given by
adding up the emission in the layers from z = 0 to 2z = H — Az. Again if we assume

homogeneous and isothermal conditions we get

Ly~ gypw Bz~ ;%f-’zﬁ = B,(Ts) (3.95)

where jss, is the free-free emissivity of the plasma (defined in Appendix 1), and B, is

the Planck-function

2 o /kTa(r) _ | (3.96)
and where Kirchoff’s law (A.5) is applied. The flux crossing outward through the surface
is then related to the intensity 7, by

/2
Fu,outer = / L, cos 0 d§) ~ 27T'BV (TJ
0

3
— 83107973 " (3.97)

et —1

If we integrate we then get the familiar blackbody result

Foster = / F,dv ~aT? (3.98)
0

which is valid for kys > Kes. Thus for radii » > 7, where absorption dominates scat-
tering, we see that according to (3.94) the disk will radiate a blackbody spectrum with
a temperature in the order ~ 10*K for the outer parts, rising to ~ 10°K towards the
transition at r = r,,,. This is a multi color blackbody spectrum since the temperature is
a function of radius T = T,(r), and all of the above equations should therefore be taken

per radius.
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If we want the total observed spectrum S, from the disk, we must take (3.97) to be

integrated across the face of the disk for the radii it applies. We can thus put

Ry
Su,oute'r = A/ Fu,outer[Té,’(rH 2nr d”" (399)

where A = (cosi)/D? is a constant, and R, is the maximum disk radius. D is the distance
to the observer and 4 is the inclination angle of the disk. Since we are mainly interested
in the v-dependence of S, we simply put ¢ = 0 (we observe the disk from directly above)
and D = 1 (we assume that D is measured on a scale such that the observer is located
at this point). In order to evaluate the integral we need a function that describes the
temperature T, as a function of radius, and this can be gathered from (3.73). If we take
T x r~P as a parametrization for the temperature we can compute the integral (3.99), if

we do (it is practical to turn it into an integral over x = hv/kT rather than r), we get

T p(2/p)-1
S, oc 3@/ / ZT’ ——dz 033 (3.100)
with
hy hv Rd P
o = 77 T (3.101)

and where the value p = 3/4 is gathered from (3.72). It is thus clear that an upper limit
for the frequency where this blackbody spectrum contributes is vy, = kTino/h. For Tpp
in the order of ~ 10° — 108K (3.72) we get v;f7"" ~ 5-10® s71. We see that the frequency
range for this blackbody spectrum is quite limited since (Ry/Tmo) =~ 5 we get that the

lower frequency is vigve ~ 10571,

It is clear that the total luminosity from this part of the disk Lgyer is

o0 Ry
Louter = / Sy outer AV = / aT(r) 27r dr (3.102)

O mo

where (3.98) is used.

3.5.2 Modified Blackbody Spectra

We will now consider the region 7, < r < r,, where electron scattering dominates
absorption for typical photons. Following emission, photons may undergo many (nearly)
elastic scatterings before escaping from the surface. These random scatterings will cause

a typical photon to diffuse through the disk to the outer surface. Let AZ be the vertical
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depth below the surface at which an escaping photon of frequency v was created by free-
free emission. Let As be the total path length traversed by the photon in its random

walk prior to escape. Accordingly,

Topw =122 Kpp,p As (3.103)

Adding up the emission from the region 0 < z < AZ again gives the emergent intensity

I, ~ j,A% (3.104)

This quantity A% is less than Az found in the subsection above, where we ignored scatter-
ing. This random wandering of the photon enhances the probability for absorption prior
to escape and thus reduces the depth at which the emission contributes to the emergent
flux. If N,, is the total number of scatterings prior to escape, then

_As 1

Nl/ - AES :
7 Xes Kesp

(3.105)

where ) s is the mean free path for scattering. Since scattering induces a random-walk
photon motion, the net distance traversed in the vertical direction is then /N, 4 Aes. We

then have

Az =N\, (3.106)

And by combining these equations we have N,s > K.s/k sy, and therefore

) I RN
Az~ g Az (—’) (3.107)
(Kestipr) " Fies

since Az ~ 1/k¢g,p. Putting this into (3.104) gives the intensity

j p 1/2 p 1/2
I, o 22 (—fi—) ~ B,(T,) (-——ff—) (3.108)
RefuP \ Fes j Kes
where we have used (3.95). So far we have used a gray approximation when it comes to
opacity, in that sz, have been replaced with a v-averaged xr;. We shall now need the

full opacity coefficient for free-free absorption in ionized hydrogen [38]

1—e "

Kifw = 15-10% pT~7/ g 23

(3.109)

where g¢y is a slowly varying Gaunt factor of unit order, and where z = hv/kT. We see
that with B, = 2hc ?1%/(e® — 1), and keeping = = hv/kT, we get
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2h_v° 2\1/2 _1/2 1/2-7/a (1 —e)?
meiddle ~ 27 (’c‘i'ew — 1> [(15 - 10 ) Keg ' P T —,_17_3/—2——_

3, —x 1/2
— 5.1-107% p27%/4 (T—e——l—> (3.110)
er —

which is a modified blackbody spectral distribution. If we integrate this expression over

all v by converting it to an integral over z, we get the total flux at radius r

Frmigare ~ 1.6 - 10° p'/> T /4 (3.111)

where it is assumed that scattering dominates absorption also for low v (z < 1), and

zde—x
e —1

the absorption dominated case, we can calculate the accompanying temperature Ts(r) as

where a numerical integration yields fooo dr ~ 1.5. In much the same way as for

T =T, =17-10" o m 109 m8/0F-17/9 f8/9 K (3.112)

Which gives temperatures Ty ~ 10° — 108K for regions that are close to r = rp,,, and
rising towards T, ~ 108 — 107 K for radii close to the inner region r = r;,,. The modified
blackbody temperature is thus higher than the corresponding blackbody temperature.
Consequently, the photons emitted from this region have higher energy than if the disk
radiated the same spectrum as a blackbody. This is reasonable since if the opacity is
dominated by true absorption processes, then the emergent photons originate near and
above the layer at which 7 ~ 1. Thus the characteristic photon spectral color temperature
will be comparable to the blackbody temperature. If the opacity is dominated by scat-
tering the emerging photons will originate deeper, at say 7 = 7, > 1. Following emission
far below the surface at large optical depth 7,, photons undergo many scatterings prior
to emerging. If the scattering is elastic then the photons will emerge with a color tem-
perature comparable to the matter temperature at the point of generation. Thus elastic
scattering tends to increase the characteristic energy of emerging photons, and we have a

harder spectrum than in the outer absorption dominated region.

In the same way as for the outer region we can estimate the total radius-integrated

observed spectrum as

Su,middle = A/ Fy,middle[Ts (7’)] 2mr dr (3113)

If we want to evaluate the integral we will need both p and T} as functions of 7, and this
can be taken from (3.72). We can put T oc r™? and p o< 7=, If we do this and perform
the calculation of (3.113) we get
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Tmo —& 1/2
S, oc p(a-6)/ap+s/a / ( ¢ 1) 232 )2+ 14 gy (3.114)
Tim er —

where Ty, = hw/kTy, and e = hv/kTm.. Again, from (3.71) we get p = 9/10 and
q = 33/20, and we see that

Sy, middle X 00 (3.115)

Rounding up, we can put the total luminosity from this part of the disk Lyigde as
x>
Linidae = / Sy,middie AV (3.116)
0

3.5.3 Inner Region

In the inner part of the disk, where radiation pressure dominates gas pressure and we
assume that there are no outer magnetic fields to disrupt the disk structure, the electron
temperature becomes sufficiently high that the process of Comptonization and free-free
emission strongly affects the shape of the emitted spectrum. Comptonization is the mech-
anism by which photons can exchange energy with electrons, I refer to Appendix A again.

The realm of Comptonization is given by the y-parameter

4kT
Y= B

— Max (Tes, 72,) (3.117)
for the non-relativistic case [39]. When y > 1, Comptonization becomes important, and

we get a Wien spectrum

2hv?
I, = 7:— ~hv/kT (3.118)

The frequency vcom above which Comptonization becomes important is found by putting

y=1
k’/,\q

'U';{j(%mn —924. 1017 p1/2 T*9/4 (3119)

which for the parameters expected at these radii p ~ 10°kgm™ and 7, ~ 108 — 10°K
(from (3.71)) yield Voom =~ 5 - 1017s71. We see from the results earlier in this chapter
that the disk shows tendencies to become optically thin in the inner regions. This will
generally harden the X-ray spectrum from the inner parts, but not sufficiently to produce
the observed spectrum in some of the luminous X-ray binaries observed. To fix this, and
some of the stability problems that are encountered in the inner parts of standard disk

models, alternative disk models have been constructed.
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In order to see what the total spectrum for the disk looks like, we can plot the results from
the last sections. We gather that in the range v < V¢*" we get a spectrum characterized
by Rayleigh-Jeans law S, = (2kT/c®)v? x v?. We have seen that for the blackbody
spectrum (3.100) we can put p = 3/4. And we therefore have S, o v/ for viewer < v <
yfPe". For the modified spectrum (3.114) we can put p = 9/10 and ¢ = 33/20, so that

0.05

we have S, oc V%% ~ 10 for PP < v < Vgom. Finally for v > voom we have the Wien

cut-off spectrum (3.118). In Fig. 3.13 we see this spectrum plotted.
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Fig. 3.18 The spectrum of a standard thin disk, consisting of a Rayleigh-Jeans law for
low frequencies, a blackbody and modified blackbody for intermediate frequencies and @ Wien
cut-off spectrum for the highest frequencies. This plot is fora=m=1m = 1.

From the spectrum we can see how little fraction of the total luminosity that actually
originates from the outer parts v < 10'® — 10'7s™'. To evaluate the contribution to
the luminosity from the different regions, we can either integrate the expressions (3.98),
(3.111) and (3.118), or make a numerical estimate based on Fig.3.13. It is clear from
earlier discussions (in Chapter 2) that in the case of a neutron star or white dwarf we
have

Lacc _ Ld’isk + Lsurface
2 2

- Ldisk: = Lsurface (3120)

where Lgyrface is the luminosity generated by the interaction with the accretion gas flow

with the surface or boundary layers (including magnetic fields), and Ly is the lumi-
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nosity from the disk itself. From a numerical estimate we get for the disk luminosity

approximately

Linner = 935% Ld@'sk
Lypidae = 6.45% Lk
Lowter = 0.05% Lyist (3.121)

3.5.4 Irradiated Disks

As we have seen earlier, the shape of a thin standard disk is concave (saucer-shaped). It
is therefore possible for radiation emitted in the central parts of the disk (or from the
compact object itself) to hit the outer or middle parts, even if it moves in a straight line.
When relativistic gravitational effects are taken into consideration it is even possible for
the radiation to be bent in the gravitational field, and to be reabsorbed by the disk in
this way. This reprocessing effect is usually called irradiation of accretion disks. The
irradiation of the accretion disk by the compact object, boundary layer, donor star or the
disk itself, has been extensively studied. Generally, irradiation becomes important in the
outer regions of accretion disks, where it may even in some cases dominate the viscous
heating [40]. If the donor star is a late spectral type O or B, the radiation (and to some
degree also the stellar wind) from such stars may be substantial, and can therefore be of

relevance to the energetics of the outer region of an accretion disk.

X-ray Bursts

In the case that the compact object is a neutron star, there may be very powerful high
energy phenomena taking place on the surface or boundary layers (including magnetic
fields) of this object. I will not go into all of these now, but only mention one interesting
phenomena called X-ray bursts. A subset of the so-called galactic bulge X-ray sources
show periodic and dramatic increases in their X-ray intensity, lasting some tens of sec-
onds and recurring at intervals of some hours or days. With some exceptions the X-ray
bursts are believed to be flashes of energy liberated in runaway thermonuclear explosions
in material accreted onto the surface of neutron stars. It is (at least for me) a novel
and startling concept to interpret these bursts as a sequence of nuclear explosions. The
evidence, both observational and theoretical, is nevertheless very strong. The observed
spectrum fits well into a thermonuclear explosion scenario, and the total energy together
with the temperature obtained from the spectrum, gives a measure of the area of the
source, which is found to have a dimension of ~ 5km. If we assume that it is relatively
evenly spread (which is a good assumption given the enormous gravitational forces at
hand), the accreted material is probably no more than ~ 1m thick. Several models exist,

but if one adopts information from thermonuclear weapons models, it appears that since
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there are restraints on thermonuclear burning of hydrogen, the main origin to these X-ray
bursts is therefore probably fusion in helium (or deuterium). The observed energetics

gives ~ 108kg accreted for each flash, which means that ~ 10%J is released = 10'°

Castle-Bravo detonations.

3.6 Stability

Instability in this sense means a substantial continuous and growing deviation from a
steady disk structure. Any temporary change in the disk parameters that eventually
(after some time) causes the disk to again settle down into a steady state (not necessarily

the same) are not considered as instabilities. The list of phenomena that can cause

instabilities in plasmas is (in many ways sadly) very voluminous.

Suppose that a small perturbation is made to an equilibrium solution, and that this
perturbation for some reason continues to grow, rather than at one point being damped.
Then this steady solution is said to be unstable and cannot exist indefinitely in nature.
In for instance a protoplanetary disk, instabilities in the dust-disk probably cause the
formation of planets. But if this clumping of matter were to continue, another star

would be formed instead of a planet system, even though both might to some degree be

considered steady endpoints.

Viscous & Thermal Instabilities

There are different types of instabilities in accretion disks, and they may be categorized
according to the timescales under which they operate. If for example the energy balance
is disturbed, any instability will grow on a timescale of the order ~ #;,, which we have
shown is much smaller then #,;,.. Since t,;s. is the timescale for significant changes in the
surface density >, we can assume that ¥ is fixed during the growth time #;,. We have also
developed that £, > t4 > t, so the vertical structure of the disk can respond rapidly, on
a timescale f,, to changes due to the thermal instability, and keep the vertical structure
close to hydrostatic equilibrium. We can thus assume that during thermal instabilities we

have ¥ and H constant, and that the thermal balance is achieved instantly during viscous

instabilities.

Miscellaneous Instabilities
In addition to these two well established instabilities (which are relevant to most disk

models), there are also other miscellaneous mechanisms that may be considered. We have
up to this point assumed that we have an axisymmetric potensial well, and therefore
postulated an axisymmetric disk structure. This assumption is reasonable for most parts

of the disk. However, the assumption can break down in the outermost parts of the disk,
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where the tidal effects of the companion donor star might be substantial. These forces
lead to tidal torques, much like the tidal forces in the Earth-Moon system cause tidal
bulges on the two bodies. On basis of this, disks that are eccentric and exhibit precession
movement, can be constructed. This tidal torque may however cause instabilities in the
disk structure, called tidal instabilities. I shall not dwell into these (for us somewhat
peripheral subjects), other than to say that these tidal instabilities are usually invoked
(successfully, it appears) as explanation for outburst-phenomena (superhumps) that seems
to be observed in certain classes of dwarf novae [30]. It is also believed that these tidal
forces play an essential role in the removal of disk matter from the outer rim of accretion

disks, and for feeding it back into the binary.

Magnetic Instabilities
Many instabilities in the accretion flow have been identified positively to be magnetic

instabilities. These include most prominently the magnetic buoyancy-driven interchange
and Parker instabilities, but also the before mentioned magneto-rotational instability. As
is the case with instabilities, there are also a plethora of oscillations and waves that can
occur in a plasma, and many of these are of an acoustic or magnetic nature (or both).
Some of these oscillations can cause instabilities in the disk flow. In stars, this extensive

field of study is called helioseismology, and in the case of accretion disks diskoseismology.

3.6.1 Viscous Instabilities

Suppose that the surface density in a steady disk is perturbed axisymmetrically at each

r, so that
¥=23+ AX (3.122)

where Yy is the steady-state distribution. Putting p = v} there will be a corresponding
perturbation Ap. We also have p = p(r, X), so that Ay = (Ou/0%)AY.. We remember
that AY. and Ay are related from (3.23), and eliminating AY we get for the growth of

the perturbation

;%(Ap) = % gg?: {7‘1/258; (rlﬂAu)J (3.123)
Not surprisingly, Au obeys a diffusion equation, but the interesting thing is that the
diffusion coefficient is proportional to du/9% and in principle can be either positive or
negative. If du/0Y. > 0 you get a behavior where the perturbation decays on a viscous
timescale, and therefore a stable disk. If however 9p/9% < 0, more material will be fed
into those regions of the disk that are denser than their surroundings and material will

be removed from those regions that are less dense, so that the disk will tend to break up
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into rings. This breakup on a timescale #,,,. constitutes a viscous instability, and shows

that steady disk flow is possible only when 9u/9% > 0.

Since p = vY M we may write the stability requirement as

(%—A—;—) >0 (3.124)
Q:ad:Q:isc

An increase in M must be followed by an increase in ¥, or there is an instability. In the
middle region, where the opacity comes from electron scattering, and the gas pressure
dominates, the diffusion coefficient in the diffusion equation (3.123) is positive, which
is not the case for p,aq > pyes- This means that the middle region (and the outer) is

viscously stable, while the inner radiation pressure dominated region is not.

A very useful tool in the stability analysis of disks are M¥-plots (or T%-plots for thermal
instabilities). If an equilibrium disk (or rather a sequence of equilibrium disks) are plotted
in the M¥-plane, we can study which of these equilibrium states are stable and which are
not. By equilibrium plots, this would mean plots along which @, , = Q. in this case.
All disk curves in the MY-plane that are decreasing are unstable, while increasing curves
for which M /9Y: > 0 are stable.

3.6.2 Thermal Instabilities

Such instabilities arise when the local volume cooling rate ()., within the disk can no
longer cope with volume heating rate Q... due to viscous dissipation, since we must
have Q,,, = Q. in equilibrium. If the temperature T, is raised by a small value AT},
both the cooling rate and the heating rate will increase. If however the QF_ increases
faster than @), ,, then T will rise further because the cooling rate is inadequate, and we
have a runaway temperature increase (or thermal instability). In other words, a steady
state is impossible in a parameter regime where the instability would grow in such a
fashion, despite the fact that a formal equilibrium solution can be found. Though the
nature of the thermal instability is basically the same, several mechanisms may cause
such a deviation. Several models that include alternative energy transfer modes, such as

convection or conduction, seem to give rise to thermal instabilities in certain parts of the
disk.

Since ¥ is constant, we can take p o< H. Let us first consider the inner region where
P = Prag and K ~ K., The heating per unit surface Q.. is proportional to pH, and
thus Q. o« H?. The cooling rate per unit surface @, , however is proportional to H,

or Q..  H. In the unperturbed state, QY. and Q. , are balanced. However, if for
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example the disk temperature increases slightly over that of the equilibrium state, the
disk will expand in the vertical direction (much like a star would expand radially if it’s
temperature increased), since H o< p oc T, Then both, Q.. and Q,., increase, but the
increase of heating overcomes that of cooling. This means that the specific entropy of
the gas increases, which leads to an increase of H, since the entropy s is 8¢7%/3pc and
increases with H as s oc H™/*. In this way, the increase of H is fed back positively to the
increase of H, and the disk is unstable. It is possible that this thermal instability leads to
inner regions where the thin disk approximation breaks down, and the central disk region

may therefore very well resemble a bloated or thick disk.

We look at the middle region where the gas pressure dominates over the radiation pressure,
and we have K ~ ke and p ~ pgos. In this case, the rate of viscous heating is the
same as before: Q. oc H?. The rate of radiative cooling is however changed since
Prag x T* oc (p/p)* oc (pH)* oc H®. This means that in the gas-pressure dominated
region the disk is thermally stable. A generalization to the case where both the cooling
rate @, ; and heating rate Q.. are arbitrary functions of p and T, is also straightforward

[37]

Based on the above, a general criterion concerning the thermal instability of disks can be

expressed as [36]

0
5}}( :-z'sc - Q;ad) . >0 (3125)

The thermal instability is examined under the condition that > is constant, and p ~ H.
Hence we can easily see that increases (or decreases) in H and T' are in the same direction

(either both negative or both positive), and thus an alternative thermal stability condition

8@3;’.90 8Q;a,d
(%), (%),

In the before mentioned ADAF disks this thermal instability analysis becomes somewhat

would be

different. Because viscously generated energy is transported inwards with the gas flow
(and is not radiated right away) this leads to a relaxation in the energy equilibrium

corresponding to the term @ The radial advection of energy thus leads to a more

;dv'
efficient cooling of the gas per radius, since some of the energy which would be stored in
the gas and therefore lead to runaway heating, is advected into smaller radii. We thus

have instead the equilibrium condition

';;'sc = Q'r_aci + Q;dv (3127)
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This will inevitably lead to a much hotter inner region since this energy has to end up
somewhere. Due to this, most ADAF disks have much hotter inner regions than the
traditional Shakura-Sunyaev disks, and the ADAF disks are therefore better suited to
reproducing the hard radiation produced and observed from systems with such inner

regions.

In Fig. 3.14 we see a plot of the heating function Q.. and the cooling function Q,_, as

functions of temperature T for our thin disk model
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Fig. 3.14 The heating function Q... and cooling function Q;.,, as functions

visce

of temperature T for o fived ¥ = 1.3- 105kgm™2, and 7 =10, m =1 = o = 1.

We see these functions for the parameters ¥ = 10, m = th = o = 1, and ¥ = 1.3 -

10 kgm~2. For the low temperature region where p = Pgas a0d K = K7y we have

9 8oT* T®
hae = V5 ~ TS Qry= "%? ~ 55 (3.128)
while for the high temperature (p = p,oq and & = Kes) we get
T8 _ T4
1_;50 ~ E QTad ~ E (3129)

We can see that there are two possible equilibrium solutions. In the low temperature

region we have a stable disk solution, because (3.126) is fulfilled in the vicinity. The other
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equilibrium solution in the high temperature regime is clearly non-stable, as the heating

function Q. is rising more steeply than the cooling function Q.. for those T.

3.7 Alternative Disk Models

As I said earlier there are problems with the standard model of accretion disks. These
problems are connected to the inner radiation pressure dominated region. It has been
demonstrated that this inner region is viscously unstable, and we have seen that the hard
X/~-ray spectrum (~ 100 keV) is not easily reproduced due to the fact that most of the

disk (also most parts of the inner region) is optically thick.

Optically Thin Disks

It was originally suggested, that if the inner region of an accretion disk is optically thin and
at high temperature (2 10° K), instead of optically thick and low temperature (< 108 K),
then the observed X-ray spectrum of the most luminous sources can be explained. Such
an optically thin, hot model was constructed by Shapiro, Lightman and Eardley in 1976
[42]. In this and many other optically thin models, the thin disk assumption is relaxed to

the condition

H<r (3.130)

so that height-averaged hasic equations can still be employed. Disks that employ this
relaxed thin disk formulation are sometimes referred to as slim disks. The gas is optically
thin to absorption (7, < 1), hence the dominant pressure source is gas pressure (prog <
Pgas) even for the inner region. Another feature that is invoked in this model is that due
to inefficient coupling (only through Coulomb-forces) between ions and electrons, the ion
and electron temperature may differ from each other (7; # T.). This two temperature
model is carried on in many later models. In many such models the ion temperature and
the electron temperature may differ by many orders of magnitude, due to much more
efficient cooling processes for the electrons at these temperatures. Typically one may
obtain for the very inner regions of luminous disks 7; ~ 10" K and 7, ~ 10°K. These
ion temperatures are probably the highest temperatures of any macroscopic gas known

today, it is perhaps only equalled by matter temperatures at the centers of neutron stars,

or by conditions inside a supernova.

Relativistic Disks
Several relativistic disk models have been attempted. A full relativistic consistent model

(involving both gravity and dynamics) has however yet to be constructed, and given the

complexity in many aspects of non-relativistic models, this is not surprising. A common
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approach to this problem is the use of psuedo-Newtonian potentials and approximations,
which seems to work well in most cases. The relativistic models are however mostly
applicable to black hole accretion systems, where the Keplerian speeds vy can reach mag-
nitudes comparable to ¢ when the gas approaches the Schwarzschild-radius rg. For most
neutron star systems (and certainly for magnetized neutron stars, or pulsars) the gas never
reaches the domain where such speeds are attainable, see Fig. 3.10 where v, is plotted as
a function of 7. However, as we have discussed earlier, relativity is highly relevant when
we consider the observed spectra from accretion disks, where the spectra may become
modified when relativistic effects are taken into consideration. The very high speeds near
rg for black hole accretion causes another problem concerning the transonic nature of the
gas flow there. Since the relativistic sound speed of the gas cannot exceed c/+/3 [29], this
means that at some point very close to the black hole the gas must cross from subsonic to
transonic flow. The dynamics and topology at this radius must be dealt with in order to
understand the accretion flow around rg. This problem never arises in the disk around a
neutron star, but must probably be taken into consideration when the gas falls onto the

surface of the star and a shock front might develop (accretion columns).

ADAF
Another very central accretion disk model that has been developed in the 1990s is the so-

called Advection Dominated Accretion Flows (ADAF). I have mentioned this approach
several times earlier, but I will nevertheless give a short summary of the qualitative
features of this model. Many of the essential assumptions that we made in our model
is still with us in the ADAF-models, and both optically thin and optically thick ADAF-
models can be constructed. These are the significant differences:

e Keplerian rotation is not assumed (the rotation is in fact usually sub-Keplerian).

This means that the pressure force could become substantial in the radial force

balance.

e Slow rotation in the sense of v, < vy is not necessarily satisfied. It is only if the
radial velocity is high enough that advective cooling is relevant, otherwise it is not.
ADAF disk models therefore rely on higher v, than standard disk models.

e As I have mentioned before, local energy balance Q. = @, is no longer valid.

e Like many other non-ADAF models the thin disk assumption is relaxed into a slim

disk H < r.

The most important effect of advection on disk structures is advective heat transport,
which is neglected in standard models. In the standard disks it is assumed that the heat

generated by viscous processes is radiated out at the same place where it is generated. In
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a sense one might say that this advective heat transport has a cooling effect for a given
radius compared with radiatively cooled standard disks, because heat (), is transported
away and QF. ~ Q. > Q... A large portion of this heat is then dumped across the
Schwarzschild-radius of the black hole and leaves the system permanently. It can be shown
[44] that in these radiation pressure-dominated slim disk models, the advective cooling

rate per unit surface Quq, satisfies

H 2
Quadv > (——) s (3.131)

T

where Quis 18 the usual viscous heating rate per unit area. This shows that advective
cooling (at least in the radiation pressure-dominated regions) depends on a large value of
H/r, ie. a slim disk.

We should also mention that the disks in which the effects of advection are non-negligible
have stability properties that are rather distinct and more satisfying than that from
standard disks, which was a part of the reason why ADAF-models were constructed to

begin with.

The Ambiguousness of Accretion Disk Modeling

Various disk models have been constructed and published that contain different assump-
tions regarding almost all aspects of accretion disks. These models include differing vis-
cosity prescriptions, equations of state where a magnetic pressure-term is added, and a
whole variety of models with differing energy transport and opacity schemes. Some have
said that accretion disk modeling is, or has become, almost like an artform, where only
the creativity sets the limit. This is of course an exaggeration, because all models must be
based on underlying physical principles and have to be (at least to some degree) consis-
tent, in that they do not contain any serious contradictions. In addition the models must
fulfill several demands that make them physically feasible, such as for instance stability
criteria. The underlying reasons for this plethora of accretion disk models, is that there
isn’t one correct way to construct accretion disks, there are many different prescriptions
(for opacity, viscosity or others) that produce physically feasible accretion disks. When
it comes to observations, one should realize that there is a zoo of various X-ray binary
sources, with different characteristics, and an accretion disk model (with everything that
goes into it) should therefore be tailor-made for each system, or at least for each class
of system. I should add that sometimes our knowledge of the detailed physics involved
are limited, or at least contain uncertainties that make the present ambiguousness in the

accretion disk models possible.
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Chapter 4

Disk Accretion Onto a Pulsar

4.1 Pulsars

As we have seen in Chapter 1, pulsars are considered to be very strongly magnetized
neutron stars. A large volume of models and literature exists on the subject, so I will

consider only the aspects of pulsar physics that we need here.

4.1.1 Spin Periods, Diameters and Masses

The masses of neutron stars in many binary systems can be determined remarkably well.
Although current theory puts the maximum mass of neutron stars to ~ 3 M, most of
the determined masses appear to lie in a small range around 1.35 M [48]. The currently
favored equation of states leads us to expect a radius R very close to (but slightly above)
10km, and the very large rotation speeds of some pulsars also limits the radius B < 20 km
(because the pulsar has to rotate below break-up speed). Until recently there have been
no direct confirmed geometrical/optical way of measuring neutron star stellar radii, but
it appears that precise observations made with NASA’s Hubble telescope have uncovered
(optically) the closest known neutron star known so far, RX J185635-3754 at a distance
of ~ 2001y in the southern constellation Corona Australis [49]. The star appears to move
with a very high velocity ~ 4-10°kms~! through space, and the estimated radius agrees

with the above numbers.

Pulsars acquire their rapid rotation from angular momentum conservation during the
stellar collapse in which they are created. Regular pulsars emit radio pulses at very
precise intervals, the duration of the pulse itself is very short (~ 107%s). The interval
between these pulses is interpreted as the spin period. The spin periods of the great body
of pulsars range from a few milliseconds (the before mentioned millisecond pulsars) to
several seconds. It is established that this spin period for an isolated pulsar generally

increases with time, so the pulsar will spin down as it grows older. It is however, yet
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uncertain as to what extent the magnetic field of an isolated radio pulsar decays as time

progresses.

4.1.2 Magnetospheres

Their magnetic field strengths are consistent with the collapse of a normal star with a
polar field ~ 100 G, the flux being conserved in the collapsing stellar material. A number
of methods (more or less indirect) are used to estimate the strength of pulsar magnetic
fields, such as synchrotron radiation, pulse period changes and several surface phenomena.
Polar field strengths reaching ~ 102 G occur in what is assumed to be young pulsars,
while it may be as low as ~ 10® G in others. Exotic neutron star objects called magnetars
are assumed to have polar magnetic fields ~ 10'° G, and are today generally and widely

accepted.

Magnetic Dipole Model

In the magnetic dipole model for pulsar magnetic fields it is assumed that the neutron
star rotates uniformly at a frequency (), and possesses a magnetic dipole moment m
oriented at an angle o to the rotation axis. In the case of o =~ 0 this model is called an

aligned rotator, as opposed to the oblique rotators where o # 0.

Though the actual spin down [ mentioned earlier is regarded as a fact, the mechanism by
which pulsars convert their rotational energy into the observed radiation is still relatively
poorly understood today. It is clear that there is a link between the electromagnetic
radiation emitted by the pulsar (largely in the radio spectrum), the magnetic fields of the
pulsar, and this loss of angular momentum. Most current theories for magnetospheric
emission can be grouped into polar cap, outer gap or nebular models. These models,
at least in some cases, need not be mutually exclusive, the Crab pulsar (and others) for
example, shows clear evidence for pulsed emission from the magnetosphere and unpulsed
emission from the surrounding nebula. The common thread between all magnetospheric
models is that the radiated energy is derived from the spin-down of the neutron star.
In almost all models, the radio emission is concentrated in a conical beam that corotates
with the pulsar. In some of the models this radiation cone is aligned with the star’s dipole
magnetic field and the emission originates from the polar caps, this means that for pulses
to appear we would need o # 0. In other, so called magnetic dipole radiation models,
the cone axis is perpendicular to the rotation axis of the star, and therefore pulses will

be observed even for an aligned rotator.

We now, and in the following, concentrate our efforts on the aligned rotator (o >~ 0). We

can put the magnetic moment y = |m| = ByR3, where By is the polar surface magnetic




4.1. PULSARS 73

field strength (the point where the field has it’s maximum intensity), and R is the neutron

star radius. Most authors put the magnitude of p for each pulsar to be

3
B|=B=x~ 7-% = (10" G) m({;) (4.1)

where R ~ 10 km is assumed, and fi39 is in units of 10% G cm?®.

This approximation is good in the equatorial plane (where the disk will be) and for
sufficiently small 7, but the deviation will be larger as the more complex polar field region
is approached. The magnetic field B = Bp + By of such a neutron star will (in it’s
unperturbed state) be dominantly poloidal for most relevant radii. From the expression

B = ur—3y/4 —3sin?0 [52], this poloidal field B, may be taken to have the dipole

moments

3 3 TZ
1 2 9 2
B, = —-BoR*———%% (4.3)
2 (r? + 22)%/*

which gives (4.1) for z = 0. This field will interact with the disk in the equatorial plane,
and by this interaction a toroidal field B, = |Bg | will be generated, causing a magnetic

torque.

It is generally assumed that the magnetic field of the pulsar is anchored to the star, and
the rotation of the star will therefore sweep the magnetic field around with it. There
will necessarily be a distance where the corotation velocity attains the speed of light.
The speed at which the magnetic field energy travels in space cannot exceed the speed
of light, and therefore there will be an imaginary cylinder with an axis along the pulsar
rotation axis and with a radius r = ¢/, called the light cylinder where the magnetic
dipole model is valid. Magnetic field lines that pass through this cylinder are open and
also form toroidal components, thus invalidating (4.2) and (4.3). For most pulsar spin
rates €1, the light cylinder will be well outside the disk/magnetosphere interaction region,
and the dipole field (4.1) is applicable. For very fast spinning pulsars (in the millisecond
region) the light cylinder might however start at quite small radii (close to the pulsar)

and therefore complicate the assumed relevant unperturbed magnetic field considerably.

Magnetosphere
The standard theory of the electrodynamics of pulsar magnetospheres is still largely ac-
cording to a monumental paper by Goldreich and Julian in 1969 [50]. The rotation of a

neutron star possessing a magnetic field induces powerful electric fields satisfying
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(Qe x 1)
c

E + xB=0 E-B=0 (4.4)
in the space surrounding the star. Because of these electric fields, the surrounding region
cannot be empty but must contain a charge density, consequently the pulsar will possess
a dense magnetosphere. The electric field will impart a force on both electrons and ions
that exceeds the gravitational force by ~ 1 : 10° for protons, and even higher for electrons
[10]. Thus particles will be torn off the surface and create a region of rotating plasma
around the pulsar. It is estimated that these electric fields give rise to electric potential
differences of the order ~ 10'* V [55]. Tt is clear though that this current generated at
the pulsar surface (Goldreich-Julian current), will modify the electric field driving the
current, and thereby also the magnetic field which in turn generated the electric field
[51]. The general problem concerning the electrodynamics of the pulsar magnetosphere is

complicated and as yet unresolved.

In the Goldreich-Julian theory the magnetosphere is in a so-called force-free state. The
currents in this force-free state is not zero, but the magnetic force is zero because the
current density is everywhere parallel to the magnetic field. Thus J x B vanishes even
though J and B are finite, and the magnetosphere is highly conducting along, but not
perpendicular to the magnetic field lines [50|. Inside the light cylinder, the plasma will
corotate with the star because of the strong magnetic field, and matter will be able to
flow freely along magnetic field lines. In the region where the field lines are open, flowing

particles are permanently lost to the pulsar.

This theory is proper for the magnetosphere of an isolated pulsar with a rotating magnetic
field, but with no accretion disk. An accretion disk plasma with an azimuthal velocity in-
side this rotating magnetic field will introduce additional fields and phenomena, including
a radial electric field.

4.2 Disk-Magnetosphere Interaction

As mentioned before, in the absence of a disk the magnetic field lines are poloidal, and
near the equator plane dominated by the B, component. When a disk is introduced, the
central assumption in many models is that the magnetic field becomes threaded to the
disk, or that the magnetic field lines are frozen to the orbiting plasma (I refer to Appendix
C for details). Since the field is forced to follow the fluid elements it is sheared in the
¢-direction. This shearing generates a sizable toroidal B, component in the disk. As long
as the field lines remain continuous across the disk, B, must be equal in magnitude, but

opposite in direction above and below the disk plane. As a result, the magnetic field in
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the disk will vary much more rapidly with z than with r, it goes from +B; to —By as z
goes from —H to H (and H < ). In Fig. 4.1 we see this clearly demonstrated, and we

also ohserve that

B; = B¢(’f’, H) = *B; = B¢,(7’, *—H) (45)

and that By(r,0) = 0. Thus there is a torque from the upper half (or surface area) of the
disk, and since By changes sign in the lower half, there is also an equal contribution from

this part.

Fig. 4.1 The shearing of magnetic field lines by threading onto the disk.
In the bottom image, a typical example of magnetic reconnection is visualized, and the
S signifies that the field line is connected to the stellar surface.

The matter in the neutron star and the disk has a relatively high electrical conductivity.
Therefore as matter moves in directions perpendicular to the magnetic field, it creates
a v X B polarization electric field. If there is sufficient plasma between the star an
the disk, the electric potential difference can drive appreciable magnetospheric electrical
currents around the system. The resulting J x B forces act on the matter in the star,
the magnetosphere and the disk to reduce their relative motion. The character of this
electrodynamic interaction depends on the distribution of electrical resistance along the
current paths. Most investigations indicate that the conductivity is likely to be high
along field lines, at least in the magnetosphere [52][55]. One therefore arrives at a system
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of field-aligned currents that is not unlike the polar-cap ionospheric current system that
is thought to operate around Jupiter. Charged particles are then magnetically trapped
and begin to corotate with Jupiter, producing ovals of auroral light centered on Jupiters

magnetic poles.

The inward radial velocity v, of the disk also generates important effects. The radial
inward motion of the plasma across the poloidal component of the magnetic field within
the disk, generates a toroidal electric field that drives toroidal currents Js. These currents
set up a magnetic field that screens the disk from the stellar poloidal magnetic field (they
are sometimes called screening-currents). Another effect produced by these currents is
that they pinch the stellar magnetic field inwards, thus creating a inward radial component

B, even in the equatorial plane.

4.2.1 Magnetic Coupling

There are a variety of processes that causes the magnetic field to invade and mix with

the disk plasma in a time which is short compared to the radial drift time.

e Turbulent diffusion
The disk and the star will also be coupled by turbulent diffusion of the magneto-
spheric field into the disk. This is shown in the two upper images of Fig.4.1. This
process is important in the region where the kinetic energy density of convective
of turbulent motions in the disk exceeds the energy density of the magnetospheric
magnetic field just outside the disk. In this region one expects the magnetospheric
field to be entrained by the convective motions, and carried into the disk. The

turbulent diffusion timescale have been estimated to ~ 1072 the radial drift time
[57].

e Kelvin-Helmholtz instabilities
Kelvin-Helmholtz instability can occur when there is sufficient velocity difference
across the interface between two fluids. The velocity discontinuity between the low
density magnetic field region and the disk drives a Kelvin-Helmholtz instability.
Penetration of the Keplerian flow by the magnetospheric magnetic field is assured
if unstable modes grow to an amplitude comparable to the semi-thickness H of the
disk. The growth times of the Kelvin-Helmholtz modes can be estimated analytically
in the linear regime, and estimates show that they are of the order ~ 1075 times
the radial drift time [53]. Thus there appears to be enough time for these modes to
grow to sufficiently large amplitudes to greatly disturb the disk surface, and allow
the magnetospheric magnetic field to mix with the disk before the plasma drifts

significantly inward.
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e Magnetic reconnection
A third process that couples the disk and the star is reconnection of the magneto-
spheric magnetic field to magnetic fields in the disk. This is shown in the bottom
image of Fig.4.1. This process also creates magnetic flux loops, called magnetic
islands inside the disk. The timescale here is of the order ~ 107 times the radial
drift time [58].

As a result of these mechanisms the field will thread the disk well beyond the inner edge.

4.2.2 Diffusion of By

It is clear that if the magnetic shearing, twisting and stretching of a magnetic field line is
allowed to continue indefinitely without any decay of the By-field, a steady equilibrium
disk flow is impossible. It is therefore essential to this model that there are ways for the
azimuthal field to diffuse. We have seen (Appendix C) that for a magnetic field to be per-
fectly threaded onto a plasma we need the electrical conductivity ¢ = 1/pon to be infinite,
and conversely the magnetic diffusion n = 0. In a real disk the electrical conductivity
must (and will) be large, but not infinite, and therefore we will always have a resistivity,
or a finite magnetic diffusion 7. One can introduce an effective electrical conductivity
oesys for the plasma, and deduce the value it must have, based on the condition of steady
flow. Then one might say that the sum of dissipative processes that leads to steady flow
must give this effective conductivity o, For a steady disk flow there must be a bal-
ance between the amplification and dissipation of the azimuthal By-field. If (0B,/0t), is
assumed to be the generation rate of By and (0B,4/0t)_ is the diffusion rate, then

(%%)+ (ng) 0 (4.6)

There are basically three processes which contribute to the diffusion of B,. Two of them
have already been mentioned above, namely turbulent diffusion and magnetic reconnec-
tion. While these two mechanisms contribute to the coupling of the field with the plasma,
they also lead to diffusion of the magnetic field. Another process that contribute to n
in such a disk is magnetic buoyancy (also known as Parker instability). The presence of
a magnetic field can make a portion (a horizontal flux tube) of a compressible fluid less
dense than its surroundings. If an approximately isothermal medium is assumed, then
the thermal pressure inside the flux tube will differ from that outside. If horizontal force
balance is assumed across B, then the tube will experience a buoyancy force, and so it

will drift under the influence of a vertical gravity, thus leading to a diffusion of the field.
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In a manner analogous to the stretching of field lines in the azimuthal direction, the
inward radial drift of the disk plasma pinches the stellar field inward in the disk plane,
thereby generating a radial magnetic field component B, from the z-component B,. Again
the actual value of B, is determined by a balance between amplification and dissipative

processes.

4.2.3 The Poloidal Fields B, and B,

We have now looked at the generation and diffusion of the By-field in the disk. The
poloidal stellar field in the equatorial plane will also be perturbed and modified by the
disk motion. We now need the the poloidal components of the induction equation (C.6),

this is

U By — v By 4 ponJy =0 (4.7)

This equation shows that the inflow v, across B, generates the toroidal current density
Js. If v, were effectively vanishingly small then (for finite n) it follows that Jy = 0, and
the stellar poloidal field would penetrate the disk unmodified. The finite inflow through
the disk perturbs B,, giving from (4.7)

B, — v, B, + UTB; — sz; = —ﬂoﬁJ;s (4.8)

where B, and B, are given by (4.2) and (4.3), and primes denote perturbations. Since
VB; = 0 for an axisymmetric field, it follows that the components of B; can be expressed
in terms of an azimuthal vector potential A/qAS as

;o oA 10

B, =-—(rA) (4.9)

B =22
T Oz = ror

The corresponding toroidal current density is

, 1 (8B, 9B\
Jg = — T = .
¢ 140 ( oz or / (4.10)
and hence is related to A" by
;A
V2A - ;’2" = '—M()J;) (411)

Large distortions of B, require poloidal flows having a kinetic energy density at least
comparable to the poloidal magnetic energy density, that is pvf, e Bﬁ /1o In the inner

regions, where the stellar magnetic field is strongest, poloidal flows in the low density

magnetosphere will not have sufficient pvf) to cause large B;. Hence, in these regions, any
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large distortion of B, would have to be caused by the disk inflow. For small poloidal flows

in the magnetosphere above and below an undisrupted disk, the toroidal current density

J; will be concentrated in the disk. }B;[ in the disk can be investigated using (4.8). Since

the unperturbed stellar field is largely vertical for [2] < H, the relevant quantity here is

\B.|/|Bs]| . It follows from (4.9) and (4.11) that B; has the vertical length scale of A" and

J‘;, which is H, and hence in the disk (4.10) becomes
. 108

° T po 2

(4.12)

since H/r < 1. If we consider terms on the left hand side of (4.8), then the continuity
equation V(pv) = 0, or

10 0
gives
vz| ~ (H[r) |v] (4.14)

We observe that (4.2) and (4.3) yield (in the disk, or equatorial plane)

|Br| ~ (H/r)|Bs|. (4.15)

Hence

v, B| ~ (r/H)? v, B,| (4.16)

so v, B, is negligible. (4.9) and (4.14) show that v, B, and v, B, are comparable, so (4.8)

becomes

v, B, + v, B, — v, B, = —uonJ; (4.17)

For |B.| < |B,|, equations (4.9), (4.12) and (4.17) give

Bl (HY
B.] (77/?")<7") (4.18)

In the absence of a magnetic field viscosity causes the inflow, and we put the radial velocity

due to viscosity |vy,] ~ v/r, and so from (4.18) the condition |B,| < |B.| can be written

CARS g(%)z#w (4.19)

For ) 2 v, very large magnetically driven inflow speeds are needed to violate this condi-

tion. So the conclusion from all of this is that |B,| will be a small perturbation, and can
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be neglected compared to B,. This is important, because it means that we can use the

dipolar and unmodified field B, in all calculations of torques etc.

4.3 Radii and Torques

As I said, we will continue to look at aligned rotators. For oblique rotators the rotation of
the star causes the magnetic field to vary explicitly with time, which imposes an explicit
time dependence on the interaction between the star and the disk. Since the magnetic
field has a spatial symmetry, the interaction with the disk has no symmetry, and hence

is three-dimensional, and therefore becomes very complex.

4.3.1 System Radii

The description of the standard paradigm concerning the accretion onto a magnetized neu-
tron star (and the associated torques) is closely related to the relative sizes and attributes

of certain radii in the system. The three most prominent are

e Corotation radius
This radius is defined as the radius r., where the accretion disk angular velocity Qg

(usually assumed Keplerian) has the same value as the angular velocity €, of the

GM 1/3
Teo = (Q 2) (420)

star. (), = Qf gives

It is clear from Fig. 4.2 that for r > r., the disk will be rotating slower than the
magnetic field (which is swept along with the rotating pulsar), and for r < r, the
disk will in fact rotate faster than the magnetic field lines. In most models of the
disk-magnetosphere interaction this means that for r > r, the disk will gain angular
momentum from the magnetic field (since its rotation is slower), and this will lead
to a spin-down of the star. For r < r,, the disk will lose angular momentum to the
field, and a spin-up of the star will occur. This is related to the magnetic shear that

occurs inside the disk, and we will return to this later.

e Disruption radius
This is the radius rg at which the magnetic field is strong enough to control the disk
flow. This radius is formally defined in various ways by different authors, which
gives rise to many different values and expressions for 5. As we shall see below,
it is also unclear whether 7 is the actual disruption radius of the disk, or just the
radius where disruption starts. It is clear that at ro the magnetic torques exerted

on the disk becomes larger than the viscous torques (which govern the unperturbed
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disk), and that therefore the adding or removing of angular momentum to or from
the disk is now dominantly magnetic. A crude estimate of this disruption radius
is the Alfvén radius r4. This is not defined by torques, but usually as the radius
where the magnetic energy density becomes comparable to the total kinetic energy

density of the accreting gas, or
BQ(’F A) ~ 1

o = 5,0(7",4)1)2(?34) (4.21)

If we assume steady transonic radial equatorial flow at nearly free-fall velocity we

may write

(4.22)

2G M\ /2
) p(r) ~ psy =

T

u(r) = vpp = (

47T1Jff7”2

where the latter expression is derived from mass conservation. If we use (4.1), which

holds in the equatorial plane, we get

4 17
TA= (W) =1.89 - 10 /7 g m ™/ "m (4.23)
More sophisticated estimates of ro (based on torques) are surprisingly close to 74
[53] and in fact 7o =~ 0.5r4 is probably a very good estimate. We see that for a
nominal pulsar with m = 7 = p3o = 1 we get r4 ~ 2-10* km, or 7 = r/R = 200.
We can therefore say that the magnetospheric radius can be approximately placed in
the middle region of the standard Keplerian disk from Chapter 3, and that the disk
thus will be electron scattering and gas pressure dominated for the radii mentioned

here.

e Inner disk radius
We have assumed that for r < 7., the disk loses angular momentum to the field
by magnetic torques, due to the different angular momentum of the disk and field
(star). As long as this magnetic torque is dominated by the viscous torque the disk
will remain approximately Keplerian. But for a certain value ry (defined above)
the magnetic torque will dominate. If r < r., the magnetic torque will now remove
angular momentum from the disk at a much faster rate than viscous torques does,
and the disk will become Sub-Keplerian. The azimuthal velocity vy will decrease,
while the radial infall velocity v, will increase. At the inner disk radius r = r;
the flow will no longer be in the form of a disk. Because the flow will be along the
magnetic field lines, vertical equilibrium will break down, and a gradual vertical loss
of disk material (into the magnetosphere) will take place in the transition region.

The size of this transition zone is put equal to § = ro —r; (Fig.4.2).
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It is here assumed that the binary separation and the accretion disk radius 4 are much
larger than the above mentioned radii. This is true for all relevant parameters in pulsar
X-ray binaries. One also assumes that the stellar radius 1 is much smaller than the
magnetospheric radius (and other radii), so that the interaction of the flow with the
magnetosphere boundary ro can be treated, to a good approximation, separately from
the interaction of the flow with the stellar surface. This is also usually true for most
pulsars, but may not hold for pulsars that are both very fast spinning (P ~ 1 ms) and

low magnetic (B ~ 108 G), where both ro and r,, may be only a few times £.

Q
- Qe (n)
| Q¢ (0 = 1)
Magneto- | Disk Flow
spheric
Flow',
r
rco fi
(Propeller) (Accretor)
Fig. 4.2 The essential and characteristic radii for accretion onto a pulsar.

Two different corotation radii v, are shown, giving rise to two very different systems.

4.3.2 Magnetospheric Flow

As discussed above, the disk will disrupt at a radius 7o (or r;) and the disk material will

merge with the magnetosphere of the star.

The set of field lines threading the boundary layer (the area where the disk dissolves)
define the accretion bundle, namely those field lines along which matter accretes onto the
star. The plasma in the accretion bundle at the disk plane, and just above and below
it, still has significant cross field motion. Thus the field lines in this region are only

approximate streamlines of the flow. As matter falls closer to the star, its cross field
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motion is decelerated by the increasing strength of the stellar magnetic field, while its
field aligned motion is accelerated by the gravitational force of the star, and approaches
free fall.

There will then be a flow alignment radius ¢ on every field line of the accretion bundle,
inside which the cross field motion of the accreting gas becomes negligible compared with
its field aligned motion. The matter will then stream along the field lines and generally
end up without significant angular momentum in an area near the polar caps of the star,

where a so-called accretion column is generated.

4.3.3 Accretion Torques

With reference to Fig. 4.2 we now look at our four different radial regimes, and we will see
that these regimes give rise to quite different torques on the pulsar and the disk. Positive

torques spin up the star, while negative spin it down.

®o T > T
In this region the disk will rotate slower than the magnetic field, and there will be a
removal of angular momentum from the field (star) onto the disk by a torque N, < 0.
So this is definitely a spin-down region. It is unclear as to exactly how the disk
removes the gained angular momentum, but in this part of the disk the viscosity is
usually dominant, so the disk will probably remove most of the momentum outwards

by the usual viscous mechanism.

e 1y < T < Teo
This is an area in which the disk rotates faster than the magnetic field, and we have
a spin-up region because angular momentum in general will be transmitted from
the disk to the field (star) by a torque N3 > 0. In most parts of this region the
viscous torques are still the dominant ones, and thus in spite of the additional loss of
angular momentum through the magnetic torque, the disk will still be approximately

Keplerian.

e, <r < T
We have discussed this area above, and I will now only say that unless 4 is considered
very small, this region might be both a spin-up or spin-down region, depending on
the value for the pulsar spin €2,. We see from Fig. 4.2 that if Q(r;) < €, < Qg(ro) we
will in fact have another corotation point inside the d-region. Otherwise this region
will be purely spin-up (if {2, < Q(r;)). We can call the total torque exerted in this
region Ny. Most models assume that the value of ¢ is so small 0.01 < d/ry < 0.1

that its contribution can be neglected.
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e 7 < 7;
Here we will only experience spin-up, so that the torque N; > 0. The material
that enters the magnetosphere will deliver all of its angular momentum to the star,
under the assumption that none (or a very small fraction) of the mass that enters
the magnetosphere is expelled. Multidimensional calculations indicate that most
of the angular momentum carried by the accreting material in the magnetosphere
will be transferred onto the magnetic field [59]. This assumption is open to debate
however, as various mechanisms have been suggested that will cause mass ejection
or jets from the magnetospheric boundary, and thereby remove angular momentum
from the system. Such as for instance so-called Mass Accretion Ejection Structures
(or MAES) [60]. Some suggestions have even been made toward the conclusion that
most of the angular momentum in the funnel flow has to be propagated back to the
accretion disk [61]. This seems unlikely however, as the viscous torques are to small

to carry it away.

If we assume that the matter that falls into the polar regions have little angular momentum
left, then the transfer of angular momentum onto the star by direct material interaction is
very small, and the angular momentum is transferred in its entirety through the stressed
magnetic field and electrical currents flowing in the magnetosphere. Flow models have
been constructed for weakly magnetized pulsars however, where some of the disk matter
penetrates the magnetic field (through interchange instabilities), and falls onto the equator
(instead of the polar area), and thereby transfers the angular momentum directly through
a complicated collisionless shock [56]. Either way, the total angular momentum transferred

is the same.

We now put the total torque N on the star as follows

N = N; + Ny + N3 + Ny (4.24)
\....1;,_/ \..?,_./
in out

N,,, refers to the torque produced inside 19, while N, is the torque produced outside the
radius ry. Since only a negligible part of the angular momentum carried by the disk at rg
is sent back by viscous forces (and therefore lost to the magnetic field and star), we will

assume that all of this is transferred onto the star and
Nin = Mr2Q(ro) (4.25)

This is sometimes referred to as the matter torque, since it refers to the angular momentum

held by the disk matter at radius ro, but as we understand this is not really a good
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description, since magnetic fields and electric currents are involved at all points in the
angular momentum transfer. However, it may be regarded as always positive (N, >
0), but with exceptions that I shall mention later. The torque N,y is however more
complicated, as it may be both positive and negative depending on the value of r., and
ro. In the same fashion as for N, this part of the torque is referred to as the magnetic
torque. To find an expression for Ny, we turn to the use of the vector torque T, =T,
since this (though more unpractical) gives a clearer interpretation of the physics than the
use of the scalar torque Nyt = Tpn/2. Since the magnetic torque on the neutron star is

equal and opposite the one on the disk, we get for the torque on the star, using (C.18)

1 1
T,=——[ (rx E,)dV=—— [ rx[(VxB)x B|dV (4.26)
Ho Jvy, Ho Jy,
Where V; is a volume that encloses the disk. It is straightforward to show that this can

be expressed in terms of surface integrals over a surface Sy that encloses Vg

1 1
T,.=—— | (rxB)BdS + —/ B*(r x dS) (4.27)
Ho Jsy Ko Js,
From the symmetry of B? about z = 0, it follows that the second surface integral vanishes.
A thin disk has dH /dr < 1, so dS is nearly parallel to £ on the upper and lower surfaces,
and so the magnetic torque becomes with dS = 2772 dr 2 and multiplication with a factor

2 (since both sides of the disk must be included)

o0 T2 .
/ r*Bf B, dr — 50 /B,,B;SF dz} 2 (4.28)

ro z

—
Ho
We take from (4.14) that the last integral does not contribute since |B,| < |B,|, and

omitting the direction 2, we therefore put the scalar torque Ny
Nt = e r’B} B, dr (4.29)

Since the outer limit where the magnetic threading begins is rather undefined, but defi-
nitely smaller than Ry, we simply integrate to the infinite.

In electromagnetism there are usually two unit systems that are commonly used, the cgs
(or Gaussian) system and the standard SI system. So far in this Chapter and in Appendix
C, the SI system have been used. However, many expressions (including the scalar torque)
becomes easier to deal with in the cgs-system, and this will be used for calculations from
now on. Importantly, in SI units we have for instance n = 1/poo, which in cgs units

becomes = ¢ /4no. But we also get, by a look at Maxwell’s equation in the two systems
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-1

o = 47 /c, and since the Lorentz-force in the cgs-version carries a ¢ (compared to in SI

units), the 47 /po factor in front of (4.29) is reduced to unity, and we have

Ny = — / r?Bf B dr (4.30)

70

which is more practical to handle. And we then have

N = Nm + Ncyu,t = M’)"g Q(T{)) - / TzB;_BZ dr (431)

7o

Introducing the magnetic pitch parameter 4 as

(&), (5)., 43

so that (4.30) becomes

Nowt = —/ ry, B2 dr (4.33)

ro

4.4 The Fastness Parameter

We now look at a parameter which is of profound analytical importance in describing
these systems, namely the so-called fastness parameter. It was introduced by Elsner and
Lamb in 1977 [72], and is defined as

3/2
L =(~T£) (4.34)

Tco

where Qg(ro) is the Keplerian angular velocity in the point rg, that is the maximum
Keplerian velocity for the disk. I refer again to Fig.4.2, where this is illustrated. In this
way w, becomes a measure of the relative positions of the magnetospheric disk disruption

radius, and the corotation radius. Using (4.23) and 79 >~ 0.574, we can put

T 3/2 945 10% 117 pgo® T m 7
C e/ GU3MY3Q, P
~ 0.5 P T g m (4.35)

where P is in seconds. It must be made clear that one should use a value of usg slightly
larger than the unscreened dipole moment of the neutron star, since the screening currents
flowing in the boundary layer tend to enhance the magnetic field within the magnetosphere
(and weaken it on the outside). We will return to this screening later however, and now

concentrate on the fastness parameter.
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4.4.1 Analysis of wq

For slow rotators ws < 1 or rg < Teo, and the negative torque contribution Ny from
outside 7., is small compared to the positive from Ny inside 7.,. As a result the total
torque N is always positive, and we have a spin-up. As w; increases, the corotation radius
o is pushed inward towards ry, and since the area which produces negative torques
increases, and the area that produces positive decreases, the total torque gets smaller and
eventually N3 4+ Ny = Noy < 0. The total torque N may still be positive though, since
N, always contributes positively. But at one point the ratio 7o /reo (& certain value of
ws) takes a value such that the positive and negative torques balance Nowt = —Nip, and
the total torque N vanishes. This gives a critical fastness parameter w. which defines an
equilibrium state for the pulsar, where there is neither spin-up nor spin-down. It is held
that this critical fastness parameter w, is not a parameter that varies between different
pulsars (like w, will do), but instead is a universal constant (within the applicability of

this model of course). Most estimates of w, places it in the range 0.6 < w, < 0.95 [62][63].

Propeller Regime

We clearly see that if r,, < 7o then w, > 1, and from this we gather that the disk
matter never reaches the corotation radius r., before the disk is disrupted. Thus the only
interaction taking place between disk and magnetic field results in a spin-down torque
N, < 0. In this case the pulsar is what we call a propeller or is in a so-called propeller
regime. The traditional view is that in the propeller regime accretion is almost entirely
prohibited due to centrifugal forces. Because the magnetic field rotates faster than the
Keplerian disk, gravity cannot keep the matter trying to flow along the field lines in place,

and it is therefore propelled away from the pulsar, depriving it of angular momentum.

What seems clear for these cases is that as long as ws > 1 the pulsar will not be accreting
matter from the disk, at least not in a one-dimensional treatment. Unless matter is
expelled from the disk and star, or can accrete past the disruption point in some way, it
will necessarily build up outside 14, and a steady accretion does not seem to be possible.
It is conceivable however, that the stellar field lines may thread only the surface layers of
the disk, which would then be subject to propeller action, while the diamagnetic plasma
near the midplane of the disk continues to flow toward the star.

Since matter probably must reach inside the magnetosphere to create the X-ray pulses and
other characteristics seen from such pulsars, no such emission will be observable from such
systems. The pulsar will still act as an X-ray source though, since the disk itself probably
will emit an intense radiation, and even if the mass transfer should stop altogether, the
pulsar would still be observable as an ordinary radio pulsar. The dynamics related to the

propeller regime are rather unclear, and is a field of rigorous investigation.
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Change of Fastness
The value of w, (and therefore many important characteristics of the system) will depend

the three essential parameters

e The mass transfer rate M
As we have seen, this is a parameter that may change on the order of days or
weeks in most standard accretion systems (or perhaps in some systems even faster),
thus causing changes that are readily observable. We can see from (4.23), and this
applies generally, that the radius ro (or in this case r4) scales as ~ M~2/7_1If other
parameters remain fixed while M (or equivalently the luminosity L) varies, w, will
change. As the luminosity (or M) increases, ws (~ M~%7) and ry will decrease and
the torque will increase. Thus changes in spin-up (or spin-down) rates that are not
on too fast a timescale (< 1 day) can be explained by changes in mass transfer rate
M if they are accompanied by a rise in luminosity. If M increases sufficiently, a
system may even pass from a propeller state to a spin-up state relatively fast. For
most systems the mass transfer rate is quite steady, or at least passes through long

lived quasi steady states, so that the system will have a constant w;.

e The spin period (),
Unlike M, the spin rate €2, cannot vary sufficiently fast as to change the character-
istics of the system in the order of days. The spin period P and period change P
for pulsars can however be measured very accurately for many systems. Significant
changes in P are slow and gradual, and will affect the system on very long timescales
> 10 yr. The corotation radius 7, is only affected by €2, and not by other param-
eters. Since w, ~ P71, it becomes clear that fast rotators are much more difficult
to spin up than the slow rotating ones. So as a star gradually spins up (on a long
timescale) it will slowly increase its w;, so that is approaches w,, and the spin-up will
be halted. Alternatively if the star spins down, it will also approach w. from the
other side, that is for gradually decreasing w,. In other words: given enough time,
an equilibrium spin period F,, will be reached for the system. Once the period P,
is reached, the spin will fluctuate around this equilibrium with periodic spin up and

spin down variations. Most estimated results give that

Py~ M (4.36)

where a > 0 is a constant of order unity that differs from model to model. Thus
the minimum P,,, or fastest possible equilibrium rotation rate occurs when M is
at Eddington-rates. Any other mass transfer rates M will instill the system onto a

larger P,.
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e The magnetic field strength By
We see, again from (4.23), that rg ~ o™, and that therefore ro will decrease if the
magnetic field of the pulsar (over a very long timescale) dissipates. This causes w; to
decrease as well, and therefore facilitates spin up of the star. The effect is balanced
by the fact that a spin-up, as mentioned above, also decreases the corotation radius
7. and thereby brakes further spin-up. We are for this reason lead to believe that
accreting highly magnetized neutron stars (P 2 10'? G) with fast rotation (P <1
s) always are either propellers (spin-down profile) or close to the propeller regime
(ws 2 1). At the other end of the scale we find the slowly rotating and weekly

magnetized neutron stars (very low wy) that show a clear spin-up profile.

The relations between these parameters and the spin evolution of the star will be given a

more quantitative treatment later on.

Of course, since such systems tend to exhibit a variation of complex and differing be-
havior (many of which are far from being well understood), a complete description will
also include many other parameters as well. But many essential characteristics can be

explained from the three outlined above.

4.4.2 The Dimensionless Fastness Function

We now define the dimensionless function

N; N; M(GMr)?

What is special about this function n is that generally it depends only on ws, so that it
is possible to write [53]

N =~ n{ws)Nin (4.38)

In practical terms however, in order to calculate n(w,) we need to estimate ro, and there-
after calculate the By-field. There are many approaches to this, and they usually give
differing expressions or results for n(w;), and therefore also different values for w, given by
the condition n(ws) = 0 [62]. An expression for n(w,) that to some degree fits numerical

results over a wide range of w, < 1 [55] is

n(w,) ~ 1.4 (:ﬁ/i)

— (4.39)

We see that as wy, — w. we get n(ws) — 0 as we should. When wy; — 0 we have

n(ws) — 1.4N;, and therefore Ny = 0.4Ny,. So this means that the maximum torque
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i8 Npaz = 1.4N;,, and is associated with very slow rotators. If w, < wy; < 1 we get a

negative torque, also as expected. We see these relations as a plot in Fig. 4.3, for three
different values of w,.
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Fig. 4.3 An expression for the dimensionless function n{ws) plotted for
three values of the critical fastness parameter w, = 0.7,0.8 and 0.9.

4.4.3 Comparison with Pulsar Data

The model we have described so far can be used to give a simple relation between the
spin-up rate P and the quantity PL37, provided the inertial moment of the neutron star
is constant. We recollect that from (4.38) we have N = n(w,)N;,, and if we look at the

equation for change in the stellar angular velocity 2, produced by the torque N we can
put

. o . ' 1/2
Q. — -—E—W—P~— N n(ws) M(GMro)

T I (4.40)

where Q, = 27/P and Ny, = M(GMr)"/?. This gives

P? M (GMry)*?

—P= T . n{ws) (4.41)

If we use the expression for ry = 0.574 in the form
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ro = 9.45 - 10° 27 pugo®Tm M7 (4.42)

we get
P =510 fy (o) Fa(m) [ PLYT| () (4.43)

in units of seconds per year. Equation (2.9) has been used for the luminosity, and Lz

1

is the luminosity in units of 10%°Js™!. The two functions f,, and f,,, are functions of

respectively pusg and the mass m (or M) only, and

S (H30) = 111302/7 (4.44)

and

Fmy(m) = m ™37 Isg = 0.8m*/7 (4.45)

where we have put R = 10 km, and I35 is the moment of inertia in units of 103 kgm?. If
we assume that the moment of inertia is roughly that given by a sphere I = 2M R?/5, we
get Isg = 0.8m, and thereby (4.45) follows. From (4.35) we get

o = 135 falpso) fralm) [PLT] (1.46)

where we have
Frua(p130) = piso”” Fraa(m) = m ™27 (4.47)

Since w, is a function of the variable PLg{)? then

n(ws) = 1.4 (lluﬁ/i]f) =n [ws (PLg{f)} (4.48)

1—w,

is also a variable of PLg{f (for a given w,), and this means that the value of —P for
a pulsar of given mass and magnetic moment is a function only of PL§é7. Therefore,
measurements of P, P and L for pulsars that have different spin periods and /or different
luminosities but are otherwise identical, or measurements of P, P and L of a given pulsar
made at different times (assuming that its spin and luminosity has changed during the

time interval), will fall on a single curve in a plot of (—P) vs. PL3/7.

The character of the relation between —P and PL%7 is shown in Fig. 4.4, where a plot
have been done for three values of the magnetic moment psy for w, = 0.8 and m = 1.4.

The variation in mass between different pulsars is much smaller than the variation in
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magnetic field strength, and therefore the most interesting is a plot where y is allowed to
vary. Also the magnetic field of many pulsars are known, while their mass is much harder

to determine.

For large values of PL%7 the pulsar is a slow rotator (ws < 1). w; is therefore approxi-
mately constant (see Fig.4.3), and —P scales as (PLg(/)?)z. Thus we see from (4.43) that
the curve should describe a straight line of slope 2 in a Log (—P) vs. Log PL%7 plot, for
the region of slow rotation. As PL%7 decreases, the fastness parameter w, becomes larger
(n decreases) and Log (—P) falls below the extrapolation of this line. Finally at the value
of PL%7 for which w; = w,, P vanishes and Log (—P) diverges. We can also observe that
along any vertical line, all pulsars will have the same fastness since wy ~ PLB—O?’/ 7, and
that therefore fast and slow rotators are separated in a systematic way, with fast rotators

to the left and slow rotators to the right.
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Fig. 4.4 The theoretical relation between —F and PL%7 superimposed on data for
10 X-ray binary pulsars (Table #.2). The three curves correspond to three different values of psg.
This plot is for m = 1.4 and w. = 0.8. HMXB are crosses, while LMXB are bozes.

If we consider a collection of accreting X-ray pulsars, they would all lie on the same
curve —P = f (PL%7) if they had the same magnetic moment. Although all these pulsars
are not expected to have identical magnetic moments, there should still be a correlation

between —P and PL%7 if the spread in masses is not too large. Note that the curves
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for different values of psq cross one another. This crossing of the curves occurs because
the higher moment gives the larger torque and hence the larger spin-up rate in the slow
rotator region (large values of PL%7), so that the spin-up rate in the fast rotator region

falls more rapidly for the higher moment than for the lower ones.

For the pulsars lying in the upper right part of the plot (along the line with slope +2),
it is difficult to establish the magnetic field strength, since the curves are very close. We
see however that the Vela-pulsar seems to trace the curve for which uso = 100, and this

would indicate a magnetic field in the magnetar range ~ 104 — 10'° G.

4.5 Calculation of the Stellar Torques

There are many uncertainties in the estimation of the total torque on an accreting X-ray
pulsar. Within the model however, the major uncertainty lies in the nature and value of

the toroidal magnetic field By.

4.5.1 Screening Factor

To calculate the effective torque N one must estimate the toroidal magnetic field By. It is
shown in (4.15) that the B, component of the field is unchanged to good approximation if
the thin disk assumption is made. So we may freely use the dipole magnetic field for B, in
the disk plane. We will introduce a screening factor S to make up for the screening effect
of the induced magnetic field, since the disk will lie in the region outside the boundary
layer where this screening currents flow, the magnetic field will be weakened by a factor s.
In a self-consistent treatment, the radial dependence of S must be found from a detailed
analysis of the magnetospheric current system in the corona. A conclusive analysis has
not yet been made, so we rather assume that the vertical component of the magnetic field
threading the disk can be represented by

H
Bz o~ —Seff —TE (4.49)

where Sery is an effective screening coeflicient taken to be a constant over a wide range
of relevant radii. As to the value of S.sy, differing values exist in literature, but we will

adopt the value Scs; = 0.2 [70], which seems to be widely recognized.

4.5.2 The Toroidal Field

This can be done in a number of ways, but we will use the induction equation (C.6) in

the Gaussian system, for a plasma having an effective conductivity o.zs
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2
—8—12=V>< vxXB-— ¢
ot Amoess

V x B} (4.50)

Near the disk plane, where as we have seen that B, and v, are small, the dominant

contribution to the ¢-component of this equation is

dB o 0 2 0
——ENB—E-——(UZBQJ))'FE%(

| 0B,
a " o _) (4:51)

Oeff 0z

This equation then describes the balance between the diffusion of the toroidal magnetic
field By and its creation due to the vertical shearing of the poloidal field B,. The three
terms on the right hand side represent, respectively, the winding of the poloidal field by the

differential rotation, the convection of the wound flux by the plasma, and its dissipation.

The highly conducting magnetosphere will be essentially corotating with the neutron
star, and therefore the angular velocity of the disk material will change its value near the
surfaces z = £ H(r). Consequently, there is a large vertical shear in the disk. A linear
estimate for the vertical shear velocity gradient through the disk would be

1o

% ., _
2 = (2~ ) (4.52)

where «y gives the rate of change, and is assumed to be of order unity. This will give a
rather gradual change in the velocity profile, in such a way that the change of v, continues
into the magnetosphere. The assumption dv,/0z ~ £(Q, — Qg )r/H would produce a

much steeper profile, where the whole change took place for z < |H]|.

From (4.51) we then get the toroidal flux generation rate

(9"?’&) ~ +y(Q — Q) B, (4.53)
a ),

Since v, =~ 0 within the disk (where v would refer to the mean flow) this growth must be
balanced by diffusive losses, represented by the last term of (4.51). We here follow [53]
and assume that this, with 74 being the diffusion time scale, can be expressed in the form
(8_%) ~ _Bs _ _&vaglBy

o T (4.54)

where § is a factor that inhibits the diffusion of the By field for large 2z, and the speed
vag = Bg//Anp is the Alfvén speed connected to the field By. The Alfvén speed is the
maximum rate at which changes in the field can propagate through the plasma. Likewise
we define the Alfvén speed for B, as va, = B,/v/4mp. Because the annihilation of the By

field is assumed to take place for all z, the order of £ is assumed to be close to unity. This
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is assured by the magnetic buoyancy mechanism mentioned earlier, in which magnetic

tubes will rise in the disk.

Putting (4.53) equal to (4.54), and changing from v44 to v4, we get

B, 1/2

By _ (@ —0gH
B,

o (4.55)

for the azimuthal pitch of the magnetic field lines threading the disk.

4.5.3 Magnetic Torques N3 and Ny

As we have seen, the torque N,,; = N3+ Ny is called the magnetic torque on the star. In

addition we have of course, the term Nj,.

The Spin Down Torque N4

The term Ny < 0 is a spin-down torque, because the lines of force that intersect the disk
in the domain where Q, > Qg are swept backwards, and exert a corresponding drag on
the star. This negative contribution Ny to the net torque is determined by integrating

the magnetic stresses from the corotation radius r,, outward to infinity. We put

- f Oo dr v [By(r) B.(r)] ., (4.56)

Using (4.55) for the magnetic fields we get

I, 3/2
L) ey
Teco 5 Tco VAz

We now assume that B, has the dipolar form (4.49), and we collect expressions for H, p

1/2
dr (4.57)

and ¢; from Chapter 3. I have mentioned earlier that the relevant radii here are assumed
to lie in the middle region of the unperturbed a-disk, so we use (3.72) for the gas pressure

and electron scattering dominated region. We can rewrite these as

cs ~ 106.35 MY/5 Q310 o~1/10 (4.58)

p=8-102MQ%atc? (4.59)

and where H = ¢, /Qx will be useful as well. If we use the variable y = (r/7¢,)** we can

write this integral as

_——N / 1)!/2y-200/120 gy (4.60)
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where we have put

Ny = (%)m {i%‘%} l/ng(rw) r3 (4.61)

and since the minus sign disappears altogether inside the integral we put the dipole

magnetic field at the corotation radius as

1
Bz(rco) = Seff;g‘ (462)
co
and also
Cs(reo) = 106.35 M/° Q3/10 o ~1/10 (4.63)
preo) =8-107° M Q2o ¢;%(reo) (4.64)
and for the Alfvén speed we have
BZ co
’UAz(Tco) = (T ) (465)

[47p(reo)] 2

We can approximate 291/120 = 2.425 with 5/2 = 2.5 in the integrand, so that

2 1\*?
/(y — 1)y dy = 3 <1 - 5) (4.66)

and this gives

Ny~ —— N, (4.67)

The Spin Up Torque N3

The angular momentum that the rotating magnetosphere imparts to the disk in the region
T > 1 18 transferred outward by viscous shear stresses within the disk. There may be
other forms of angular momentum loss from the disk in this area [71], but the viscosity
mechanism is assumed to be dominant. Because the strength of the magnetic field rises
steeply toward the pulsar however, there will be some radius ro inside which the magnetic
stresses rapidly become dominant, and the viscous transport may be neglected. As we
have seen, when 1y < 1, the orbital angular momentum convected across this point by

the bulk flow is eventually transferred to the pulsar, contributing the amount

Nip =2 M (GMrg)'/? (4.68)

to the net torque.
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We have seen that rg does not necessarily represent the true inner edge of the disk. A
more sophisticated estimate for rg than ro ~ 0.5r 4 is found by setting the magnetic stress
equal to the rate at which the angular momentum is removed (by internal viscous forces)
in a steady-state Keplerian disk. Using (3.7) we can put

P [By()Bulr)] g = Moy [0 (4.69)

Again, with B, given by (4.49), using (4.55) for B, and with use of the same expressions
(4.61) through (4.65) we get

1 /2 80/ 211
To ZNCO To 3/2
— 1-|— (4.70)
Teo M (GM 7”00) Tco
which do not give ry explicitly, but as the ratio ro/r.. A puzzling thing about this
expression is that it indicates that the value of ry could depend on r. (and therefore on
(), while it is expected that it should depend on M and p only. Clearly, there are no
solutions for ro/r., > 1, since the pulsar then would have entered the propeller regime.
The contribution to the magnetic stresses from the domain r¢ < r < 7, may however

3/2

be calculated since we may put y = (r/r,)”" as above, and then the value of rq only

enters through the ratio rq/r.. This is as it should be, since the total torque on the star,

according to earlier results, should depend only on the fastness parameter w, = (ro/ rCO)S/ 2,

Now, following the notation and approximations from the case for Ny (the integrals are

basically almost the same) we may put.

/ drr? [By(r) B.(r)] Nco / y)' /2y 220 gy (4.71)

where the lower integral limit is in fact yo = wy. So we get
3/2
4 Teo 32 -’
Na~ - N [ (=2} —1 7
375 l:( v > J (4.72)

for the spin-down torque on the pulsar.

The Total Torque N = N, + N3 + Ny
Summing up the torques we get for the total torque acting on the star N = Ny, + N3+ N,

32 13/
4 Teo
N =~ (GMr,)"* + 5 N, {<~—) - 1} - 4 (4.73)

70 }

as
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If use is made of (4.70) to eliminate N, this result may be rewritten as

9 Z‘9/4
N ~ Nm {1 + §.’L'O 9/80 [1 - 373/2 - (T_QW} } = Nm n(ws) (474>

where Ny, = M(GMry,) " 2:33/ 2 and 79 = T0/Teo < 1. Solving Nj, = 0 numerically gives a

value zg ~ 0.971. So that at this equilibrium point

Teg = 2~ 0.971 — w, = 2% ~ 0.957 (4.75)
a rather high value for the critical fastness parameter. If zo < 2., then N > 0 and the

neutron star spins up, and conversely it spins down if zy > 2.

We define the function

12 . 2 31/80 3/2 z)*
f(@o) =2y "+ -z 1—x0/ - 0

5% (4.76)

-a"
which, then means that N = M(GMr.)'/? f(xo). In Fig.4.5d we see a plot of f(zg) =
N/ M (GMr,) % as a function of zo = ro/r.. With the use of the expressions (4.63) and
(4.64), the factor 2N,,/ M (GMr,,)"/? may be written as a function g(M, P, ;). By noting

that (4.70) then becomes
) 211780
g(M, P p) = ———r (4.77)

3o\ 172
(1-2")

(4.70) may be solved numerically. By keeping two of the variables constant, we are then
able to plot the dependence of o on the third. We take the constants -y, ¢ and o« to be of
order unity and these are therefore put equal to one. The neutron star mass M = 1.4 M,
and we use the screened magnetic field x50 = Seppps0 > 0.2 3. In Fig.4.5a we see
the dependence of xyp = ro/re, upon variation in the pulsar spin P, here we have put
M = Myy — m = 1 and y30 = 1. Likewise in Fig. 4.5b for variation of the screened
magnetic field x, we put 7 =1 and P = 1 s. We can see that these two have an opposite
and quite equal effect of x. In Fig.4.5¢ we see the same plot, but this time for the mass
accretion rate M, and with the above values for P and Xxs30 taken. It appears clear that

2o is rather less sensitive to variations in M than to changes in the other two parameters.

Again, from (4.70) we can find (with v =~ ¢ ~ a =~ 1) that

soj21t soyats (1— $3/2)1/3
P =1243x30""" Ly ’“;ﬁ%ﬁﬁ—
0

(4.78)
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measured in seconds, and where we again have put M = 1,4 M, and R = 10 km. Also,
M has been replaced with the equivivalent L. We know that the equilibrium period P,

is determined by the condition xg = x., = 0.971. From that we get

_ _ 180/211 5 —96/211
qu = P(xo - il?eq) - 4-60 X30 L30 (4.79)
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Fig. 4.5abed We see the dependence of the fastness related parameter
zo = 719/Teo 0N the important system parameters M,P and p (or x ). In the last Fig. 4.5d,
we see the torque function f(zg) plotted as a function of xg

4.5.4 The Spin-Up Line

The important thing for the spin evolution (the value of wy) of the pulsar in the long

term (2 10° yr), is the balance between the assumed weakening of the magnetic field
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(which will decrease ¢ and support spin-up) and the shortening of the period P (which
will decrease r., and halt the spin-up). Since there is as yet no convincing models for the
mechanism by which the magnetic field of an accreting pulsar dissipates, the dissipation is
only an empirical fact. In this (and many other) models for the spin evolution of pulsars,
the decrease of the magnetic field strength is paramount since a strong magnetic field
effectively stops spin-up and could also stop accretion altogether. This accretion induced
field decay scheme is supported by the fact that no pulsars known today with fast spin
(P £0.1s), has a strong magnetic field.

If we use (4.35) for the fastness parameter, and put m = 1.4, /i = 1 and replace uszy with

the enhanced field &~ 5 - ugp we get

0.68

5 " = w, (4.80)
If we demand w, < w,, which is the spin-up condition, then

0.68

5 ,u%7 < We (4.81)

defines the two regions in the BP-plane where spin-up and spin-down would occur. If
these regions are depicted in a Log B vs. Log P-plot, their boundary would be a straight
line, called the spin-up line

7

7
Log o = 8 (0.17 + Log w,) + 8 Log P (4.82)

Pulsars that lie above this line will be spin-down cases, while those below it should be

spin-up. In Fig.5.1 of Chapter 5, this spin-up line is plotted along with the pulsar data.

All this is of course based on the naive expression for 74, derived for the case of spherical
accretion, but the estimate rg = a - 74 (where a is of the order unity) has proved to be
astonishingly accurate by most standards, and is close to the result returned from many

other calculations of rg.

4.5.5 Dramatic Torque Reversals

Observations made by the Caltech BATSE group, using the Compton Gamma Ray Ob-
servatory over the last years, have revealed certain dramatic and unexpected behaviour
in some of the X-ray binary pulsar systems. The most dramatic of these observations is
the torque reversal of the pulsar GX 1+4, but similiar measurements have been made on

other pulsars as well. The characteristics of the torque reversals are
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e The observed torque appears to switch rapidly between two states of opposite sign.
That is, the spin-up rate changes very fast to a spin-down rate of ezactly the same
magnitude. In the standard models this requires very dramatic step-function like

changes in the accretion rate M.

e For GX 144, which is a slow rotator with (P ~ 120 s), the assumption that this
change was due to some very fast change in the mass accretion rate, means that the
torque reversal should be accompanied with a decrease in the luminosity. However,
the luminosity is observed to be persistent in the GX 1+4 system, even through the

torque reversals.

¢ Since GX 144 is a very slow rotator, it would need a large magnetic field > 104 G
in order to be an equilibrium period pulsar. Such a field does not seem plausible for

the GX 1+4 system, and it still could not explain all features of the torque reversals.

The fact that the spin-down rate following these torque reversals is symmetric to the
spin-up rate before the reversal, has lead to speculations of a disk flip. The disk flip
would involve the change from a disk rotating in the same direction as the neutron star,
to a disk with retrograde movement. If the conditions for the disk and flow are the same,
then the retrograde disk would cause a spin-down with the exact same magnitude as the
spin-up caused by the old disk. There are however, no known mechanisms or processes

in these systems that can be invoked to explain such a disk flip.

Another possible explanation is that the observed torque alternation is the result of a
magnetic reconfiguration, and that this can be triggered by mechanisms other than the
accretion rate M. In this picture, the observations may be interpreted by having two states
of the magnetosphere, resulting in two different torque states. Such alterations in the
magnetospheric structure can occur on a much faster timescale than any accretion mass
flow. Whether the magnetospheric change is a disk induced magnetospheric instability,
or not triggered by the disk at all, is unclear.

The validness of many of the features of the theory for accreting binary X-ray pulsars are
clearly open to discussion. However, the main characteristics of these systems fits well
into the assumptions of the standardized views. These new observations may demand ex-
planations that probably will operate alongside the standard views, and not a completely

new theory.
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Chapter 5

Millisecond Pulsars

It is assumed that the origin of the observed population of millisecond pulsars somehow
is related to accretion processes in X-ray binary pulsars. We now look at the validity of
this idea.

5.1 Spin-Up Phase

Apart from their short spin periods, the other distinguishing character of the millisecond
pulsars is their weak magnetic fields. One may use the dipole model for pulsars to derive
an expression for the dipole field strength of the pulsar as

1/2
)

B~ (PP (5.1)

This is not valid for accreting X-ray pulsars, where P is substantially different from that
of radio pulsars. The inferred magnetic field strengths is of the order ~ 10% — 10° G.

In addition to this, an overwhelmingly large fraction of the millisecond pulsars are mem-
bers of binary systems. Among millisecond pulsars the fraction that are established as
components in a binary system is as high as 2 50%, while for regular radio pulsars the
fraction is ~ 5%. In the galactic disk this fraction tends to be higher than in the globular
clusters. This clearly suggests an intimate link between the evolution of binary systems
and the origin of millisecond pulsars. Another important characteristic is that the com-
pantion stars of millisecond pulsars are almost consistently of low mass, with the most

probable mass being < 0.3Mg.

Pulsar ages are usually estimated by using P. A simple spin down relation is assumed:
v = Kv™, where v is the rotation frequency and n is the braking index. If the energy loss
is due to radiation from a dipolar magnetic field, we can put n = 3, and we get for the

so-called spin down age of the pulsar [9]
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T = -—Ii— (5.2)

2P
The typical values of the spin-down age for a radio pulsar is ~ 107 yr, while the corre-
sponding value for millisecond pulsars exceeds 10° yr. This gives an indication that the
millisecond pulsars are indeed very old objects. The abundant occurrence of millisecond
pulsars in globular clusters is in itself one such indication, since the massive stars capable
of producing neutron star remnants existed only in the early phase of evolution of globular

clusters.

We have seen that given enough time, the pulsar spin rate in an accretion X-ray pulsar
will achieve an equilibrium period given by (4.79) along the spin-up line. We can rewrite
this, approximating 96/211 ~ 3/7 and 180/211 ~ 5/7 we get

Poy =1.9BY i3 ms (5.3)

where By is the surface dipole field in units of 10° G. If ri generally stays near unity
(Eddington accretion rate), then for a neutron star to be spun-up to periods as short as
milliseconds, its surface magnetic field must necessarily be low < 10° G. In all observed

millisecond pulsars this is the case.

If we look at the definition of the corotarion radius 7., we can put (with M = 1.4M;)
Teo 2 1.66 - 10° P2/3m (5.4)

This gives 7o, (P = 107®s) ~ 10* m, which is very close to the neutron star radius R.
The corotation radius r., will therefore be very close to the neutron star surface for such
high spin frequencies. Thus the validity of (5.3) becomes highly questionable, since we
have assumed that effects related to the surface of the neutron star can be neglected in
the description of the disk/magnetosphere interaction.

5.1.1 Log B vs. Log P-plot

In Fig.5.1 we can see data for a number of radio pulsars in a Log B vs. Log P plot.
The magnetic fields are all estimated according to (5.1). The spin-up line (4.82) is the
upper line in the figure. As we have seen, it represents the minimum period to which a
neutron star can be spun up in an Eddington-limited accretion. The lower line show the
so-called death line for pulsars. It corresponds to a polar cap voltage below which the

pulsar activity is likely to switch off, and the neutron star will not be readily observable.
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The essence here is how the pulsars are aligned along (but below) the spin-up line, stretch-
ing from the large volume of regular pulsars (called the pulsar island) towards the mil-
lisecond region in the bottom left corner. We see two somewhat anomalous pulsars in
the chart, the one plotted as a square is actually the Crab pulsar. It represents the small
body of very young pulsars (7 < 10 yr), that have both a high spin and a significant
magnetic field. Another anomaly (seen as a circle to the top right), is the magnetar SGR
1900+ 14 with a very high magnetic field but with a relatively slow spin. The graveyard
below the deathline should also be filled with pulsars, but they are not observable to us,
and therefore do not appear in the chart.

—_ -
N w

—
—

Log B [G]
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Fig. 5.1 We see a number of radio pulsar data, collected from the ATNF pulsar catalogue.
The upper line is the spin-up line, while the lower line indicates the region where
radio pulses are assumed to disappear.

Millisecond pulsars that have very low magnetic fields (and therefore are assumed to be
old) are sometimes referred to as recycled pulsars. This is to distinguish them from very
young pulsars that also might exhibit pulses in the millisecond region. Some old pulsars
that belongs to the pulsar graveyard (below the death line) have magnetic fields that are
quite low, and very slow rotation. If these objects for some reason enter an accretion
phase, they could be spun up to millisecond spin periods (thus becoming observable in
the radio spectrum again) and are therefore in a sense revitalized (or recycled). In this

case the magnetic field of the old neutron star is already quite low when accretion starts.
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5.1.2 Connection to LMXB

Even if the condition of low magnetic field and a near-Eddington accretion rate is fulfilled,
the neutron star may still not achieve millisecond status unless the accretion phase lasts
long enough. We can put the maximum rate of angular momentum accretion equal to
the product of the accretion rate, and the specific Keplerian angular momentum at the
magnetospheric boundary. At this rate of angular momentum enhancement, the neutron

star could reach the equilibrium point P, after a total mass of

P —4/3
AM ~ O.lM@( & ) (5.5)

1.5ms

has been accreted [8]. At the Eddington rate we can put M ~ 1078Mgyr™!, and with

P., = 1.5 ms we have an estimated millisecond spin-up time at 2 107 yr.

If the donor star has a mass well above the mass of the neutron star (HMXB), such a
long (2 107 yr) duration of heavy mass transfer is very unlikely to occur. Soon after the
beginning of the Roche lobe overflow, mass transfer would become unstable, and a steady
flow of matter at Eddington-level would not be possible. In LMXB, as mass transfer
proceeds, the orbit tends to expand, keeping the mass transfer stable. Also, the time
that heavy O and B-stars spend as stable stars are too short for these systems to act as
progenitors to millisecond pulsars. The very slow evolution of the donor star in LMXB
insures that ample time (~ 10° yr) is available for the pulsar to reach the millisecond
regime. It is established that the magnetic field of pulsars in LMXB are lower (by a
factor of ~ 100) than in HMXB, so that clear pulses are seen more often in HMXB than
in LMXB. This can be explained by the fact that LMXB have much longer accretion time

scales, and therefore that the accretion induced field decay has longer time to operate.

The evolution of these LMXB systems can take on basically three different directions after

the accretion has stopped:

e It may leave a relatively wide binary with a circular orbit, consisting of a low mass
white dwarf (0.2 — 0,4 M) and a millisecond pulsar. In this cass the mass of the
donor star is not high enough (M < 1.5 M,) to produce a supernova, and thereby
another neutron star. The value My < 1.5 Mg, is used instead of the Chandrasekhar
limit, because the accretion phase would typically steal about 0.1 M from the

donor.

e There is also the possibility that the pulsar (now turned millisecond pulsar) has
evaporated the donor star, or possibly has merged with it, This would leave a non-
binary millisecond pulsar left, most likely with no trace of the binary nature of the

original system left.
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o If My > 1.5 Mg, then the donor star could evolve into a supernova. This would
either disrupt the system, leaving two runaway pulsars with large velocities, or it
could result in a double pulsar system like the Hulse-Taylor pulsar PSR B1913+16.
These last possibilities also exists for HMXB systems, where My 2 10 M.

The first binary millisecond pulsar discovered, namely PSR 1953429 fits this description
perfectly. Its 117 day orbital period, near perfect circular orbit (e ~ 3-107*) and low mass
companion ~ 0.3 M., are all as expected for a LMXB spin-up endproduct. The initial
period of the system would have been ~ 12 days, and with the average mass transfer
rate estimated to a little below Eddington-rate, the spin period is P = 6.3 ms. Several
other of the charted binary millisecond pulsars show the same consistency with the above

mentioned scenarios.

Several systems containing a millisecond pulsar and a white dwarf also exists. Quite
recently, in the binary system PSR J1909-3744, the first measurements of the mass of a
millisecond pulsar have been conducted, giving a mass very close to the Chandrasekhar
limit [73].

5.2 Accreting X-ray Millisecond Pulsars

The discovery of the accreting X-ray millisecond pulsar SAX J1808.4-3658 in 1998, is by
many considered as a clinching argument that pulsar LMXB systems are the precursors of
millisecond pulsars. Direct proof in the sense of direct observation and measurements on
such a system (caught in the act, one might say) where missing until the 1998 discovery.
The SAX J1808.4-3658 pulsar is spinning with a period of only P = 2.494 ms, and
with an orbital period of only P, = 2.01 h. In the following years several other similiar
millisecond pulsars where discovered. A table of data is given for these objects in Appendix
D. We see that the XTE J1807-294 pulsar has the shortest orbital period of these objects,
with a period of only ~ 40 min. This gives an orbiting radius of only ~ 10° km, and an

orbiting velocity of 2 ¢/1000. The binary would fit well inside the Earth-Moon system.

In addition to their ultra short spin period, they all have the following similiar character-

istics

e All are transient sources, that undergo outbursts of X-ray activity lasting days or
weeks, and then return to an inactive (quiescent) state that may last in the order

of months or even years.

e They all have low magnetic fields of the order 10® — 10° G. Thus, like for most
LMXB sources, the emitted X-ray pulses are faint and very hard to detect, even

when the sources are in an active period.
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e During outburst all of the sources are low luminosity sources, indicating mass trans-

fer rates that are significantly below Eddington rates.

e All are X-ray burst sources (see Chapter 3.5.4 for a discussion). This is consistent
with their low magnetic field strenghts, since X-ray burst models rely on low pulsar

magnetic fields to operate.

e Their companions are all faint low mass stars. This underlines the link between
such systems and LMXB.

In the case of the source XTE J1751-305, a brown dwarf star has been identified as a
possible donor star. Brown dwarf stars are faint versions of red dwarf stars, and this
particular star has a mass that is only about 15 Jupiter masses, or only ~ 0.015 M. Its
original mass must however have been much higher, so the pulsar has more or less slowly
devoured its donor star during an accretion phase that probably has lasted for ~ 10° yr
(if we assume a persistent low accretion rate), and is still going on today. It is thus likely
that many of these sources will be observable as isolated millisecond pulsars in the far
future.

The transient nature of these objects may be connected to the fact that the corotation
radius 7., and also the disruption radius rg lie very close to the neutron star surface. If the
accretion disk persists down to the surface of the star, detectable pulses might not arise,
since no field channeling takes place. Thus for typical system parameters associated with
the millisecond X-ray pulsars, ro might have to lie within a rather restricted range for
pulses to be detected. A range of 3-4 in ro corresponds to a range in M of about a factor
of 100 (see (4.42)). However, the observed range in X-ray luminosity, and presumeably
also in M, is of order a factor 2 50 for at least three of the millisecond pulsars. Thus,
in the standard accretion paradigm, the magnetic field and the values of M would have
to be in just the correct range to allow accretion to continue throughout the outburst. If

the M value changes to a value outside of this range, the source will turn off.
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Appendix A

Radiative Transport

In this appendix I have assembled some of the basic procedures regarding the transport
of radiation in a gaseous medium, with an emphasis on the equations we need in standard
accretion disks. There are many thorough treatments on the subject, among the best is
possibly the one by Chandrasekhar [31].

A.1 The Radiative Transfer Equation

One often starts with constructing the quantity I,, called the specific intensity, so that
I, (r,n,t) dv dQ) represents the photon energy in the interval v to v + dv passing per unit
time through a unit area with normal n into the solid angle d{2 about n. The radiation

field is thus fully specified by 7,. Associated with I, are the specific energy density at

1
)= / 1, d0 (A1)
and the vector function
F,(rt)= /I,, -n d) (A.2)

measures the specific flux along the direction n. The total intensity, energy density and
flux are obtained by integrating their monochromatic counterparts over frequency. For
the special case of local thermodynamic equilibrium at temperature T', I, is given by the
well known Planck function (or distribution)

2 /KT _ | (A.3)

We also have ¢!, = ¢’ = 47B, /¢, and €, = ep = aT™, where a is the usual radiation density
constant and P denotes Planck. Consider now the emission and absorption of photons in a

gaseous medium. Define the emission coefficient, or emissivity j,(r,n,t) so that j, dv df)
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is the spontaneous energy emission rate per unit volume in the interval v to v + dv and
in the solid angle dQ2 about m at time ¢. Likewise define the absorption coeffisient, or
opacity, k,(r,n,t) so that k,pl, dv dQ gives the corresponding energy absorbed per unit
volume per unit time from a beam of given intensity 7, (thus , is measured in m?kg™).
Assuming that photons travel in straight lines in the medium, the total change in I, in a
distance ds, measured along a light ray in the direction n equals

101,
c Ot

+n-VI,=j,—k,pl, (A.4)

where local changes in both distance and time are included. This is known as the equa-
tion of radiative transfer. For many circumstances, including local thermodynamical
equilibrium, j, and x, assume the same relative values that they would have in strict
thermodynamic equilibrium, when I, = B, = constant. In this situation, the left-hand

side of the equation of radiative transfer must vanish, giving
v pm) (A5)
Ky p

where T is the local matter temperature. This equation is known as Kirchoff’s law
and expresses the detailed balance that must prevail between absorption and emission in

thermodynamic equilibrium.

If we insert Kirchoff’s law into the (A.4) we get

101,
- - : ]V: v v — 4y .
T v kv p (B, — 1) (A.6)

If we integrate this over df2, and employ (A.1) and (A.2) and €], = 47 B, /¢ we get

a 7
;; +VF, = chp(ef — €) (AT)

Here we have assumed that k, is isotropic. Equation (A.7) is essentially an equation of
continuity for radiation of a given frequency, including sources and sinks of radiation.
A formal solution to the equation of radiative transfer can be obtained by assuming
that those functions depending upon the local thermodynamic state of the gas (such as
for example B, and &, are known functions of space and time. If we assume steady-
state (ignoring time derivatives), then (A.6) may be regarded as an ordinary differential

equation for I, along the direction of propagation

dl,
A kwp (B, — 1) (A.8)
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where it is natural to define the optical depth 7, along the propagation direction as dr, =

Kyp ds.

The equation of radiative transport simplifies considerably when the radiation field is only
weakly anisotropic. If we multiply (A.6) with n and then integrate over all angles (noting
that ,pB, is independent of direction, and so does not contribute to the integral), while

using the definition (A.2) for F', we get

1817',,
c Ot

+ | n(n-VI5)dQ = —k,pF, (A9)

We can next assume that the radiation may be treated as quasisteady at each instant of

time, in which case (A.9) reduces to

/ n(n- V1) = —k,pF, (A.10)

(A.10) remains valid even if the radiation field changes with time, provided the changes

are sufficiently slow that they may be described completely through the time variation of

the gas temperature and density. It is possible to evaluate the left-hand side of (A.10) by

keeping leading-order parts of the expression. If this is done (see for instance [10]) we get
c

F,=— 4 .
SHUpve" (A.11)

Taken together with (A.7) in the quasisteady limit

1%

VF, = ckyp(ef —¢7) (A.12)

(A.11) and (A.12) constitute the diffusion approzimation to the radiative transport equa-
tions. This approximation is valid whenever the radiation field is isotropic over distances

comparable to, or less than a radiation mean free path A, = 1/k,p.

A.1.1 Frequency Integrated Radiation Flux

Let us now assume that local thermodynamic equilibrium holds and consider the frequency-

integrated version of (A.11). Given local thermodynamic equilibrium we can set €/ = €,

so that on integrating over v we obtain the integrated radiative flux

c [ 1
F=-— —veld .
) Ve, dv (A.13)

In light of this we define an average opacity, the Rosseland mean opacity K, by
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1_Jo war® (A.14)
K

Then we can rewrite (A.13) to become

c c 4 4acT?
F=—— — = Y(aT%) = —
3kp Ver =313 (aT") 3kp

VT (A.15)

which is the frequency integrated radiation flux we wanted.

A.1.2 Optical Depth

Optical depth is a measure of transparency, and is defined as the fraction of radiation (or
light) that is scattered or absorbed on a path. One way of visualizing optical depth is to
think of a fog. The fog between you and an object that is immediately in front of you
has an optical depth of zero. As the object moves away, the optical depth increases until
it reaches a large value and the object is no longer visible.

For accretion disk purposes we can express the the optical depth 7 as

H kY
= / Rpde = (A.16)
Jo 2

which we will use in the disk models. In light of the above it is clear that we can define a
gas to be optically thick if 7 > 1. In this case practically all radiation will be absorbed or
scattered on it’s way through the medium. If this is the case, and absorption dominates
scattering, the gas will have a blackbody spectrum emission at all local points. Likewise
we can define the gas to be optically thin to outgoing photons if 7 < 1. In this case
photons can escape freely from their point of emission without ever undergoing absorption

or scattering.

Sometimes the effective optical depth for absorption 7* is used. The same definitions for
optical thick (7% > 1) or optical thin (r* < 1) applies. We define [9)

- (v/FffRes) pH Kif < Kes
(ﬁff) pH Kff > Kes

A.2 Opacity Sources

Radiative transport in plasmas is governed by several different opacity sources. Which,
and if, one source dominates depends on the thermodynamic state of the gas, that is on

pand T'. For the thermodynamic parameters that govern the Shakura-Sunyaev model we
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assume that two different types of opacity will contribute, and which will be dominant in
different regions of the disk.

A.2.1 Inverse Bremsstrahlung

This is the absorption of photons by free electrons in the presence of positive ions (in this
case protons). The mean Rosseland opacity Kys of free-free absorption in this plasma is
(38]

Fpp=ropT 2 (A.17)

where ko = 7.5- 102 m® kg 2 K”/2. Any opacity that varies in this way is called a Kramers
opacity. If the gas is not completely ionized, there may be other comparable (but smaller)
contributions to absorption from "bound-bound” line transitions and ”bound-free” ion-
ization transitions, but these will contribute (if at all) only in the very outer regions of
the disk.

A.2.2 Scattering from Free Electrons

The major source to photon scattering is Thompson scattering. The scattering cross-
section for protons is a factor (me/m,)? ~ 2.5 - 1077 smaller, so we will not include
this. The cross section o7 is given by the Thompson formula o7 = (87/3)(e?/mec?)’.
The scattering is elastic, and since it is also frequency independent, the Rosseland mean

opacity K.s becomes a constant

Fes = 0.038m? kg™ (A.18)

A.2.3 Comptonization

Comptonization is the process by which photons can gain or lose energy by scattering off
thermal electrons. The process has proven to be somewhat significant for the generation of
hard X-rays emitted from the very hot inner regions of accretion disks, especially optically
thin advection dominated flows around black holes. We sometimes use the y-parameter
to describe the regime of Comptonization [39)]

4kT

y = mec27_es Tes < 1
4kT 2
o2 Tes Tes > 1

where the first factor approximates the energy increases per scattering (for hv < 4kT),
and the second factor represents the mean number of scatterings. For y > 1, coherent
(Thompson) scattering is important. When y < 1 however, Comptonization becomes
important.
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Appendix B

Solution of the Linear Diffusion

Equation for o = v(r)

For a Keplerian disk, we have the diffusion equation (3.23)

0% 30,0
ot ror 4 Or

(uzrlﬂ)] (B.1)
subject to r/2p% = 0 at r = 0. We will consider the linear case for which v = v(r).
In this case, the general solution may be found as a linear superposition of elementary
solutions. One may look for solutions in the conventional way, in which the variables are

separated

¥ =rfo(r)e (B.2)

Here X is a positive real number, representing the decay rate of the mode. 3 is a free

parameter to be chosen at our convenience. Then

3d d
By 20 | 128 12
Arfo e [r d?"(r 1/0} (B.3)

Suppose that 7 is constant, then

d’o 3\ do (1 A
27 ¥ 92 e bl = 2 —
7“dTQ+<ﬂ+2>rdr+ﬁ(ﬁ+2)o+3yro 0 (B.4)
Choose = —1/4 for convenience. Then
d*c  do 1
2070, GO 22 1\
"o +?”dr + (k‘ T 16) c=0 (B.5)

where k* = \/(3v). This is Bessel’s equation of order 1/4. The general solution is

oc=A J1/4(k'7“) + B Yi/4(k’l") (BG)
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For small r, the Bessel functions behave as
Juja(kr) ocrt/* Yy ja(kr) ocr=* (B.7)

so that in light of the boundary value we put B = 0, and the solution with vanishing

torque at r = 0 is then

S oc r YA gy (k) e 37K B.8
/

If we consider the more general initial-value problem, we resolve the initial surface density

into Bessel functions
(r,0) = /(; h FkYr Y4, j4(kr) dk = 6(r — o) (B.9)
The general solution is then found by
S(r, 1) — /0 k) YAy e (B.10)
If we recall the properties of Hankel transforms
Alr) = /0 h a(k)J, (kr)k2r/? dk

alk) — / A(r)Jy ()2 di (B.11)
0
where v is the order of the Bessel functions used, we may write

A5 (r, 0) = / kY2 f (k) ja(kr YK dEe (B.12)
0

and the inverse is then

K (k) = / 5*/45(s, 0) 1 ya(ks)k'/ s/ ds (B.13)
0

The general solution may then be written in the form

Y(r,t) = /000 G(r,s,t)%(s,0) ds (B.14)

and where

G(r,s,t) = r Y45/ / Jrja(kr) Ty a(kes) ke 37"t dk (B.15)
0

is a. Green function. This may be evaluated explicitly as [45]
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G(r,s,t) =

F—1/445/4 ( rs ) . 245%)
YA\ 60t

617t 120t (B. 16)

where I, is a modified Bessel function. Inserted into (B.14) with the é-function boundary

value condition, and integrated over s, returns our analytical solution (3.25).




124 SOLUTION OF THE LINEAR DIFFUSION EQUATION FOR v = v(R)




Appendix C

Magnetohydrodynamics (MHD)

The theory of magnetohydrodynamics (MHD) describes the fluid mechanics of plasmas
and the behaviour of their magnetic fields. Maxwell’s equations for the electromagnetic
field are combined with the equations of hydrodynamics. For non-relativistic flow speeds,
the magnetic force can be expressed as a function of the field B and its derivatives, and this
dominates the electric force. The electric field and charge density can be eliminated from
the equations, and so do not have to be explicitly considered. Faraday’s law of induction is
very important, and shows how B is affected and diffused by the fluid motions. Simplified
forms of the equations can be used in some cases of course. If the diffusion time-scale is
much longer than the flow time-scale, the magnetic field lines are frozen to the plasma.
Material is therefore threaded onto field lines, which are advected and distorted by the
flow. I here use SI versions of all equations and constants.

C.1 The Induction Equation

In addition to the two well known source equations V - E = p./ey and V - B =0, we

need
oB
E I e ——
V x 5 (C.1)
1 0F
VXB“'LLOJ—I_—CEF{ (C.2)

where p. is the charge density and J is the current density. The equations of non-
relativistic MHD are derived using the condition v < ¢ and working to first order in v/c.
Since v, B and E are causally inter-related, a typical velocity is v ~ £/7, where £ and
are the length and time-scales for E and B. The induction equation (C.1) then gives

L (C.3)
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It therefore follows in (C.2) that

BE/3t| (B (w2
2V x B~ #B (z) <t (C4)

so the displacement current can be neglected and we get

V x B = poJ (C.5)

If we use the current J = o(FE + v x B), where ¢ is the electrical conductivity, with the
above we get the induction equation
oB

Vx(va)-—Vx(anB):—a; (C.6)

with the magnetic diffusivity n = 1/pg0.

C.2 Magnetic Threading and Flux Tubes

In the case that 7 — 0 (or ¢ — 00) the induction equation reduces to

oB
V x B)=— .
(vx B) ==, (C.7)
There are several ways of showing that in this limit the magnetic field is frozen to the
plasma, so field lines are attached to fluid elements. One is to consider the magnetic flux

through a contour C, this is given by

@—ABdS (C.8)

£ 11

where S is an open surface ending on C. If the contour is taken to always be composed of
the same fluid elements, then conservation of @ is consistent with the field being frozen
to the plasma. Hence the material derivative ®/dt should vanish if (C.7) is satisfied. We
denote the contour at time ¢ by C, and at time ¢ + ot by C. In the time interval 6¢ an
arc length dl of C sweeps out an area dI X vét. The surface consisting of the union of a
surface S ending on C, a surface S ending on C and the band joining € and € is a closed
surface. The total flux through this closed surface at time ¢ + 6¢ is

—/B(r,t+(5t)-dS+[B(r,t+5t)-d§+7{B(r,t+5t)-(dldet):() (C.9)
S S o)
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The negative sign arises since the outward normal is required on S, and the total flux of
B through any closed surface is zero since V - B = 0. The change in flux through the

moving contour is therefore

§d = /gB(r,t+c5t)-d5’-/B('r,t)-dS (C.10)
= /[ (r,t+ 6t) — B(r,1)] - ds+5tj{ B(r,t)- (v x dl) (C.11)
_ 515{/8—]3 ds — j{va dl} (C.12)

Dividing by dt, letting 6t — 0 and using Stokes’ integral theorem, gives
@:/[@an(va)}-ds (C.13)
s

Now (C.7) shows that 9®/0t = 0, which is consistent with frozen B-fields.

Magnetic Flux Tubes

The concept of magnetic flux tubes will be useful to us. A flux tube is the volume enclosed
by the set of field lines which intercept a simple closed curve. Since no field lines cross
the surface of the tube, it follows from V - B = 0 that for any volume of it contained
between two cross-sections, as much flux leaves as enters. Hence the flux ® through the
tube, given by (C.8) with dS having the same sense as B, is constant. When 5 — 0 (or
o — 00), matter can flow along flux tubes, but not across them.

C.3 Lorentz Force

The Lorentz force density on ions and electrons is
F =n,Ze(E + v; x B) —n.e(E +v. x B) (C.14)
where n; and n. are the number densities of ions and electrons. This gives

F=pE+JxB (C.15)

The ratio of the electric to magnetic force is

5C>LE1L> ™ €oko (%)2 ~ (%)2 (C.16)
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where the first relation follows from V - E = p./eq and (C.5), and the second from (C.3).
The electric force density is therefore negligible so

F=F,=JxB (C.17)

and use of (C.5) then gives

F,— - (VxB)xB (C.18)
Ho
Now employing the identity
V(F-G)=(F-V)G+ (G- V)F+F x(VxG)+Gx(V xF) (C.19)

(C.18) can be written

F, - E%(B V)B-V (%) (C.20)

Hence F,, can be expressed in the Cartessian tensor form

OM..
Fi=—2 2
where the summation convention is used, and
My~ Lpp - B (C.22)
Yoo T 2 Y ”

is the Maxwell stress tensor. The B;B;/ o term represents a tension along the magnetic
field, while B?/2u4 can be interpreted as a pressure. Writing B = B8 and 8-V = d/ds,
then

. d [ B? B?

d,. N B2
(B . V)B = Bz_(.lg(s) + Sa{; ('?\) = Rcurvn +V, (‘—2“) (023)

where R, is the local radius of curvature of a field line, fu is a unit vector directed at
the centre of curvature and V,, measures the spatial rate of change along B. Substitution
into (C.20) gives

BZ
fi—V (——) (C.24)

2410

B2
B ﬂORcurv

Fr,

The magnetic force therefore results from curvature of the field lines, which are stressed

along their length, and from the variation of magnetic pressure acroos field lines.
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There are two non-trivial cases in which the magnetic force density vanishes. A current-
free region has J = 0 and hence zero F,,. The second case of vanishing F,, arises when
J is finite but parallel to B. These force-free fields tend to occur when the plasma has
low density, and the magnetospheric region of a pulsar is assumed to be approximately

force-free environment.
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Appendix D

Pulsar Tables

D.1 Regular Pulsars

By regular pulsars we mean pulsars that are neither X-ray binary pulsars or millisecond
pulsars. The number of catalogued and known pulsars (of any type) is an estimated
~ 1700 [64], as of 2007, and about 80% of these can be categorized as regular pulsars.
The number depends to some degree on the survey, and how strict the requirements are for
verification, but certainly it is 2 1000 [65]. Empirical models based on this then esitmates
the number of galactic pulsars to ~ 10 while the number of neutron stars should be in
the millions, as many of these objects are too old to exhibit pulsar features. Table D.1ab
contains the data for ordinary nominal radio pulsars that are used in Fig. 5.1 in Chapter
5, and are gathered from the ATNF Catalogue [68], of the Australia Telescope National
Facility.

Name P [ms] | Log B [G] || Name P [ms] | Log B [G]
J1022+1001 | 16.453 8.9 || B0O531+21 33.084 12.6
J1019-5749 | 162.498 12.3 || J0535-6935 | 200.511 12.2
J2235+1506 | 59.767 9.4 || JO4074+1607 | 25.701 9.2
J1811-1736 | 104.182 16.1 | J1702-4310 | 240.523 12.9
B1820-11 279.828 11.8 || J1622-4802 | 265.072 11.5
B1800-27 334.415 10.9 || J1000-5149 | 255.677 11.7
J1334-5839 | 107.718 10.7 || J1650-4921 | 156.399 11.7
J0134-2937 | 136.961 11.0 }| 1822B-14 269.186 12.4
J1903+0925 | 357.154 12.6 || J1753-1914 62.954 10.1
B1706-44 102.459 12.5 || J0520-2553 | 241.642 10.9

Table D.1a Data for 20 reqular radio pulsars with P < 0.375 s.
The magnetic field B is the estimated polar magnetic field strength.
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Name P [ms] | Log B [G] || Name P [ms] | LogB [G]
J1834-0742 | 788.353 12.7 || J1740-3052 570.309 12.6
B1504-06 709.064 11.9 || JO045-7319 926.276 12.3
J1141-6545 | 393.898 12.1 || B2025+21 398.173 11.5
B1831-00 520.954 10.9 || B0O820+-02 864.873 11.5
J1355-5747 | 2038.673 12.1 || B2154+40 1525.265 124
B0105+68 | 1071.118 11.4 || JO656-2228 1224.754 11.3
J0534-6703 | 1817.565 13.4 || JOR18-3232 2161.258 12.1
B17534-52 | 2391.396 12.3 || JO737-30398B | 2773.460 12.2
B2303+46 | 1066.371 11.9 || SGR 1900+14 | 5168.900 14.8
J0656-2228 | 1224.754 11.2 || J1841-0524 445.748 13.0

Table D.1b Data for 20 regular radio pulsars with P > 0.375 s.
The magnetic field B is the estimated polar magnetic field strength.

D.2 X-ray Binary and Millisecond Pulsars

The total number of known X-ray binary pulsars are 2 100, though the number is uncer-
tain. An X-ray pulsar source is often difficult to differentiate from a white dwarf or black
hole source, and of the X-ray binaries known, many are as yet unclassified.

Name Ps| | L[10%Js'] | —=P/P [yr!]
Her X-1 1.24 1.0 9.9.10°6
GX 1+4 122.00 3.0 2.1-1072
4U 1627-67 7.68 0.6 1.9-107*
SMC X-1 0.71 50.0 7.1-107%
4U 0115+63 3.61 0.9 3.2-10°°
GX 301-2 700.00 0.3 4.5-1073
Cen X-3 4.84 4.5 2.8-1074
Vela X-1 283.00 0.1 3.6-10°°
X Per 836.00 4-107* 1.2-107*
A 0535+26 | 104.00 6.0 3.0-1072

Table D.2 Data for 10 X-ray binary pulsars. The magnetic field B
is the estimated polar magnetic field strength. The upper pulsars are LMXB,
while the lower are HMXB.

In Table D.2, I have put together data for 10 of the most well known X-ray binary pulsars.
These data are used in Fig. 4.4 in Chapter 4, and gathered from [65]. Of the total number




D.2. X-RAY BINARY AND MILLISECOND PULSARS 133

of known X-ray binary pulsars however, the large majority are HMXB. So far there are
only known a handful LMXB (< 10), that are pulsars, and only 3-4 of them have been
sufficiently charted so as to give away reliable data.

Millisecond Pulsars

The number of confirmed millisecond pulsars known today are well above 100 [64]. These
figures are rising steadily due to the recent discoveries of many such objects in globular
clusters [66], which seems to be rich breeding grounds for millisecond pulsars due to
exchange events in the dense cluster core, resulting in the capture of an old neutron star

by an evolving star.

The real number of millisecond pulsars however, is higher, as not all pulsars with mil-
lisecond periods are labeled as millisecond pulsars. Very young pulsars such as the Crab
Pulsar spin with a millisecond period (~ 33 ms), but are not grouped with the millisec-
ond pulsars because their rapid loss of angular momentum suggests a strong magnetic
field and a recent birth. In Table D.3 there are gathered data for some radio millisecond
pulsars that are used in Fig.5.1 in Chapter 5 [64].

Name P [ms] | Log B [G] P,y [d]

B1937+21 | 1.558 8.6 n.a.
J1843111 1.846 8.1 n.a.
J17441134 | 4.075 8.3 n.a.
J00340534 | 1.877 7.9 1.59
J19093744 | 2.947 8.3 1.53
B1855+09 | 5.362 8.5 12.33
B12574+12 | 6.219 8.6 | Planetary system
J10454509 | 7.474 8.5 4.08
J17575322 | 8.870 8.7 0.45
J18042717 | 9.343 8.8 11.13

Table D.3 Data for 10 millisecond pulsars. The magnetic field B is the estimated
polar magnetic field strength. The upper pulsars are isolated pulsars, while
the lower are in binary systems, or in fact in planetary systems.

As mentioned, only a few millisecond pulsars are accreting X-ray pulsars, and the few that
are known have been discovered very recently. In Table D.4, we see some data for these
systems, collected from [69]. We see that these systems are extremely close binaries, some

with a binary period as short as half an hour. All of them are low-luminosity transients
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with low mass accretion rates. It appears that the magnetic fields of these objects is of

the same order as for most millisecond pulsars ~ 10® — 10? s [67].

Name Year | P [ms| | Pos [h]
SAX J1808.4-3658 1998 | 2.494 2.01
XTE J1751-305 2002 | 2.299 0.71
XTE J0929-314 2002 | 5.405 0.73
XTE J1807-294 2003 | 5.236 0.68
XTE J1814-338 2003 | 3.185 4.27
IGR J00291+5934 2004 | 1.669 2.46
HETE J1900.1-2455 | 2005 | 2.653 1.39

Table D.4 Data for the seven presently known accreting X-ray

binary millisecond pulsars
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