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Abstract

In this thesis, we investigate the prospect of observing a well-motivated can-
didate for dark matter — the neutralino — in the future IceCube neutrino
telescope. The neutralino is the lightest supersymmetric particle of the mini-
mal supersymmetric extension of the Standard Model. It has been suggested
that high energy neutralinos and neutrinos are produced in the decay of su-
perheavy dark matter particles. High energy neutralinos could interact with
matter in a neutrino telescope and produce observable muons. A challenge
is then to differentiate between muons originating from neutralinos and from
neutrino-produced muons.

To model neutralino interactions with matter, we consider the neutralino
cross section in the squark-resonance approximation. The results depend
heavily on the mass of the squark. We consider two cases for the mass of
the squark, my; = 1TeV and m; = 250 GeV. For a given flux, we calculate
the corresponding event rates. Our results show that it is unlikely to detect
a neutralino signal for either of the cases in IceCube. On the positive side,
it is possible to differ between neutrinos and neutralinos in the case of m; =
1TeV. In order to detect an unmistakable neutralino signal, the volume of
the detector has to be extended, or new observation techniques have to be
developed.
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“The most beautiful thing we can experience is
the mysterious. It is the source of all true art
and all science. He to whom this emotion is a
stranger, who can no longer pause to wonder and
stand rapt in awe, is as good as dead: his eyes are
closed.”

Albert Einstein

Introduction

There is almost a general consensus among astronomers that most of the
matter in the Universe is dark. We call the matter dark because it does
not emit or reflect enough electromagnetic radiation to be detected. So far,
we have only inferred the presence of dark matter from its gravitational
effects on luminous matter, but it may have electromagnetic, weak or strong
interactions as well. The fact that we know so little about it, makes the
nature of dark matter one of the most intriguing problems in physics.

The numerous observational cosmology experiments that has been carried
out in recent years have given us a better understanding of the Universe.
There seems to be a close connection between cosmology and fundamental
physics. The problem of dark matter is deeply rooted in elementary particle
physics. In order to solve the dark matter problem, joint efforts between
cosmologists and particle physicists are necessary.

The possibility of observing a hypothetical non-baryonic, supersymmetric
dark matter candidate — neutralino — is the topic of this thesis. In order to
observe such a particle one has to understand the nature and properties of
the particle in mind. The neutralino can constitute the missing dark matter
by itself, or it can be a stable particle resulting from the decay of another
dark matter particle — a supermassive particle X. It is assumed that such
a decay would produce a particle cascade, with high energy neutrinos and
neutralinos among the end products. To observe these weakly interacting
particles, we have to look for upward-going muons, produced in charged-
current interactions with the matter below a detector.

The background for this signal consists of showers generated by ultra-high
energy cosmic neutrinos. To establish a clear neutralino signal, it is necessary
to differentiate the neutralinos from neutrinos. The neutralino-nucleon cross
section depends on the choice of parameters of the neutralino. If this cross



1. INTRODUCTION

section is significantly smaller than the neutrino-nucleon cross section, they
will have very different absorption properties in the Earth. Thus, it should
be possible to filter out the background neutrinos by using the Earth as a
filter. Given a sufficient cosmic flux, these neutralinos may be detected in
future experiments.

The outline of this thesis is as follows. We will start in chapter 2 with
the role of dark matter in cosmology. Then we will continue with presenting
some of the evidence for dark matter before we give an overview of some of
the proposed dark matter candidates and how they can be produced. After
a brief outline of the supersymmetric theory in chapter 3, the properties and
possibilities for neutralino dark matter are shown in section 3.4.1. Chapter 4
concerns the indirect detection of neutrinos and neutralinos via deep inelastic
scattering on nucleons. The likelihood of such processes is linked to the
cross sections. The cross sections of neutrinos and neutralinos are discussed
and numerical evaluation of these will be presented in section 4.4 and 4.5,
respectively.

We then explain the effect the Earth has on the particle fluxes, and cal-
culate the mean ranges of muons and the shadowing factors on the fluxes. In
the end, we calculate the event rates for detecting high energy neutralinos
in the high energy neutrino telescope IceCube. The results are discussed in
chapter 5 before the closing remarks are given in chapter 6. For complete-
ness, we present some selected Feynman rules, the Pauli and Dirac matrices
and some trace rules in the appendices.



“Tt is not clear how these startling results must
ultimately be interpreted.”

Fritz Zwicky

The nature of dark matter

2.1 Dark matter and cosmology

2.1.1 The Standard Model of cosmology

The standard model of cosmology is the hot Big Bang model, in which the
Universe expanded via an explosion — the Big Bang — of an initial sin-
gularity of infinitely high density. After the Big Bang, the Universe has
expanded and cooled to reach its present state. Today, we perceive that the
observable Universe is a homogeneous, isotropic and expanding Universe. A
homogeneous, isotropic spacetime is one for which the geometry is spheri-
cally symmetric about any one point in space (isotropic) and the same point
in space as any other (homogeneous)'. Although the Universe seems inho-
mogeneous considering its lumpy distribution of galaxies and their galaxy
clusters — the large-scale structure of the Universe — it is approximately
homogeneous on distance scales above several hundred megaparsecs?.

The Universe can be described by the Friedman-Robertson-Walker family
of cosmological models. The metric for a homogeneous, isotropic cosmolog-
ical model expressed in comoving coordinates (¢,7,6,¢) and natural units
(c=h=kp=1)is

dr?

1 — kr?

ds? = dt? — a*(t) + 72(d6? + sin?0 d¢?) |, (2.1)

where a(t) is the scale factor, which represents the relative expansion of the
Universe, and the curvature k£ = 1,0, —1 for closed (spherical geometry), flat

' The assumption of a homogeneous and isotropic Universe, known as the cosmological
principle, means that no observer occupies a special position in the Universe.
21pc = 3.086 x 109 m = 3.2621y.
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(Euclidean geometry) or open (hyperbolic geometry) universes, respectively.

The comoving coordinates of any point in space remain constant in time as
long as the expansion of the Universe is perfectly homogeneous and isotropic.
The physical distance d between two points comoving with respect to the
cosmological expansion increase linearly with the scale factor

d o a(t). (2.2)

The expansion rate is determined by the Hubble parameter

H{(t)

@. (2.3)
a(t)
The Hubble parameter is not constant, but is time-dependent. The Hubble
time (or Hubble radius) H ! sets the scale of the expansion.

A spatially flat Universe is only reached for a certain density, which we
call the critical density. This is given as [1]

P = 3G 1 s 107n%g/cm®, (2.4)
8rG
where G is the Newtonian gravitational constant, and
a(to)
Hy=H(ty) = 2.5
0 ( 0) a(t(]) ( )

is the Hubble constant which determine the present expansion rate of the
Universe. We will in this chapter denote the present values of all quantities
with a zero. The present day normalized Hubble expansion rate is [1]

H,
100(km/s/Mpc)
It is convenient to normalize to this density, so that the cosmological
density parameter of a species i is quoted using

Q=2 (2.7)
Pe
where p; is the density of the species averaged over the Universe, and p. is
the critical density. To get the total density parameter (), we sum up all
the contributions from the different species. If we could measure the present
total density relative to the critical density,

h

=0.731003. (2.6)

Qo = @, (2.8)
(&
we could determine the curvature of the Universe. If (), = 1 the Universe is
Euclidean, i.e. flat. An Q;,; > 1 implies a closed Universe, while an ,; < 1
implies an open Universe.



2.1. DARK MATTER AND COSMOLOGY

2.1.2 Problems of standard cosmology

The Universe as we observe it today seems flat, and thus the preferred cosmo-
logical model is a spatially flat Universe. However, for the Universe to look
like today, very fine tuned initial conditions near the Big Bang are needed,
which seems highly unlikely. Several problems arise from this fact. Among
these problems are the horizon problem and the flatness problem.

The horizon problem

Determining why the Universe is homogeneous and isotropic is known as the
horizon problem. The particle horizon demarcates the boundary between the
observable Universe and the part of the Universe from which light signals have
not reached us. Assuming that the Universe is flat, the maximum distance
light has traveled since the beginning of the Universe, t = 0, is
t /
du(t) = alt) / e (2.9)
0

alty 1-—n

The scale goes like a ~ t*/? for a matter dominated Universe, and a ~ ¢'/3
for a radiation dominated one. In standard cosmology, the horizon distance
and the Hubble radius is essentially equal:

dy oc H7'. (2.10)

In the present Universe, points in regions separated by vast distances are
not in causal contact with each other, that is, these regions have not yet had
the time to communicate with each other via light signals. There are at least
~ 10° separate regions in the Universe that are causally disconnected [2].
Since no physical interaction can travel faster than the speed of light, we
would expect that the physical properties of the regions should be different,
yet they are the same. For instance, the cosmic microwave background has
almost the same temperature everywhere in the sky, measured to be (2.725+
0.001) K [1].

The flatness problem

The energy density in the Universe today is very close to the critical density,
Qo = 1.00370012 [1]. Both the average density of the Universe and the
critical density change with time. If the current value of (2 is extrapolated
backwards in time, the energy density becomes even closer to unity. At the
closest theoretically time we can get to the Big Bang, at one Planck time
tpr = VG ~ 5.39121 x 10~* sec, the value of € is such that Q < 14+ 10790,
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If Q2 was only slightly larger or smaller than unity in the instant following
the Big Bang, the Universe would either quickly recollapse or quickly reach a
state of maximal entropy with a temperature of the Universe close to absolute
zero. This remarkable closeness of () to unity in the early Universe is known
as the flatness problem.

2.1.3 The inflationary Universe

A solution to both of these problems is the hypothesis |3, 4, 5] of an infla-
tionary Universe, in which the Universe experienced a phase of exponential
expansion, with a scale factor growing like

a(t) o< ef',  H = const. (2.11)
within a time interval ¢ € [t;, tg], where ¢; is the initial time at which inflation
begins and ty is the reheating time at which inflation ends.

Inflation solves the horizon problem by proposing that prior to the infla-
tionary period, the entire observable Universe was causally connected. Dur-
ing inflation, the causal regions are stretched on scales much larger than the
Hubble radius. Because the spacetime background expands exponentially
with the scale factor, whereas the Hubble radius remains approximately con-
stant, particles that initially were in causal contact with another can no
longer communicate. Large scale homogeneity is assured since the physical
properties were established before inflation took place, and any small inho-
mogeneity would diminish as the Universe rapidly stretches. The already
homogeneous region is then stretched by inflation to become large enough to
encompass the entire observable Universe, as shown in figure 2.1.

After inflation ends, and the Universe enters the radiation/matter domi-
nant era, the particle horizon begins to grow faster than the spacetime. When
we look at the sky today, we are still seeing the regions of uniformity that
were stretched outside the particle horizon during inflation [2].

The flatness problem is solved naturally in inflationary models, since the
radius of curvature of the Universe today should be much greater than the
present Hubble radius. Thus inflation predicts a flat Universe.

Even though inflation guarantees homogeneity (on large scales), we do
not want the Universe to be completely homogeneous at the end of inflation,
or else there would be no structure formation. It turns out that inflation
can also provide density perturbations. During the expansion, it is possible
that tiny quantum fluctuations in the inflaton field — the scalar field which
is thought to be responsible for inflation — lead to the necessary density
perturbations.
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Figure 2.1: The solution to the horizon problem. The line marked as “Stan-
dard Theory” shows the radius of the region that evolves to become the
presently observed Universe, as described by the traditional Big Bang the-
ory. Because of the tremendous growth during inflation, the inflationary
curve shows a much smaller Universe than in the standard period before in-
flation. The uniformity of the Universe is established at this early time. The
region is then stretched by inflation to become large enough to encompass
the observed Universe [6].
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In most models, inflation occurs at an energy scale M ~ 10 GeV when
the Hubble time is only about H ' ~ 1073 sec [7]. Tt is driven by a negative-
pressure vacuum energy density that is the dominant energy density of the
Universe once the temperature fall below the critical temperature 7, ~ M.
The initial entropy contained within the inflating patch was far less than in
our present Universe. During the expansion, the Hubble volume cools like
T x exp(—Ht) with the entropy fixed.

At the end of inflation, the vacuum energy of the inflaton field is trans-
ferred to ordinary particles. As the particles thermalize, the Universe is
reheated (typically at Try ~ M), causing a massive entropy production. Af-
ter inflation ended, the entropy remained constant as long as the expansion
was adiabatic.

2.1.4 The Concordance Model of cosmology

Observations of the cosmic microwave background, supernova Ia data and the
large-scale structure of the Universe have established a Concordance Model
of cosmology, in which the Universe consists of 76 % dark energy, 20 % dark
matter and 4 % baryonic matter [1]. This model is called ACDM, which is
an abbreviation for Lambda-Cold Dark Matter.

The A stands for the cosmological constant which is a dark energy term
that allows for the current accelerating expansion of the Universe. Cold dark
matter (CDM) is the prevailing model of dark matter, in which dark matter
is explained as being non-relativistic at freeze-out, i.e. cold. It is a bottom-up
model, where structures grow hierarchically, with small objects merging to
form more and more massive objects. This is in agreement with observations
of large-scale structure. But the theory does not explain the fundamental
physical origin of dark matter. That is yet to be decided.

2.2 Evidence for dark matter

The existence of dark matter was first proposed in 1933 by the astronomer
Fritz Zwicky [8]. He applied the virial theorem of classical mechanics to the
Coma galaxy cluster to determine its total mass, and noticed that the cluster
had to contain more mass than could be accounted for by luminous matter.
The virial theorem states that the time average of the total gravitational
binding energy in a bound system should be twice the time average of the
total kinetic energy,

2<Ekin> + <Ep0t> =0. (2.12)

8
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The angle brackets denote time averaged quantities. The gravitational poten-
tial energy of a system with N galaxies, each of which can be approximated
as a point mass, with a mass m; (i = 1,2,..., N), a position Z; and a velocity

Ui, 18
_mimy
2.13
POt Z |‘T] - xz ( )
J#Z
The kinetic energy is
Ekin = Z mz|vz|2 Clusterv2 (2.14)

where the mean square velocity of all the galaxies in the cluster is

1
—2 __ =12
VT = E m;|U;| 7. 2.15
Mcluster | | ( )

The total mass of the cluster is then given in terms of the average square of
the velocities of the individual galaxies which constitute the cluster. From
this application based on the motions of galaxies near the edge of the cluster,
Zwicky derived |9] a lower limit of Mcoma > 4.5 x 103 M. The Coma cluster
contains about one thousand galaxies, so the average mass of one of these
galaxies is My > 4.5 x 101°M,. This result was quite unexpected since the
luminosity of an average galaxy is about 8.5 x 107M,. Hence, the Coma
galaxy cluster seemed to contain about 400 times more mass than expected.
This discrepancy between the mass and the observed luminosity is quantified
by the mass-to-luminosity, M /L, ratio, which is often expressed in terms of
solar mass and luminosity.

It was not until the late 1960s — nearly 40 years after Zwicky’s initial ob-
servations — that the suggestion of dark matter was taken seriously. At that
time, the astronomers Vera Rubin and Kent Ford observed further evidence
for the existence of dark matter — the observation of flat rotation curves
in spiral galaxies [10]. Spiral galaxies are structures containing billions of
stars rotating around a central “bulge”. A rotation curve is the velocity of
the luminous matter as a function of the radial distance from the center.
Assuming that the stars have a circular orbit around the galactic center, the
rotation velocities of single stars can be calculated from the equality of the
gravitational and centrifugal forces, according to

GmM(r)  mv?
=) (2.16)

r
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where M (r) is the mass within the orbit of radius r. From this we would
expect stars in spiral galaxies to move more slowly further away from the
galactic center according to

v(r) = . (2.17)

If we assume that the bulge is spherically symmetric with constant density
p, then

4 .
M =pV = pgm“‘s. (2.18)

Inside the bulge we would then have a rotation curve of
v(r) o< r. (2.19)

From a point outside of the galaxy, M corresponds to the total mass of the
galaxy, and we would expect that

v(r) oc r1/? (2.20)

beyond the optical disc. But when the rotation curves are measured using the
Doppler shift of spectral lines, it turns out that most stars orbit at roughly the
same speed. This results in a characteristic flat behavior at large distances,
even far beyond the visible discs [10, 11]. The fact that v(r) is approximately
constant implies the existence of a dark matter halo with M(r) oc . As an
example, the flat rotation curve of the spiral galaxy NGC 6503 compared
with a best fit model is shown in figure 2.2.

After numerous observations in recent years, it is now clear that all galax-
ies and galaxy clusters possess a dark matter component. Spiral galaxies have
a mass-to-luminosity ratio of typically M /L ~ (5—10)Mg /L, while clusters
of galaxies usually have M/L ~ 300M /L.

In 2006, direct evidence for the existence of dark matter was claimed [13],
based on X-ray and weak gravitational lensing® observations of a merging
cluster system named the Bullet cluster. Only 10 % of the visible baryons
in a galaxy cluster are in the cluster galaxies. The remaining 90 % are hot
plasma clouds, which fill the cluster volume. The hot plasma will slow down
during a collision of two galaxy clusters, emitting X-rays. But the galaxies
— and presumably the dark matter — will sail straight through, physically
separating dark matter from most of the visible matter. The map of matter
surface density obtained by the analysis of the weak lensing data, shows that

3The bending of light due to the gravitational potential of a massive object between
the source and the observer.

10
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Figure 2.2: The rotation curve for the spiral galaxy NGC 6503 (points) com-
pared with a best fit model (continuous line) as sum of the halo contribution
(dashed-dotted line), the stellar disk (short dashed line) and the gas contri-
bution (dotted line) [12].

the gravitational potentials are not centered around the plasma, implying
that most of the matter is unseen. Radio and X-ray images together with

the map of surface matter density of the Bullet cluster are shown in figure
2.3.

Although all clues point toward the existence of dark matter, other expla-
nations not involving (much) dark matter has been proposed. Theories like
Modified Newtonian dynamics (MOND) [15, 16] introduced in 1983, which
adjust Newton’s 2nd law for small accelerations, and the more recent rela-
tivistic Tensor-Vector-Scalar (TeVeS) gravity [17] that is equivalent to MOND
in the non-relativistic limit, has been introduced to explain the flat rotation
curves. In contrast to MOND, TeVeS can also explain structure formation
(without CDM) and the Bullet cluster if ~ 2 eV massive neutrinos are in-
voked [18, 19]. But the TeVeS theory meets other challenges, like explaining
the cosmic microwave background anisotropies and structure formation at
the same time [20]. We will dismiss it for now and focus our attention on
dark matter as the real thing.

11



2. THE NATURE OF DARK MATTER

Figure 2.3: Images of the Bullet cluster seen in radio (left) and in X-ray
(right). The contours superimposed on the images is the matter density map
retrieved from weak gravitational lensing [14].

2.3 Candidates for dark matter

Several candidates have been suggested to constitute the dark matter. To
make life somewhat easier, we can divide them in two main classes; thermal
and non-thermal dark matter.

2.3.1 Thermal dark matter
Baryonic dark matter

Some of the dark matter must be composed of ordinary atoms and molecules
which are to dim to be observed. Such contributions are termed baryonic
dark matter (BDM). The main baryonic candidates are massive compact
halo objects (MACHOS). This category includes brown dwarfs, jupiter-like
objects, black holes, white dwarfs and neutron stars [21]. These are bodies
that either never managed to begin nuclear fusion of hydrogen to become
stars (M < 0.8My, such as planets or brown dwarfs), or are the remnants of
a star, such as white dwarfs or black holes. Another contribution to baryonic
dark matter could be low surface brightness galaxies or cold hydrogen clouds
which escape observation [22].

If we combine the non-luminous matter together with the luminous we
get the total baryonic matter density 2, = Qum + Qpam. The amount of
baryons in the Universe is predicted from our understanding of the big-bang
theory and the formation of light elements (Big Bang nucleosynthesis) as
shown in figure 2.4. To agree with the measured abundances of helium,
deuterium and lithium, the baryonic content in the Universe must be Qph? =
0.022370006 or equivalently €, = 0.04270003 [1]. This leaves a dark matter

density component of the Universe of Q4 = 0.207003, which has not yet

12
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been accounted for.

Non-baryonic dark matter

In addition to the dark matter in the form of baryons, there is non-baryonic
dark matter. Most of the non-baryonic candidates proposed are hypothetical
exotic particles. A new stable particle, called X, could have a significant
cosmological abundance today. To explain how we have to go back to the
early Universe, when the temperature of the Universe exceeded the mass mx
of the particle. Such a particle would exist in thermal equilibrium with the
radiation, maintained by annihilations of the particle with its anti-particle X
into lighter particles and vice versa [21]. As the Universe cools and the tem-
perature drops below the particle’s mass, the particle experience freeze-out.
Freeze-out occurs when the annihilations cannot keep the particle in equilib-
rium with the rest of the cosmic plasma. The evolution of the abundance of
a species is described by the Boltzmann equation

DX~ SHnx — (ool — (1)) (2.21)
where ny is the particle’s actual number density, n% is the number density of
X’s in equilibrium and v is the relative velocity of the annihilating particles
and (o,|v]) is the thermal average of the total annihilation cross section.

We can further classify dark matter into two categories; hot and cold,
according to the velocity of the particles at decoupling. Hot dark matter
(HDM) are low mass particles moving at relativistic speeds at freeze-out.
We already know one component of this category, the light neutrinos. But
neutrinos alone as the dark matter cannot explain todays large scale struc-
ture. Because of the high velocities of hot dark matter, structures on small
scales are wiped out. Perturbations in a nearly collisionless component (e.g.
neutrinos etc.) are subject to free streaming. Such a species can travel in free
fall in the expanding Universe after decoupling from the plasma. Collision-
less particles can smooth out inhomogeneities by streaming out of overdense
regions into underdense regions.

In a radiation dominated era (like in the early Universe), the free stream-
ing scale is

A = o (2 4 1nie—‘1), (2.22)

a’IlI‘ nr

where ay,, is the scale factor and t,, is the time the particle becomes non-
relativistic and ¢ = to, ~ 4.4 x 101°(Qyh?)2sec |7] is the time of matter-
radiation equality. A particle X becomes non-relativistic when Ty ~ my /3.
Considering this and the fact that for a weakly interacting particle, Ty is

13
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Figure 2.4: Predicted abundance ratios of the light elements relative to hy-
drogen from standard Big Bang nucleosynthesis as a function of the baryon-
to-photon ratio, 7, and the baryon density, 72, of the Universe. The widths
of the curves represents 95 % confidence level. The vertical band specifies
95 % confidence level in 71, based on the combined result of observations of
abundances of D, “He and "Li [23, 24].
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Figure 2.5: Overview of some well motivated WIMP dark matter candidates
for which one can have Q2 ~ 1. The interacting cross section oj,, represents
a typical order of magnitude of interaction strength with ordinary matter.
The box marked “WIMP” stands for several possible candidates |25].

likely to be less than the photon temperature, it is possible to calculate t,,
and ay, [7]. For a neutrino the free streaming scale is about |7]

m

-1
.~ 20M v 2.2
As = 20 pC(30e\/) (2.23)

Neutrino clustering is strongly suppressed below this scale. On scales much
larger than the free-streaming scale, however, the neutrinos will cluster as
cold dark matter.

The effect of free-streaming constrains the amount of hot dark matter
in the Universe. For the hot dark matter to be the main component of the
dark matter, the galaxies must have been formed by fragmentation of larger
structures (superclusters), and the number of galaxies must have been a lot
less than the number of galaxies observed.

The exotic particles that could constitute the cold dark matter may be
Weakly Interacting Massive Particles (WIMPs), with interaction strength
comparable to those of neutrinos. Such WIMPs would be long lived relics
or stable particles left over from the Big Bang [26]. An overview of some of
the WIMP candidates, both thermal and non-thermal, is shown in figure 2.5.
The most promising WIMP candidate is the neutralino, a postulated super-
symmetric particle, which we will review in section 3.4.1.

15



2. THE NATURE OF DARK MATTER

The relic density of a non-baryonic cold dark matter species is inversely
proportional to the annihilation cross section and the mass of the particle,

1

CACH

nx (2.24)
From this we can see that the smaller the annihilation cross section, the
greater the relic abundance, i.e. the more weakly interacting particles will
decouple earlier. The abundance of a particle that stays in thermal equilib-
rium indefinitely will be suppressed by the Boltzmann factor e=™/7. There
would be no such particles in the observable Universe [7, 27].

If a dark matter particle is a thermal relic of the early Universe, the
maximum possible annihilation cross section o,v compatible with unitarity
together with the constraint of the relic density, set an upper limit for the

mass of [11]
Mam < 34 TeV. (2.25)

The evolution of a typical WIMP number density in the early Universe is
shown in figure 2.6.

2.3.2 Non-thermal dark matter

Axions

Axions are hypothetical pseudo-scalar particles arising from a possible solu-
tion of the strong CP problem of quantum chromodynamics (QCD) [29, 30].
CP violation has been observed in the weak, but not in the strong interac-
tions. Because of the existence of non-trivial, vacuum gauge configurations,
non-Abelian gauge theories — like QCD — have a complex vacuum structure.
QCD has an infinite number of vacuum states |n), classified by a topological
winding number n, which characterizes the different vacuum gauge config-
urations that cannot be continuously rotated into each other. The vacuum
state of the theory is a superposition of all the degenerate states |n), called
the ©-vacuum,

©) =) exp(—in®)|n), (2.26)

where © is an arbitrary parameter, and n the topological winding num-
ber. The effects of the ©-vacuum can be described via an additional non-
perturbative term in the Lagrange density of QCD,

2

— g any ~
Lqocp = Lpert + @327r2G "G (2.27)
O = O + Arg det M, (2.28)
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Figure 2.6: Evolution of a typical WIMP comoving number density in the
early Universe. The dashed line is the actual abundance, and the solid line
is the equilibrium abundance [28].
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2. THE NATURE OF DARK MATTER

where G is the gluon field strength tensor, G is the corresponding dual tensor
and M is the quark mass matrix. The second term in equation (2.27) violates
CP, T and P. This leads to a contribution to the electric dipole moment of
the neutron of

d, ~5x 1076 ecm (2.29)

in contrast to experimental results, which gives an upper limit of
d, <1.2x 10 *ecm. (2.30)

This implies a © < 107, which could even be exactly zero. Why the ©-
parameter in QCD is so small is known as the strong CP problem.

The most favored solution to this problem is the one proposed by Pec-
cei and Quinn in 1977 [31|. By introducing a new global (chiral) symme-
try (known as PQ symmetry), the ©-parameter can be made a dynamical
variable, whose minimum energy value lies at zero. PQ symmetry is spon-
taneously broken at an energy scale f,, which gives rise to a new particle,
a Nambu-Goldstone boson called the axion (a), as pointed out by Weinberg
[29] and Wilczek [30] in 1978. The introduction of an additional field, the
axion field a, leads to a further term in the Lagrange density:

a 92 uv Sva
Lo 4 GG, (2.31)

where C, is a model dependent constant. Since equations (2.27) and (2.31)
both contribute to the axion field, it can be minimized or set to zero by

(a) = —%i“, (2.32)

compensating the troublesome term in equation (2.27).

Axions are pseudoscalar particles, similar to neutral pions. They can
mix with the neutral pions through axion-gluon interactions that allows for
transitions to qq states. As a result of this mixing, the axion picks up a small
mass of [32]

Fram < z )” 2 107 GeV
= — 0.60eV — ¥ 2.33
m fo \(O+21w)(1+2) A (2.33)

where m, = 135 MeV is the neutral pion mass and f, = 93 MeV is the pion
decay constant. The quark mass ratios are

2 = my/mg = 0.568 £ 0.042, (2.34)
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2.3. CANDIDATES FOR DARK MATTER

w = my,/my = 0.0290 £ 0.0043, (2.35)

The axion has only one free parameter, the mass m,. The mass and all inter-
actions scale with the inverse of the energy scale of PQ breaking, f,'. This
allows the axions to be arbitrarily light and arbitrarily weakly interacting
(“invisible” axions) [32].

At high temperatures, 7' > Agcp, where Aqep = (100 — 250) MeV char-
acterizes the chiral QCD phase transition, the axions can not obtain mass by
pion mixture because pions do not exist. But below T ~ f,, the PQ-symmetry
is broken and a massless axion is produced because of QCD instanton effects
[32]. The temperature dependence of the axion mass is given by [7]

ma(T) = 0.1m, (T = 0)(Aqen/T)>", (2.36)

valid for 77/Aqcp > 1.

Axions can be produced by both non-thermal and thermal mechanisms.
A non-thermal axion is the most important dark matter candidate. If thermal
axions existed in numbers sufficient to make up the dark matter, they would
have lifetimes too short to still be around in sufficient quantity. There are
two production processes for non-thermal axions; through coherent produc-
tion due to an initial misalignment of the axion field at early times |33, 34, 35,
and through the decay of axionic strings |36, 37|. If the Universe underwent
inflation, non-thermal axions are produced in the misalignment process. But
if the Universe did not inflate, axionic string decay is the production mech-
anism.

In the misalignment production the initial value of © is different from
zero, since no special value of © is dynamically preferred. Because the axion
is massless before the quark-hadron phase transition, all values of © are
equally acceptable. At early times, the axion field is misaligned with the
minimum of its potential, © = 0. When the axion acquires a mass around
a temperature of 7' ~ Aqcp, (and becomes comparable to the expansion
rate of the Universe), the axion field will start to roll toward ©, and end
up oscillating around the minimum. These cosmic oscillations produce a
zero-momentum condensate of axions, which could constitute the cold dark

matter. The axion contribution to the density due to this process is estimated
to be [7]

AQCD —-0.7 m —1.18
QR? = 0.85 x 10504 29D _ M) 2,
08510 (QOOMeV) (10—5e\/) (237)

The production of axions through the decay of axionic strings is more
complex. One-dimensional defects — strings — arise when a U(1) gauge
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2. THE NATURE OF DARK MATTER

symmetry is spontaneously broken. They also arise when a global U(1)
symmetry is broken, U(1)pg in this case. The axionic strings dissipates its
energy by radiation of axions. The contribution to the density from this

process is [7]
m ~1.18
Oh? ~ | —2— . 2.38
(10_3 eV) (2.38)

These two non-thermal processes leads to a lower mass limit of about

1073 or 107° eV in order to reach a significant density in the Universe. A
light axion is a possible CDM candidate if m, < 2 eV [32].

Superheavy dark matter

Other candidates in the dark matter particle zoo are supermassive X parti-
cles. Such particles go under the name of superheavy dark matter (SHDM).
If such a particle is weakly interacting it can be called wimpzilla, or stmpzilla
if it interacts strongly. The stability of X particles can be ensured by dis-
crete gauge symmetries, which must be somehow weakly broken if we want
long-lived particles with lifetime 7y 2 ¢y, where %, is the age of the Universe.

A superheavy particle must be a non-thermal relic in order to fulfill ¢ ~
1. The abundance of a thermal relic depends on the inverse of its annihilation
cross section, which again is inversely proportional to the mass squared.
Superheavy thermal relics will then decouple early in the Universe, and their
present abundance will be far too large, cf. figure 2.6.

Being non-thermal relics, X particles have never been in chemical equi-
librium with radiation. It is likely that they were produced at the end of
inflation, when it is enough to transfer only a small fraction from the energy
of radiation to SHDM particles. In order to have the observed density of
dark matter, 4, = 0.20, a fraction of energy less than 1078 is needed [38].
This tiny fraction of energy can be transferred to X particles in many ways,
such as production by topological defects, thermal production at reheating,
preheating and by gravitational production [38, 39].

The most elegant production mechanism for SHDM is its gravitational
production [40, 41]. In this mechanism, superheavy particles are produced
gravitationally at the end of inflation in the early Universe, naturally achiev-
ing the desired abundance of SHDM. What makes this mechanism so elegant
is that it is quite model independent. It can generate particles with mass of
the order of the inflaton mass even when the SHDM only interacts extremely
weakly with other particles, including the inflaton. This mechanism is sim-
ilar to the generation of gravitational perturbations during inflation, which
causes the formation of large scale structures. The X particles are created
as a result of time-variable gravitational fields acting on vacuum fluctuations
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2.3. CANDIDATES FOR DARK MATTER

during the transition from the inflationary phase to a matter or radiation
dominated phase. Assuming that the Universe is flat, a scalar field (particle)
X of mass my in the expanding Universe can be expanded in spatial Fourier
modes as [39]

X@0) = [ G e +afgime T, (239

where 7 is the conformal time? and a(n) the time dependence of the expansion
scale factor. Here a; and a£ are creation and annihilation operators, and
¢r(n) are mode functions. The Klein-Gordon equation for the field modes ¢y,

of a scalar field in a Friedman-Robertson-Walker Universe can be written as

Or(n) +mig(n)dr(n) =0, (2.40)

where the effective mass is
meg(n) = k* + Mxa® + (6¢ — 1)3. (2.41)

The parameter £ is & = 0 for a minimally-coupled field and ¢ = % for a
conformally-coupled field. Since meg is time dependent, vacuum fluctuations
will be transformed into real particles. Thus, the expansion of the Universe
leads to particle production [40].

The predicted density of X particles in inflationary cosmology is

M T
QXh2:( X ) uz (2.42)

1011 GeV ) 109GeV’

where My is the mass of the X particle and Ty is the temperature at
reheating. This result is independent on details of particle physics, and is
valid for any My < Hy, where Hy ~ mg ~ 10'3 GeV is the Hubble constant
at the end of inflation and my is the mass of the inflaton.

The existence of superheavy dark matter was first suggested [42, 43| to
explain the puzzle of ultrahigh energy cosmic rays. High energy cosmic rays
are particles, most likely protons, from extragalactic sources. Very energetic
protons should gradually lose energy from colliding with photons and creating
pions, when propagating in the cosmic microwave background. This process
has an effective threshold energy of 5 x 10 eV, called the Greisen-Zatsepin-
Kuzmin (GZK) cutoff [44, 45]. Above this cutoff, the proton energy loss

*In general, the conformal distance 7 is the distance away that is not causally connected
to the observler. The conformal distance n in a FRW Universe at a cosmic time ¢ is given
by n = ft %, which can also be thought of as a time variable [27].
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Figure 2.7: Energy spectrum of cosmic rays observed with AGASA. The
dashed curve displays the theoretical GZK cutoff. (The numbers attached

to the data points show the number of events observed in each energy bin.)
[47]

length is near 10 Mpc. Thus, particles with energies above this cutoff should
be produced within our local neighborhood. Observations made by the Fly’s
Eye Cosmic Ray Detector [46] and later by the Akeno Giant Air Shower
Array (AGASA) [47] have determined that the spectrum of the highest energy
cosmic rays extends beyond 10?° eV, as shown in figure 2.7. The trouble
with these observations is that no astrophysical sources has been found in
the direction of the observed events. Thus the origin of these ultrahigh
energy cosmic rays remains a puzzle. A possible explanation is the decay or
annihilations of supermassive particles, creating the highest energy cosmic
rays.

If the gravitational production is the sole mechanism for producing X
particles that has a density of today of the order of the critical density,
then 0.04 < Mx/H; < 2 [39]. This agrees with the mass of X particles,
Mx 2 10" GeV, in order to produce cosmic rays of energies £ > 10! GeV
[42]. If the X particles are to play the role of cold dark matter and be the

source of UHE cosmic rays, the lifetime must be of the order 7y ~ 10?2 years
1],
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“For every complex natural phenomenon there is
a simple, elegant, compelling, but wrong expla-
nation.”

Thomas Gold

The Minimal Supersymmetric

Standard Model

The Standard Model of particle physics is the SU(3)c®SU(2),®U(1)y gauge
theory of the strong, weak and electromagnetic interactions. The SU(3)¢
part describes the strong (color) interaction and is known as quantum chro-
modynamics (QCD), while the SU(2), ® U(1)y describes electroweak inter-
action. Here C' refers to color, L to left and Y to weak hypercharge.

As already mentioned, all dark matter candidates, apart from the neu-
trinos, cannot be explained by the Standard Model of particle physics (SM).
This is one of the reasons why many physicists now turn to the possibilities
for physics beyond the Standard Model, where our Standard Model is the
low-energy limit of a more fundamental theory [11]. One extension of the
Standard Model is the idea of supersymmetry. Supersymmetry is an extra
symmetry between fermions and bosons: every spin—% fermion has a super-
symmetric spin-0 partner while every spin-1 boson has a spin—% partner. The
supersymmetric partner of the graviton (spin-2) is the gravitino (spin-3).
This theory was not intended to solve the dark matter problem, but it turns
out that it can provide excellent particle candidates nevertheless, depending
on which supersymmetric theory one has in mind.

One of these theories is the Minimal Supersymmetric Standard Model
(MSSM), which is the simplest possible supersymmetric extension of the
Standard Model. It was first introduced in 1981 by Howard Georgi and Savas
Dimopoulos to solve the hierarchy problem. By introducing supersymmetry
in the Standard Model, we get a doubling of all the known particles. The
nomenclature for new particles is quite simple. The names for the scalar
superpartners of the fermions is obtained by adding a prefix “s”, e.g. the
spin-0 partners of the quarks and leptons are called squarks and sleptons.
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3. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

The supersymmetric partners of the vector bosons receive the ending “-ino” to
the name of the Standard Model particle. To distinguish the supersymmetric
particles from the Standard Model particles, we add a tilde to the symbol.

3.1 Motivational reasons for Supersymmetry

There are several motivations for introducing supersymmetry. One is the
coupling constant unification. The coupling constants of the strong, weak
and electromagnetic interactions change as the momentum transfer of the
interaction increases. They meet only approximately in the Standard Model,
but they meet almost together in one point around 10'® GeV in the MSSM,
allowing a “Grand Unification” of the strong, weak and electromagnetic in-
teractions, as shown in figure 3.1 [48].

S
20 =
0k ////éj(@ Standard Model
0 0. J
10> 10 10° 10° 10° 102 10 10% 10% 10° 10* 10° 10®° 10 102 10 10% 10"
u (GeV) M (Gev)

Figure 3.1: The running of the gauge coupling constants in the Standard
Model and in the MSSM [48].

Another reason for introducing supersymmetry is its role in understand-
ing the hierarchy problem, which is linked to the enormous difference between
the electroweak and Planck energy scales. This problem arises in the radia-
tive corrections to the mass of the Higgs boson [11]. All the Standard Model
particles, except for the Higgs boson, acquire their masses via spontaneous
symmetry breaking of the electroweak gauge symmetry. The mass of the
Higgs boson is a free parameter. Estimates from data gathered so far favor
the mass to be around 100 GeV, with an upper limit of 200 GeV. Theoreti-
cally though, the mass should be closer to the Planck scale. Due to quantum
effects, the Higgs boson will receive enormous corrections to its mass from
the virtual effects of every particle that couples to the Higgs field. This huge
discrepancy in the mass is known as the hierarchy problem. Supersymmetry
provide an elegant remedy for this problem. The small Higgs mass is guaran-
teed by cancellations of the radiative corrections; for every loop of particles
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providing a correction to the Higgs mass, there is a loop of virtual super-
particles that cancels it. This ensures that the hierarchy of energy scales is
maintained.

3.2 R-parity

Baryon and lepton numbers are approximately conserved quantities in the
Standard Model®, but they are no longer conserved by all of the renormal-
izable couplings in the supersymmetric extension. This has for instance a
most undesirable effect on the limit of the decay time of the proton, which
is known experimentally to be in excess of 10?2 years. Without baryon and
lepton number being conserved, a decay process like pt — et7%, mediated
by a strange squark, would be possible. With the couplings to the squark
present and unsuppressed, the proton would decay in a fraction of a second.

In order to prevent such a rapid proton decay, we impose a new, discrete
symmetry in the MSSM, which sets all of the renormalizable baryon and
lepton number violating couplings to zero. This symmetry is known as R?-
parity [49]. The R-parity is an additional multiplicative quantum number
defined for each particle as

Rp — (_1)3B+L+237 (3.1)

where B is the baryon number, L is the lepton number and s is the spin. The
Standard Model particles and Higgs bosons have even R-parity (R, = +1),
while all their superpartners have odd R-parity (R, = —1). Conservation of
R-parity implies that

1. supersymmetric particles can only be created or annihilated in even
numbers. This means that a single supersymmetric particle cannot
disappear by decaying into ordinary particles only,

2. heavy supersymmetric particles decay into lighter supersymmetric par-
ticles,

3. the lightest particle with odd R-parity, i.e. the lightest supersymmetric
particle (LSP) must be absolutely stable since it has no allowed state
to decay into without violating R-parity. The LSP turns out to be an
excellent candidate for cold dark matter.

!Non-perturbative effects, like chiral anomalies, violate conservations of baryon and
lepton numbers.
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R-parity leads to important consequences for collider phenomenology and
cosmology. Pairwise superparticles produced in collider experiments decay
eventually into the LSP, which escapes detection. Typical signature of super-
symmetry at collider experiments is the missing energy or momentum [48].

3.3 Supersymmetry algebra

The mathematical formalism describing the relation between bosons and
fermions is in the supersymmetry algebra. A supersymmetry transformation
turns a bosonic state into a fermionic state, and vice versa [50]. Symmetry
in physics refer to a group of transformations that leaves the Lagrangian
invariant. A global supersymmmetry extends the normal Poincaré algebra
for the description of spacetime with an extra generator. The generator )
of such transformations must be an anticommuting spinor, with

Q)|Boson) = |Fermion), Q|Fermion) = |Boson). (3.2)

The generator Q¢ is fermionic, i.e. it has spin % It changes spin by %

The simplest case of supersymmetry involves only one fermionic (2-
component Weyl spinor) generator ), and its conjugate Qﬁ-. Theories that
have more than one distinct copies of @), QB are called extended supersym-
metries. Such models have no phenomenological prospect in four-dimensional
field theories, since they cannot allow for chiral fermions or parity violation
as observed in the Standard Model [50]. The phenomenological viable the-
ory is the non-extended type of supersymmetric model. This model is called
N = 1 supersymmetry, with N referring to the number of supersymmetries
(the number of distinct copies of @), and its conjugate Qﬁ)

The generators @), and Qﬁ- must satisfy an algebra of commutation and
anticommutation relations with the form

[P;u Qa] - [Pua Qﬁ] =0,
{Qaa Qﬁ} - {Qda Qg} = 0,
{Qaa Qﬁ} - 2(Uu)ao'zpua

where P* is the four-momentum generator (operator) of spacetime transla-
tions, and o = (1, 0;) with o; being the Pauli matrices. The indices «;, 3 of Q)
and &, 3 of Q take values 1 or 2. Spinors with undotted indices (the first two
components of a Dirac spinor) transform according to (%, 0)-representation
of the Lorentz group, while spinors with dotted indices (the last two compo-
nents of a Dirac spinor) transform according to (0, 1 )-representation.
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3.4 The particle content of the MSSM

All particles in supersymmetric theories fall into irreducible representations
of the supersymmetry algebra, called supermultiplets. These supermultiplets
have both bosonic and fermionic components (states), which are known as
superpartners of each other.

For each fermionic state there is a bosonic state with the same mass. This
can be seen if we consider a fermionic state |f) with mass m. The bosonic
state is |b) = Q,|f). Then

P2|f) =m?*|f) (3.6)

= P?|b) = P’Qalf) = QuP?|f) = Qum®|f) = m?|D). (3.7)

The squared mass operator P? commutes with the operators Q.,, Q_B’ and
with all spacetime rotation and translation operators, which means that par-
ticles inhabiting the same irreducible supermultiplet must have equal eigen-
values of P2, and therefore equal masses.

Particles in the same supermultiplet must also be in the same representa-
tion of the gauge group since the generators (), Qﬁ- also commute with the
generators of gauge transformations. The particles must then have the same
electrical charges, weak isospin and color degrees of freedom [50].

Another property of supermultiplets is that they contain equal number
of fermion and boson degrees of freedom,

np = nNg. (38)

There are two types of supermultiplets which appear in renormalizable
field theories; chiral and vector supermultiplets. The simplest possibility for
a supermultiplet consistent with equation (3.8) has a single Weyl fermion
and two real scalars. The Weyl fermion has two spin helicity states, so that
np = 2, while the two real scalars have ng = 1 each. The two real scalar
degrees of freedom is usually assembled into a complex scalar field. The
combination of a two-component Weyl fermion and a complex scalar field is
called a chiral or matter or scalar supermultiplet. The chiral multiplets in
the MSSM are shown in table 3.1.

Only chiral supermultiplets can contain fermions whose left-handed com-
ponents transform differently under SU(2) x U(1)y than their right-handed
components [50]. The Standard Model fermions are chiral, so they must be
members of chiral supermultiplets. For each fermion there are two sfermions,
corresponding to the superpartners of the right-handed and left-handed com-
ponents of the fermion. The sfermions get either a subscript R or L, which
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Particles spin 0 spin 5 | SU(3)e x SU(2), x U(1)y
squarks, quarks | (4, JL) (up,dyp) (3,2, %)
(x 3 families) uk ul, (3,1,-2)
di di (3.15)
sleptons, leptons | (7, ér) (v,er) (1,2,—3)
(x 3 families) &, el (1,1,1)
Higgs, higgsinos | (H;” H) | (H;} HO) (1,2,+3)
(HyHy) | (H) Hy) (1,2, —3)

Table 3.1: Chiral supermultiplets in the Minimal Supersymmetric Standard
Model.

Particles spin 3 | spin1l | SUB)e x SU(2), x U(1)y
gluino, gluon g g (8,1,0)
winos, W bosons | W= W0 | W= W?° (1,3,0)
bino, B boson B° B° (1,1,0)

Table 3.2: Gauge supermultiplets in the Minimal Supersymmetric Standard
Model.

refers to the right or left handedness, respectively, of the Standard Model
fermions. The neutrinos are always left-handed if we neglect their small
masses, so this nomenclature does not apply to sneutrinos. The gauge inter-
actions of squark and sleptons fields are the same as for the corresponding
Standard Model fermions [50].

A slightly more complicated possibility for a supermultiplet contains a
spin-1 vector boson. This must be a massless gauge boson if the theory is to
be renormalizable. Such a gauge boson has two helicity states, i.e. ng = 2.
Its corresponding superpartner is therefore a massless spin—% Weyl fermion
with two helicity states, i.e. np = 2. A massless spin-2 superpartner is not

2
possible, since the theory would not be renormalizable.

The fermionic partners of the gauge bosons are called gauginos. Like
their Standard Model partners, they transform as the adjoint representation
of the gauge group. The right- and left-handed components follow the same
gauge transformation properties, since the adjoint representation of a gauge
group is always its conjugate [50]. A combination of spin—% gauginos and
spin-1 gauge bosons is called a gauge or vector supermultiplet. The gauge
multiplet in the MSSM is shown in table 3.2.
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The most important technical difference from the Standard Model is in
the Higgs sector. As opposed to the one doublet required in the Standard
Model, the Higgs sector is required to contain two complex Higgs doublets,
leaving eight degrees of freedom before the symmetry breaking. Three of
these states disappear as the longitudinal components of the weak gauge
bosons (W, W~ and Z) after the usual Higgs mechanism. The five physical
states left are the two neutral scalar (C'P-even) Higgs particles H® and h°
(where R is the lighter state by convention), one neutral pseudoscalar (C'P-
odd) state A°, and two charged scalars H*.

The superpartners of the charged W bosons (W', W~) and charged
Higgs bosons, the charged winos and the charged higgsino, carry the same
SU@3)c x U(1)gy quantum numbers. They will in general mix after
electroweak-symmetry breaking, the breaking of SU(2) x U(1)y. This re-
sults in two mass eigenstates that are linear combinations called charginos.

The spin-5 superpartners of the spin-1 gauge bosons W and B” are the
wino W and the bino B°. After electroweak symmetry breaking, the W?°, B°
gauge eigenstates mix to give mass eigenstates Z° and . The correspond-
ing gaugino mixtures of W° and B° are called zino (Z°) and photino (7).
Together with neutral Higgs bosons, these states mix into four Majorana
fermionic mass eigenstates called neutralinos. The neutralinos are labeled
X0, X9, X3, XY, ordered with increasing mass. An overview of the Standard
Model particles and fields and their supersymmetric partners is presented in
figure 3.3.

Supersymmetry is obviously a broken symmetry. An exact supersymme-
try requires particles and sparticles to have the same mass. No supersym-
metric particles with masses like that of their Standard Model partner has
been seen. The scale of supersymmetry breaking is expected to be of order
the weak scale. This assumption is necessary to stabilize the weak scale. The
mass difference between particles and their superpartners should be less than
about 10° GeV:

‘miarticle - mSuperpartner| < (103G6V)2 (39)

There is no firm experimental evidence for supersymmetric particles. This
means that their rest energies, if they exist, lie beyond the range currently
probed by accelerators, or that they are very weakly coupled.
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Normal particles/fields

Supersymmetric partners

Interaction eigenstates

Mass eigenstates

Symbol Name Spin | Symbol Name Symbol Name Spin
qg=d,c,b,u,s,t quark % 4o, qr ~ squark q1, o squark 0
l=epu,1 lepton % ZL, In slepton Zl, 5 slepton 0
V= Ve, Vy, Vs neutrino % v sneutrino v sneutrino 0
g gluon 1 |9 gluino g gluino %
W= W-boson 1| W wino
H~ Higgs boson 0 | H 1 higgsino )Zf2 chargino %
HT Higgs boson 0 | Hy higgsino
B B-field 1 | B bino )
wo WO-field 1| we wino
ho Higgs boson 0 | - o Xi234  neutralino :
h° higgsino
H° Higgs boson 0 N o
HO° higgsino
A° Higgs boson 0
G graviton 2 gravitino G gravitino 3

Table 3.3:

Particles and their superpartners in the MSSM. Adapted from [51].
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3.4.1 Neutralinos

The mixtures of the neutral gaugino states form four distinct Majorana
fermions, called neutralinos. In contrast to the usual Dirac fermion, a Ma-
jorana fermion is a particle which is its own antiparticle. Thus, neutralinos
can annihilate with themselves.

The neutralinos are eigenstates of a symmetric mass matrix. The neu-
tralino mass matrix in the gauge-eigenstate basis ¢° = (B, W0 k%, H%) is
given by [52]

M1 0 —Mmz CgSw mz SpgSw
0 M- My CgC —My Sz C
My = 2 7z C3 Cw Z S Cw . (3.10)
—Mz C3 8w Mz C3Cw 0 —
Mz SgSw  —MyzSgCw — 0

where My, My and p are the bino, wino and higgsino mass parameters, re-
spectively, my is the mass of the Z-boson, 6y is the Weinberg angle and
tang is the ratio of the vacuum expectation values of the Higgs bosons. Here
cg = cosf3, sg = sinf3, ey = cosby and sy = sinfy. The mass matrix
is symmetric because of the Majorana nature of the neutralinos, for which
we have the following identity for anticommuting four-component Majorana
spinors [52]:

X (1% 75) X0 = Xi(1 £ 75)X5- (3.11)

In order to obtain mass eigenstates the symmetric matrix My can be
diagonalized by a unitary mixing matrix, N;; where the indices ¢ and j are
mass and gauge eigenstate labels respectively. Only one diagonalizing matrix
is required since My is symmetric. The four-component mass-eigenstates are
defined as

Xy= Nyl dj=1,..4, (3.12)
or
X B
i% = Vg]o , (3.13)
x§ H°
where N satisfies:
N*MyN~' = Np. (3.14)
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Here Np is the diagonal neutralino mass matrix. The result of the diagonal-
ization of M must has real positive entries on the diagonal:

mg 00 0

w 00 (3.15)
meo 0

0 0
0

0 m o
4

0 m
Np =
0
0 X
The mg,i=1,...,4, are the (non-negative) masses of the physical neutralino
states with mgo < ... <my. The lightest neutralino — the lowest-lying mass
eigenstate of the two gauginos and the two higgsinos — is then decomposed
as

0 _ 5 770 70 770

X1 = NllB + N12W + N13h + N14H . (316)

The coefficients V;; are the entries of the neutralino mixing matrix. They
are normalized such that

4
D OINgP =1,  i=1,2,34. (3.17)
j=1

The lightest neutralino is the most likely LSP in the MSSM [21], which is
why they are among the most widely studied dark matter candidates. We
will from now on call the lightest neutralino for just the neutralino.

The minimal supersymmetric model has 63 free parameters with real mass
matrices and couplings. To make the MSSM more easy to handle, we assume
a common value for the masses of scalar fermions and the trilinear couplings
(MSUSY = mf = Af) [53]

The most relevant of the remaining free parameters are the SU(2) gaugino
mass (Ms), the Higgs mixing parameter (1), the ratio of vacuum expectation
values (VEVs) of Higgs fields (tanf = vy/v;1) and the CP-odd Higgs-boson
mass (1my).

The dimensionality in parameter space can be further reduced. Since the
gauge couplings in the MSSM apparently unifies at Q = Mgyr = 2 x 106
GeV, it is assumed that the gaugino masses also unify near that scale. This
value is called my /. It then follows that

L R R (3.18)
9i 92 93 dour
valid up to small two-loop effects and possible much larger threshold effects
near Mgy [50]. Here gour is the unified gauge coupling at Q) = Mgyr. This
leads to the GUT-relation

5
M, ~ gtan2 Ow My ~ 0.5M, (3.19)
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at the electroweak scale. Taking this assumption into account, the neutralino
masses and mixing angles depend on only three unknown parameters.

The values of the four parameters M;, My, and tan3 determine the
masses and mixing angles of the neutralinos. If |u| > My > My, the two
lightest neutralino states will be dominated by the gaugino components, with
1Y being mostly B and %9 being mostly W°. Such neutralinos will annihilate
mostly into heavy quarks [53]. For |u| < |M;], the two lightest neutralino is
dominated by the higgsino components, ¥V, X3 ~ (H?+ HY)/v/2 with masses
close to |p|. Such neutralinos will annihilate mostly into gauge bosons. If
|pe| ~ | M;|, some of the states will be strongly mixed. The size of the mixing
also depends to some extent on tan (.

The bino (fg) and wino (fw) fraction is defined as

f5 = INul?, fw = [N, (3.20)
or combined, as the gaugino fraction (f,)
fo=INul” + [N, (3.21)
The higgsino (fy) fraction is defined as
fr = |Ng|? + | N1af”. (3.22)

Despite the many free parameters present in SUSY theories, the state
that seems to most naturally give 2, h? ~ 1 is the nearly pure bino. The
higgsino disfavored out because of the efficient annihilation to WW, ZZ it
and coannihilation, which typically gives Q, h? < 1.
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“All men by nature desire to know. An indication
of this is the delight we take in our senses; for
even apart from their usefulness they are loved
for themselves; and above all others the sense of
sight. For not only with a view to action, but even
when we are not going to do anything, we prefer
sight to almost everything else. The reason is that
this, most of all the senses, makes us know and
brings to light many differences between things.”

Aristotle

Indirect detection

Indirect detection of dark matter is the technique of observing the products
produced in dark matter particle-antiparticle annihilation or dark matter de-
cays. There are several proposed methods of detecting these products. One
of the most discussed method is looking for signals from neutralino annihila-
tion at the galactic center or from the core of the Sun or the Earth. We will
however, investigate the probability of detecting high energy neutrinos and
neutralinos from decays of superheavy dark matter.

4.1 Decay of superheavy dark matter

It is possible that decays of superheavy X particles produce supersymmetric
particles that ultimately decay to the lightest supersymmetric particle |54,
55]. The primary decay of a superheavy X particle is into two or more
particles of the MSSM that are generally off-shell. Instead of being on-shell,
they have large (time-like) virtualities @ of order Mx. Thus each particle
produced in the primary decay will generate a parton shower. The shower
development is driven by the splitting of a virtual particle into two other
particles with smaller virtualities. All MSSM particles participate in this
shower as long as the virtuality is larger than the typical sparticle mass scale
Msysy. The energy and the virtuality ¢ of the cascade particles diminish
progressively in the process of the cascade development.

The breaking of both supersymmetry and SU(2) xU(1)y gauge invariance
becomes important at virtuality Msysy ~ 1TeV. All the massive superpar-
ticles that have been produced so far can now be considered on-shell. The
superparticles will now decay into Standard Model particles and the only
possible stable sparticle, the LSP [54, 55]. This also applies to the heavy
SM particles, i.e. the top quarks and the massive bosons, while the lighter
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quarks and gluons will continue a perturbative parton shower until they have
reached either their on-shell mass scale or the typical scale of hadronization
naa ~ 1GeV. At the hadronization scale, strong interactions become non-
perturbative, forcing partons to hadronize into mesons or baryons. In the
end, the unstable hadrons and leptons will also decay, leaving only the stable
particles behind [54, 55]. A schematic representation of the whole process is
depicted in figure 4.1.

4.1.1 Neutralino and neutrino fluxes

The fluxes of the particles produced in decay of supermassive X-particles
are of course not known, but some predictions can be made. The fragmen-
tation spectra of the neutrino and neutralino fluxes can be calculated from
Monte Carlo simulations for jet fragmentation in SUSY QCD. The predicted
fragmentation spectra used in this thesis are from ref. [56].

A fragmentation function is the average number of particles ¢ released per
decay, per unit interval of x at the value =,

dN;

dz
Here we assume that a superheavy X-particle with mass Mx decays into two
jets with energy fraction

(4.1)

E 2K
=— x€l0,1] 4.2
B mx [0,1] (4.2)

Tr =

Furthermore, it is assumed that the primary partons produced have the max-
imum virtuality Q* = M% /4, and for simplicity that the X-particle has equal
branching ratios to all partons. It is assumed that the SUSY mass scale is
Mgysy = 200GeV. For Mgysy = 1TeV, the predicted neutralino spectra
are about half of the spectra for Mgygy = 200 GeV.

In general, the particle flux is

d®; dN;
dE Ad—E’
2 1 —l'

where A is the flux normalization with dimension cm™%sr™'s

No non-atmospheric component of the neutrino spectrum has yet been
observed because of the high atmospheric neutrino flux that dominates at
lower energies F, < 50GeV. The atmospheric flux decreases roughly with
E;37in contrast to the extraterrestrial contribution, which is expected to de-
crease with £2 [57]. Consequently, the extraterrestrial contribution should
dominate at higher energies.

(4.3)
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(SUSY (hadronization)
+SU(2)@U(1)
breaking)

Figure 4.1: Schematic MSSM cascade for an initial squark with a virtuality
@ ~ Mx. The initial squark decays into partons, whose virtuality decrease
in the fragmentation process. The full circles indicate decays of massive
particles. The evolution of the cascade is separated into two epochs, which
is shown with the two vertical dashed lines. At the first epoch with vir-
tuality @) > Msysy, all MSSM particles can be produced in fragmentation
processes. Particles with mass of order Mgygy decay at the first vertical line.
For Msusy > @ > Quaq light QCD degrees of freedom still contribute to
the perturbative evolution of the cascade. At the second vertical line, all
partons hadronize, and unstable hadrons and leptons decay. [55]. The final
shower consists mostly of fotons, neutrinos and to a lesser extent protons and
neutralinos.
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The normalization of the neutrino flux is determined by the source prop-
erties. Since we do not know the properties of superheavy dark matter par-
ticles, we normalize the flux so that it is just below the deduced upper limit
of the muon-neutrino flux from the neutrino telescope AMANDA-II. The
sensitivity obtained for a diffuse neutrino flux is about [58]

dN,
) D p—
vdE,

<74x1078GeVem s tsr (4.4)

valid in the energy range (16 — 2500) TeV. The predicted fluxes from decay
of a supermassive particle with mass My = 10'2 GeV, weighted with E?
and with normalization constant A = 1.0 x 1072 em~2s7!sr~!, are shown in
figure 4.2, together with the AMANDA-IT limit.

Both neutrinos and neutralinos can interact with matter, resulting in
secondaries that can be observed. The neutrino can be converted into its
corresponding charged lepton through charged-current scattering, while neu-
tralinos can scatter on matter and also produce charged leptons via flavor-
changing weak decays of quarks.

Because of the similarities between neutrino and neutralino interactions,
it should in principle be possible to observe neutralinos with high energy
neutrino telescopes. The challenge will then be to distinguish them from
neutrinos. If the cross section of neutralino-nucleon scattering is smaller than
the neutrino-nucleon scattering, ultra-high energy cosmic neutralinos may
travel a longer distance through the Earth than neutrinos before interacting,
hence producing events at much higher energies than neutrinos.

38



4.1. DECAY OF SUPERHEAVY DARK MATTER

" Neutrino
10° 1 Neutralino ———— |
AMANDA limit

=

S
i
[

E2 dN/JE [GeV em?srt s'l]
= =
o o
N S

[N

QS
=
w

[y
i

-
S

1 10 10% 10% 10* 10° 10° 107 10® 10° 10%°10% 10%?
Energy [GeV]

Figure 4.2: The predicted neutrino and neutralino fluxes for Mgysy =
200 GeV, scaled to be just below the AMANDA-II upper limit (which is valid
in the energy range (16 — 2500) TeV). For Msysy = 1TeV, the neutralino
flux is approximately half of the value for the flux of for Msysy = 250 GeV.
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4.2 Neutrino telescopes

Neutrinos are very elusive particles and scientists need to think big to capture
them. Even though they are some of the most pervasive forms of matter in
the Universe, they interact so feebly with matter that they are so to speak
invisible to us. There is only a slight chance that occasionally one of the
337 relic neutrinos and antineutrinos per cm?® that fills the Universe, will
hit an atom and cause an observable effect. To increase the probability to
observe such an effect, a neutrino detector has to contain enough matter for
the neutrinos to interact with.

Neutrino telescopes operate by looking for neutrino-induced muons, which
approximately conserves the direction of the incoming neutrino. A muon can
be produced if an energetic muon-neutrino undergoes a charged-current in-
teraction. Muons are also produced copiously in the atmosphere. Any down-
ward flux of neutrinos would be completely overshadowed by atmospheric
muons from pion decay in the atmosphere overhead. To distinguish between
the muons created from cosmic ray showers in the atmosphere and the ones
created from cosmic neutrinos, detectors look for upward-going muons with
the Earth acting as a filter. Any upward-going muon can only have been cre-
ated when neutrinos from sources on the opposite side of the Earth interacted
in the medium beneath the detector.

Muons are penetrating particles, but they cannot traverse the Earth.
They can travel a reasonable range in matter before decaying, in contrast
to electrons and 7-leptons. Electrons have a very short range because of
their much smaller mass, while the much heavier 7-leptons have a very short
lifetime!, making them difficult to detect.

When traveling through a medium, charged particles can cause Cerenkov
radiation, which can be picked up by an array of phototubes. Cerenkov
radiation is electromagnetic radiation emitted when a charged particle, e.g
a muon, passes through an insulator at a speed greater than the speed of
light in the medium. As the charged particle travels, it disrupts the local
electromagnetic field in its medium, causing the electrons in the atoms of
the insulator to be displaced and polarized. When the insulator’s electrons
restore themselves to equilibrium after the disruption has passed, photons
are emitted. Most of the radiation is in the UV spectrum, but some of it can
be observed as blue light.

IThe lifetime is ¢, ~ 3 - 1073 sec. Although, if PeV 7-neutrinos exist, a 7-lepton will
travel around 100 m, thanks to time dilation [26].
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Figure 4.3: Six optical sensors, which record the arrival times of Cerenkov
radiation, is needed to determine the direction of the muon track [59].

4.2.1 IceCube

IceCube is a 1 km? high energy optical neutrino detector under construction
at the South Pole, which purpose is to detect high energy cosmic neutrinos,
spanning from energies of 10! eV to about 10%! eV. IceCube succeeds the first
high energy neutrino telescope set in ice, AMANDA - the Antarctic Muon
and Neutrino Detector Array?.

The Antarctic ice that lies a kilometer below the surface condensed from
snow that fell over ten thousand years ago, right after the last ice age. At this
depth the pressure is so high that all the air bubbles is squeezed out, leaving
the ice remarkably pure. The Antarctic polar ice is also free of radioactivity,
which makes it an ideal medium for observing neutrinos.

Cerenkov radiation can travel undimmed for more than a hundred meters.
Along its way in the ice, the light will pass sensitive photomultipliers which
convert, the faint light to an electrical signal which the surface equipment
records. The direction of the neutrino can be deduced from the muon track,
which can be reconstructed from the difference in arrival time of the Cerenkov
wave front at the photomultipliers, shown schematically in figure 4.3.

By the time it is finished, IceCube will consist of 4200 spherical optical
sensors (photomultiplier tubes) set in the Antarctic ice at depths between
1,450 and 2,450 meters, encompassing a cubic kilometer of ice in total. A
surface air shower detector, IceTop, set to detect muons of atmospheric origin,
will also be constructed. The design of IceCube is shown in figures 4.4 and
4.5. If everything proceed as planned, construction will finish in 2011 [62].

2The first high energy neutrino telescope was the Baikal Neutrino Telescope deployed
in Lake Baikal in Siberia — the deepest fresh-water lake in the world.
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Grid
north

Figure 4.4: Overview of the arrangements of strings in the IceCube detector
at the South Pole station. Also shown is the existing AMANDA detector
and the SPASE air shower array [60].

EANDA

245@

Figure 4.5: Conceptual design of the IceCube detector at the South Pole
station. The existing AMANDA detector and an air shower array IceTop
will be embedded in the new detector. Adapted from |61].
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4.3 Deep inelastic scattering in the parton
model

4.3.1 The naive parton model

Since we are dealing with high energy neutrinos and neutralinos, it is nec-
essary to take quarks into account when considering the interaction of these
particles with matter. Highly energetic leptons and neutralinos (E > GeV)
have a very small wavelength, \ ~ % < 0.2fm. In contrast to nucleons, they
do not possess a resolvable internal structure and behave as point particles.
Thus, the cross sections of these reactions depend merely on the internal
structure of the nucleon.

In the parton model, which was first introduced by Richard Feynman and
James Bjorken in the late 60s |63, 64|, we assume that hadrons are made up
of point-like particles called partons. We now recognize the partons to be
quarks and their mediators, the gluons.

Beside the three quarks (called valence quarks) from which the quantum
numbers of the nucleon are constructed, it is possible for gluons to split into
virtual quark-antiquark pairs (called sea quarks) or more gluons. The quark-
antiquark pairs can emerge briefly from the vacuum by borrowing energy
according to Heisenberg’s uncertainty principle. This notion is supported by
experiments, which show that only about half of the proton’s momentum
is carried by the valence quarks [65]. If the valence quarks were the only
constituents of the proton, the sum of their momenta should be equal to the
momentum of the proton. This implies that there must be something else
besides the valence quarks contributing to the momentum of the proton.

The quantum numbers of the nucleon are still determined by the valence
quarks. The sea quarks will have no net effect since they emerge in quark-
antiquark pairs |66].

Following this, the scattering off the nucleon is due to the scattering
off its individual constituents. At high energies, the incoming particle will
scatter inelastically off a nucleon, colliding with one of the partons within
the nucleon. We need to know how the partons are distributed inside the
nucleon through the so called parton distribution functions |67]

filz, Q7). (4.5)

The parton distribution functions are, at lowest order in perturbation theory,
identical to the probability density for finding a particle with a certain frac-
tion  of the hadron momentum when probed by the momentum transfer 2.
Experimental values of the distributions are obtained from global quantum
chromodynamics (QQCD) analysis of hard scattering processes [68].
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The total momentum p* of the hadron is shared between the partons. Any
relevant parton entering the hard scattering from an initial state hadron has
momentum xp”, with 0 < z < 1. (Within the hard scattering we make the
approximation p? = 0 [67].) The total momentum of the hadron is constant

/dea:fi(,Qz) = 1. (4.6)

4.3.2 Deep inelastic scattering

The deep inelastic regime is the regime where Q% > 1 GeV?, where Q? = —¢°

is the four-momentum transfer to the target. At such high )2, the strong
coupling constant a,(Q?) becomes small enough to allow calculations in a
perturbative approximation. These very large momentum transfers allows
us to resolve smaller structures that might exist only for shorter times.

A deep inelastic probe scatters incoherently off the free, individual partons
from which the hadron is made of. The struck parton has enough energy to
escape the hadron, but is required by confinement to produce additional
partons, such that they bind together into colorless hadrons.

A deeply inelastic scattering (DIS) process is generically of the form

I(k) + h(p) — I'(K) + X, (4.7)

where [(k) represents a lepton with momentum k*, h(p) a hadron of momen-
tum p*, and X an arbitrary hadronic state. The process is mediated by the
exchange of a vector boson. In the case of charged-current neutrino-nucleon
scattering, the vector boson is a W-boson. The DIS process is totally in-
clusive in the hadronic final state, i.e. we are not interested in the hadronic
“left-overs”. Because of this it is only relevant to observe the outgoing lepton
of momentum k’*. The term inelastic refers to the fact that the final hadronic
state X has an invariant mass much larger than that of the nucleon.

In DIS, the momentum transfer between lepton and hadron, ¢, is space-
like,

g = k" — k™,
22
¢ =Q". (4.8)

The kinematics in a deeply inelastic scattering process, can be completely
described by the negative of the four-momentum transfer squared, @2, and
a scaling factor x,

2
s Y

N 2MNI/

(4.9)
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Figure 4.6: Kinematics in a deep inelastic scattering.

called Bjorken x. In the naive parton model, the dependence of the inelastic
scattering functions on @Q? fades away, and they become functions of the
dimensionless scaling variable z alone. The phenomenon of scaling was first
predicted by James Bjorken [64], hence the name Bjorken z.

The physical interpretation of = is as follows. Imagine a lepton colliding
with a single massless quark, and that the quark scatters elastically. Then
x is the fraction of the hadron’s momentum the struck quark was carrying,
evaluated in the infinite momentum frame (or Breit frame). In the infinite
momentum frame, the hadron’s momentum is assumed to be infinitely large,
|p] — oo. It is the frame where the hadron is initially approaching the lepton
at very high energy. Because of time dilation in the infinite momentum frame,
the proper motion of the parton constituents of the hadron is slowed down.
This effectively freezes the partons during the scattering process so that the
partons do not interact with each other. The lepton interacts only with one
of the partons.

Let p and p’ be the four-momenta of the partons before and after the
interactions. Since x is the momentum fraction of the partons in the hadron,
e.g. a nucleon, p = xpy, the conservation of four-momentum gives

pP—p=gq (4.10)
g+p=yp
q+xpy =p'

= (g+apy)? = (p) = mz ~

= ¢ + (vpyn)* +2qzpN ~ 0
——

m20

SIS

In the end we get
2qrpy = —¢° = Q% (4.11)
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so that
Q2
- 2gpN

x (4.12)
describes the momentum fraction of the partons on the nucleon.

As we will see in the next section, however, Bjorken scaling is not exact.
QCD effects break the scale invariance by inducing a dependence of the
structure functions of order ~ In(Q?).

4.3.3 The QCD improved parton model

QCD processes become more important for increasing momentum transfers,
and it is therefore necessary to calculate QCD corrections to the parton model
of deep inelastic scattering. Such corrections extend the naive quark parton
model by allowing interactions between the partons via gluons. On average,
more quarks, antiquarks, and gluons occur with increasing 92, between which
the total momentum of the nucleon is distributed. Because more quark-
antiquark pairs can be excited, the number of partons in a nucleon increases
with higher Q?. Hence, the total momentum of the nucleon is distributed over
more partons, so that the distribution function f;(z, @) has to decrease. For
small values of z, vacuum excitations in form of quark-antiquark pairs will
dominate. The bigger %, the more partons with decreasing x is resolved [69].

T 1
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Figure 4.7: The CTEQ6-DIS parton distribution functions z f;(z, Q?) in a
proton for i = u,d, s,b as function of x for Q* = 4GeV? (left) and Q> =
100? GeV? (right). The divergence of the functions for  — 0 indicates that
the interaction is large for small momentum transfers.

The (*-dependence of the distribution functions that enter the parton
model of deep inelastic scattering processes, is successfully described in per-

turbative QCD by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
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equations [69]

dgi(gié%z) - asf)/x " { i(y, Q*) P, (g) +g(y,Q2)qu<§)}, (4.13)

dgﬁgg)z) = aséff?) /: % {é l9;(y, @) + éj(y,Q2)]qu<§)+

9(y, Q%) Py GH : (4.14)

where ¢;(y, Q%) and g(y, Q?) refers to the parton distribution functions for
quarks and gluons, respectively. The splitting functions Pij(g), with 7,7 =
q, g give the probability that parton j with momentum y radiates a quark or
gluon and becomes a parton of type ¢ with fraction (E) of the momentum of
parton j. The first equation describes the change of the quark densities with
Q? because of gluon radiation and gluon splitting, while the second equation
describes the change of the gluon density with Q? because of gluon radiation
off quarks and gluons. The distribution in x at an initial value Q3, however,
depends on non-perturbative QCD dynamics of the bound state hadron and

must therefore be obtained by fitting parameterizations to data.

i S

Figure 4.8: The lowest order QCD splitting functions F;; (5)7 with i,7 = ¢, g.
Each splitting functions gives the probability that a parton of type p converts
into a parton of type p', carrying a fraction ¥ of the momentum of parton p.

The CTEQ? parton distribution functions that we have used, has been
obtained by fitting DGLAP-evolved ansétze with experimental data from
structure measurements in deep inelastic lepton-nucleon scattering [68|. The
parton distribution functions are universal, that is, they can be extracted
from some dedicated experiments and then used to predict cross sections for
other processes involving initial state hadrons.

3CTEQ is an abbreviation for the Coordinated Theoretical/Experimental Project on
QCD Phenomenology and Tests of the Standard Model.
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The DGLAP equations are an approximation valid for large Q? and suf-
ficiently large z. In CTEQG, the values of () and x are

107°% <2 <1, 1.3GeV < Q < 10* GeV. (4.15)

4.4 Neutrino interactions with matter

A neutrino can produce a muon in the inelastic charged-current scattering
process v, + N — p~ + hadrons (X)), which is called an inclusive process
since it is independently of the final hadron configuration.

The kinematics in the process can be described by the four-momenta
kK ,q =k — K py,px of the incoming neutrino, outgoing muon, the ex-
changed W-boson, the incoming nucleon N and the outgoing final hadron
state X given in the laboratory frame as

k= (E, k) K = (B, k,) q=(v,q) (4.16)
pn = (My,0) px = (Ex,px), (4.17)

with F, is the neutrino energy, Fx is the energy of the final hadron state
and My is the nucleon mass.
The energy difference v in the nucleon rest frame is

PN - q
v = My =F, - EM. (4.18)

while the negative four-momentum transfer is

Q=-=—(k—kK)Y?=—(E,—-E)+(k-F)

0 4.19

= 4B, E,sin’ 7, (4.19)
where 6 is the scattering angle of the outgoing muon.

It is useful to express the cross section in terms of the Bjorken scaling

variable x and the inelasticity parameter y. The scaling variable z is given
by

—¢ Q?

= = ithO0 < x < 1. 4.20

T o 2Myy TS (4.20)

The fraction of the lepton energy transferred to the proton in its rest frame
is

pN-q v E, @ .
= = —=1-2t == tho <y <1, 4.21
4 pn-k  E, E, ST W =¥ ( )

where s is the square of the total center-of-mass (c.m.) energy of the lepton-
nucleon collision

s = (k+pn)? =2MyE + M3 ~ 2MyE. (4.22)
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N
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Figure 4.9: Feynman diagram for deep inelastic inclusive charged-current
neutrino-nucleon scattering.

4.4.1 Quark distribution functions

The parton model predicts deep inelastic scattering as an incoherent sum of
lq or [q scattering on partons. The double differential cross section can be
written as |70]

do 2 // 2 =
dody quQ lq I'q +quQ (lq 'q),

(4.23)
where ¢(z, Q%) and q(x, Q?) is the quark and anti-quark distribution func-
tions. The quark-parton distribution functions can be split into a valence-
and a sea-quark contribution

w(@, Q) = un(z, Q) 4 us(z, Q%) d(z, Q) = do(z, Q) +d,(z, Q7). (4.24)
Because of the symmetry of the ¢q sea, it is required that

us(r, Q*) = u(z, Q%) sz, Q%) = 5(x, Q% (4.25)

do(2,Q*) = d(x, Q) (e, Q%) = o(x, Q%). (4.26)

The valence quark distributions of the proton satisfy the quark number
sum rules

N, = /O de(u(z) — () =2, Nyj— /O de(d(z) — d(z) = 1. (4.27)

In terms of the quark distribution functions ¢(z, @*) the differential cross
sections of neutrinos on quarks and antiquarks with mass m, are [70]

do B G2 22mg ks,

yds 9 = a(x, Q%)
do , . Gi2myE, _
)= @)y (4.28)
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The factor (1 — y)? describes the suppression of the scattering cross section
in the weak interaction between two states of opposite helicity.

In charged-current interactions, neutrinos scatter only off quarks with
negative charge (d, @, s).

1 _ 2
v, +d e o +u 3¢
_ 2 (1
Vy +u( — ge) — +d(§e) (4.29)

The corresponding neutrino-proton cross section can be written as

d G2 M,E
o) = TN o Q) st @)+ [nlo, Q)+l @1
(4.30)
Since the proton and neutron are in an isospin doublet we have that
up(x) = dn(x)
dy(z) — upy(x). (4.31)

This leads to the neutrino-neutron cross section

do _ GLM,FE

dxdy (vn) s

X 27 [[u(as, Q) +s(x, Q*))+]d(z, Q*)+e(x, Q?)] (1—y)2] .

(4.32)
In the previous calculations we have neglected the W-propagator term. This
we can not do for very high energies, and in equations (4.30) and (4.32) the

replacement
2 2
G2 — G%/(l + Q—Q) (4.33)
My,

n—+p
2

has to be made.

The cross section for neutrino scattering on an isoscalar target N =
is obtained by averaging the neutrino-proton and neutrino-neutron cross sec-
tions

i) = 3 () )

dxdy 2 \ dxdy dxdy
2GIME, ([ ME \° o ,

(4.34)
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Figure 4.10: The charged-current cross section of neutrino scattering off nu-
cleons as a function of the neutrino energy.

with the quark and anti-quark distribution functions

2 2 2 2
Q(-T,Q2) :uv(x>Q );’dv(va ) + us(x>Q );_ds(va ) + (435)

ss(w, Q%) + b(2, Q%)

U\ T 2 s\, 2 2 2
q(z,Q*) = o ’Q);—d( Q)+cs(x,Q)+ts(x,Q). (4.36)

Thus, in perturbative QCD (pQCD), the neutrino-nucleon cross section

can be written as
1 1 d2 vN
a”N:/ dx/ dy=2 (4.37)
0 0 dxdy

Because of the great mass of the charm (c), bottom (b) and top ()
quarks, we have neglected contributions from cz, s, tt pairs in our calcula-
tions. Lighter quarks — the up (u), down (d) and strange (s) quarks — are
the main components of the nucleon over the QQ*-range relevant to neutrino-
nucleon scattering. The resulting cross section for neutrinos off nucleons is
shown in figure 4.10.
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Figure 4.11: The Feynman diagram for s-channel xl¢; scattering into all
allowed final states X, where ¢; is a virtual squark.

4.5 Neutralino interactions with matter

Ultra-relativistic neutralinos can interact with quarks by exchange of squarks
in the s-channel*. Such an interaction can either directly yield a lightest su-
persymmetric particle — a neutralino, or a heavier superparticle that quickly
decays to the lightest neutralino by virtue of R-parity. Hence, neutralinos
will generate less energetic neutralinos in each interactions, and the number
of neutralinos will not be depleted.

4.5.1 Kinematics and cross section

The cross section of s-channel neutralino-quark scattering through a reso-
nance particle, x\¢; — ¢ — X, is

o(s) =" / deg(z, Q2)6(5), (4.38)

where x is the fraction of the proton’s momentum carried by the quark,
q(z) is the quark structure function and & is the partonic cross section for
XJq; — g;. Figure 4.11 shows the Feynman diagram for the process.

To calculate the partonic cross section, &, we need the (relativistic) Breit-
Wigner formula [71]

m? 2J+1 Iy
p? (281 +1)(282+ 1) (s — m?)2 + m2TZ,,

(s = m?)
(4.39)
for the contribution of an unstable particle (or resonance) of spin .J, mass m

and total decay width Iy, to the total center-of-mass (c.m.) cross section
of a reaction i — X near the resonance energy /s = m. I'; and I'y are the

O—tot(i — X) =A4r

4The term s-channel represents Feynman diagrams where the interaction involves the
exchange of an intermediate particle whose squared momentum equals the Mandelstam
variable s.

52



4.5. NEUTRALINO INTERACTIONS WITH MATTER

partial widths of this resonance for decay to the incident channel (i) and the
exit channel (X)) respectively. The spins for the colliding particles are s; and
S9.

For the case of the total partonic cross-section of neutralino-quark scat-
tering we get

1 5

T -
|[Pr[? (5 = mg)? + mgIT,

5(3) = I'(G — g + X)), (4.40)

where § is the square of the partonic c.m. energy, |P| = (8 — m?((l))/Q\/E is
the c.m. 3-momentum of the incoming particles, I';, is the total decay width
of the squark and I'(; — ¢ + X?) is the partial §; — ¢; + X decay width.
We have put s; = 59 = % for the spins of the incoming particles and the spin
of our unstable particle, the squark ¢;, is J = 0.

Since I' < m we can use the narrow width approximation

1 I'—0 m ~ 2
(§ — m2)2 i m2F2 ﬁé(S —m ) (441)

to simply the expression for the partonic cross-section to

» I ) )
o= P2 ——0(8 = m*)T(G — g; + X1)- (4.42)
1 qi

The partial ¢ — ¢; + x? differential rate for the decay is

1
3272

e o, (4.43)

i

dr'(G; — ¢+ X)) =

20N

where W is the amplitude squared of the decay process summed and aver-
aged over various degrees of freedoms not observed, like spin and color. Here
mg, is the mass of the decaying squark and df2 = d¢;d(cos#;) is the solid
angle of particle 1. The 3-momentum of either of the decaying particles |pj|

[(mg, — (my +my)?)(mg — (my — m2)2)]1/2‘ (4.44)

2mg,

|Z71| - ‘]72‘ -

In all simplicity, we assume equal masses mg; for the L and R squarks
of a given flavor, so that the left- and right-handed couplings contribute
symmetrically. In general, the left- and right-handed couplings contribute
only to L and R squark exchange, respectively. This approximation can be
justified by the fact that most SUSY models predict small mass splittings
between squarks (at least for the first two generations) [72|. Furthermore,
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any squark produced in this interaction is too short-lived to lose energy prior
to its decay [73]. If we also ignore the small Higgsino components Ny3 and N4
of the neutralino mass matrix, and apply the Feynman rules in the MSSM
given in Appendix B, we get the matrix element

M= u(l)i{aqR (1 _275) +a, (1 275)%(2), (4.45)

where a4, and ay, are

tand
Qqp = \/592 (T37qN12 + an6 WNH) for q=u, d, S, C;

Agp = V2g5 tanfy QN1 for g =u,d, s, c; (4.46)
Here go = 0.65 is the weak SU(2) coupling constant, sinfy, = 0.23120 is the
weak-mixing parameter, 75, = —T134 = 1/2 is the weak isospin, @), is the

electric charge of quark ¢ in units of the proton charge and [V;; are the entries
of the neutralino mixing matrix in the notation of Ref. [52].

The square of the amplitude is
M2 = MM* = u(l)i{aqR (1 _275) +ay, <1+TV5) }
0 o (157) o (570}
o (157 e (5
_ iu(2)T{a;L <1+TV5) +al, <1 _275) }vou(l)

u(Q){a:;L <1 _275) tal <1 *275) }u(l). (4.47)

Here we have used the fact that the complex conjugate is the same as the
Hermitian conjugate for the quantity in the bracket, that #(1) = u(1)™y° and
that +° is Hermitian (7°" = 4°) and anticommutes with v (y#7° = —°y#).

u(2) x

Since there is only one particle with only one allowed spin orientation in
the initial state we get 1 when we average over the initial spins. If we then
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sum over the final spins we get

- ot (52) e (S5
[Q;L<1—2”5) +a;R<1g”5 [+ m}

1—7° 1+7°

b (o +mx>}. (4.48)

Here we have used that
(1=7")1+7)=1-(")*=0 (4.49)
so that the cross terms cancel and that
1+~5\? /14~
( 5 ) = ( 5 ) (4.50)

Applying the trace theorems given in Appendix A, this simplifies greatly

to
—_— 1
P = |3l + o, YT | = 2l + la P (451

The product of the four-momentum of incoming particles is pure kine-
matics:

Pg; = Pg; + Pgo
1
PgPxo = §(m?ji —m3,). (4.52)

Since in our case |M|? does not depend on any angle we can integrate
over the solid angle to get

el (4.53)

with

Here we have uses the standard formula for two-body decays, equation (4.43),
with [p1| = [pPro| and m1 = mgo > my = my,. If we neglect the mass of
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the quark compared to the neutralino, the incoming particles have the c.m.
energy

E St my (4.54)
oM = ; :
1 W
and the c.m. 3-momentum
.y (8 +m?,)?
P = \/Ech—mio = \/TX _m?(o
oy (4.55)
Y '
s is the partonic center of mass energy for the interaction
§=mg = (ppo +pg)" = Pio + 7, + 2ppg,
= m3o + 2pgopg,- (4.56)
Since 2pyopg, = 20 Pypyo = 2x My Eyo we have
§ =m3o + 20 MyFExo. (4.57)

If we then put the results of equations (4.51) and (4.52) into equa-
tion (4.53) we get

V>~<0| 11 2

mg, = m3,)*(Jags|* + lag, [*). (4.58)

I' =

1
&M e T Torm?

The Breit-Wigner peak is not visible in cross sections for resonant squark
production. Because the quark momentum distribution inside a nucleon
N is continuous, any value of the incident neutralino energy larger than

2
the threshold (E,o > mqé' MZLXO) can produce a squark at resonance. In this
case, the cross section involves a convolution of the partonic cross section
in equation (4.42) with a parton distribution function g(x,Q?). The cross

section can then be obtained by inserting equation (4.58) into equation (4.42)
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and convoluting with the parton distribution functions:

U(S):Z/de($vQ2)W2 ! i5(§—m2)r(§i—>%+f<§))

[Py 2 ma,

T 1
= T1a m—4(m2~2 - m§0)2(|G'QR|2 + |G'QL|2)><

(s)? 2 2 2
dr ————-q(z,Q%) 6(mzo + 22 My Ego — m;,)

ST — M2, @
X

m 1
T4 Z —4(m§i - 77%320)2(‘@%‘2 + ‘CLQL|2)X
q

(s7)” o 1 mg, —m
dp —2 IR | (PYUN [
/xmw@mﬂhm% T\ My By

= 23 e+ o, ) @2), (4.59)

q qi

with ) )
mg, — m)ZO
x = WEXO (4.60)
The numerical calculations of the cross sections have been carried out
with the use of the CTEQ6-DIS parton distributions sets. In one of the cal-
culations, we have been optimistic and have set the mass of the squark to the
lower experimental limit mg = 250 GeV and used the lowest experimental
limit for the lightest neutralino mass myo = 46 GeV. We have also investi-
gated the cross section for the highest value of the squark mass compatible
with fine tuning, m; = 1TeV. The momentum scale in the quark distri-
bution functions is set as Q* = m%. The resulting cross sections for bino-
and wino-like neutralinos as function of the neutralino energy are given in
figure 4.12 for mgy = 250 GeV and in figure 4.13 for mz = 1TeV.
Squark decays are isotropic in the squark rest frame, implying
dO’s O.tot5

d(cos 0%) T2 (4.61)

where 0* is the angle between the ingoing and outgoing Y{ in this frame. In
boosting from the c.m. system into the nucleon rest frame, we obtain the
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expression for the y distribution. The cross section differential in the scaling
variable y = Eou/Eim, where Ey, and Egyy is the incoming and outgoing )2(1]
energy in the nucleon rest frame, can then be written as

d ; tots
d‘; - Z , (4.62)
where
m?,
Ymax = 1— Wgov
q

In order to obtain the maximum value of y, we have used s = mg for on-
shell squark production. The lower limit of y is always zero, because forward
scattering in the Squark rest frame leads to Fow = Ei,. The value y = 1
is only reached for m? o 0, i.e. for Ey = 0. The maximal value is quite
close to unity for our values of mygo and mg. Assuming that the squarks are
lighter than gluinos, a bino-like neutralino undergoing s-channel scattering

on a nucleon, will lose on average about half its energy [72].
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Figure 4.12: The cross section for s-channel neutralino-nucleon scattering as
function of the energy for mg; = 250 GeV. The solid line is for pure binos,
while the dashed is for pure winos.
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Figure 4.13: The cross section for s-channel neutralino-nucleon scattering as
function of the energy for mgz; = 1 TeV. The solid line is for pure binos, while
the dashed line is for pure winos.
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4.6 Influence of the Earth

4.6.1 The Preliminary Earth Model

On their journey through the Earth, the particles traverse different densi-
ties, depending on their arrival directions. For simplicity, the Earth can be
regarded as a spherically symmetric ball with a simple internal structure,
which is divided into layers. The inner structure of the Earth consists of a
dense inner (solid) and outer (liquid) core and a lower mantle (highly viscous)
of medium density, covered by a transition zone, lid, crust and oceans. A
representation of the density profile of the Earth is given by the Preliminary
Earth Model [74]

(

13.0885 — 8.838122, < 12215
12,5815 — 1.26382 — 3.642627 — 5.52812°, 12215 < 1 < 3480
7.9565 — 647612 + 5.528322 — 3.08072%, 3480 < r < 5701
5.3107 — 14836z, 5701 < r < 5771
) 112494 - 8.02984, 5771 < r < 5971
P =4 7 1080 — 3.80450, 5971 < r < 6151
2.691 + 0.6924z, 6151 < r < 6346.6
2.9 6346.6 < r < 6356
2.6 6356 < r < 6368
[ 1.02, r < Rg,

where the density is measured in g/cm?, the distance r from the center of the
Earth is measured in kilometers and x = r/Rg is the scaled radial variable
with the Earth’s radius Rs; = 6371 km. A graphic representation of the
density profile is given in figure 4.14.

We consider only upward-going muons, that is, neutrinos or neutralinos
with arrival directions 6 such that 0 < 6§ < 7/2, where § = 0 denotes arrivals
from the nadir. The amount of matter the particle passes on its way can be
expressed as a column depth. In order to calculate the column depth, z(6),
one needs the angle

Ry —x T 0
=tan ' ——— | + = — = 4.64
P ((R@ + x)tang) 2 2 (4.64)
which we obtain from geometrical considerations. Using the sine law, we can
then find an expression for the distance r from the center of the Earth,

. R@sin@

(4.65)

sin p’
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Figure 4.14: Density profile of the Earth according to the Preliminary Earth
Model.

measured in kilometers and the scaled variable x = r/Rg. The amount of
matter the upward-going particle encounters when traversing the Earth, is
shown in figure 4.15 as a function of the particle direction. The core obviously
has a big influence at angles below about 0.27. A neutrino arriving from the
nadir will in its passage through the Earth traverse a column whose depth is
11 kilotonnes/cm?, or 1.1 x 10 cmwe (centimeter water equivalent).

4.6.2 Interaction length

During its journey the particle can interact with the matter along its path.
The length it can travel before interacting, is given by a (water-equivalent)

interaction length [74]
1

Aint = — =, 4.66
' G(E)N,4 (4.66)
where Ny = 6.022 x 10¥mol™' = 6.022 x 10%*cm® (water equivalent) is
Avogadro’s number, and o is the particle’s cross section with matter. The
charged-current interaction lengths of neutrinos with energies greater than
40TeV is less than the Earth’s diameter. Thus, neutrinos arriving from the
north-pole, with energies above this value, are effectively extinguished. The
interaction length as a function of energy is shown in figure 4.16 for neutrinos.
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Figure 4.15: Column depth; thickness of the Earth as a function of the angle
of incidence of the incoming particles.

For neutralinos, we consider the interaction lengths for the two squark masses
mg = 250 GeV and my; = 1TeV for pure binos in figure 4.17 and for pure
winos in figure 4.18.

4.6.3 Shadow factor

As the particles travel through the Earth, the flux will be weakened. The
attenuation is strongly dependent on the interaction length of the particles
(or equivalently the cross section) and the column depth. If we neglect any
regeneration effects and assume that the flux is isotropic, this attenuation
can be represented by a shadow factor. The shadow factor is equivalent to
the effective solid angle for upward-going muons divided by 27 [74]

S(E) = %/dcos@/&éexp [—2(0)/ Lint (E)). (4.67)

The shadowing factor for the neutrino flux is given in figure 4.19, while
the shadowing factors for neutralino fluxes in case of m; = 250 GeV and
mg = 1TeV are shown in figures 4.20 and 4.21, respectively.

If the neutralino-nucleon cross section is significantly smaller than the
neutrino-nucleon cross section, it should be possible to distinguish between
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Figure 4.16: The interaction length for charged-current neutrino interactions
on nucleons using the CTEQ6-DIS data set.
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Figure 4.17: The interaction length for s-channel neutralino interactions on
nucleons in case of a pure bino using the CTEQ6-DIS data set for m; =
250 GeV (solid line) and m; = 1 TeV (dashed line).
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Figure 4.18: The interaction length for s-channel neutralino interactions on

nucleons in the case of a pure wino using the CTEQ6-DIS data set for m; =
250 GeV (solid line) and m; = 1 TeV (dashed line).
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Figure 4.19: Shadow factor of neutrinos traversing the Earth as a function
of the neutrino energy.
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Figure 4.20: Shadow factor of pure binos (solid line) and pure winos (dashed
line) traversing the Earth in the case of mgz = 250 GeV.
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Figure 4.21: Shadow factor of pure binos (solid line) and pure winos (dashed
line) traversing the Earth in the case of mg; = 1 TeV.
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Figure 4.22: The effective solid angle divided by 27 as a function of energy for
bino-like neutralinos produced in decays of superheavy dark matter particles
of mass My = 12 GeV (solid line), Mx = 10 GeV (dashed line) and My = 8
GeV (dotted line). The mass of the squark is mz; ~ 1TeV. The dotted
line should be extended up to the value of 1 and the other two lines should
decrease to zero.

the signals of neutrinos and neutralinos, since their shadowing factors and
fluxes differ from each other. We can divide the Earth into two regions; one
where it is likely that the signal is from neutralinos, and one where one cannot
distinguish between neutrinos and neutralinos. The division between the two
regions is set by an effective angle that varies with energy. It is then possible
to determine an effective solid angle. Our calculations show that for squark
masses of about m; ~ 250 GeV it is not possible to differentiate neutralinos
from neutrinos. In the case of mz ~ 1TeV, the bino-like neutralino-matter
cross section is of order 1072, making it possible to distinguish the signals.

4.6.4 Average range of muons

In addition to the dependence on the attenuation of the particle flux, the
upward muon event rate also depends on the probability that the particle
creates a muon that is energetic enough to arrive at the detector with an
energy I, larger than the detector’s threshold energy Eﬁﬁn — the minimum
muon energy triggering the detector. On average, a muon produced with
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E, = 10 TeV will travel a few kilometers until its energy is degraded to 1
TeV. The probability that a muon can be recorded in a detector depends on
the average range (R) of a muon in rock [74],

1—EQin /B,

. pminy\ 1 min dUCC(EV>y)
(R = — [ R mn s i)

0

where the muon energy is
E,=E,(1—-y), (4.69)

for muons produced in a charged-current interaction of neutrinos with matter.
After a high energy muon is produced, it undergoes continuous energy loss as
it propagates. The range R of an energetic muon follows from the energy-loss
relation [1]

—dE,/dX =o(E,) + B(E,)E,, (4.70)

where X is the thickness of matter traversed by the muon in g/cm?. The
first term represents ionization losses, while the second term represents catas-
trophic processes of bremsstrahlung, e™e™ pair production and nuclear in-
teractions. If the coefficients o and 3 are independent of energy, we can
approximate their values to be @ = 2.0 x 1073 GeV emwe ™! (cmwe = g/cm”®)
and = 3.9 x 107%cmwe™!. Integrating equation (4.70), the muon range is

, - 1 a+ bE
R(E,, Ef™) = X(B2™) - X(E,) = 7 In CLJT;; (4.71)
The average range of muons from charged-current neutrino interactions is
shown in figure 4.23 for threshold energies 1 TeV and 10 TeV.

The average range is somewhat different in the case of muons produced in
s-channel neutralino interactions with matter. The quarks produced in the
decay of squarks can undergo flavor-changing weak decays, like d — u+ W™,
as well as cross-generational decays like s — u+ W ~. The W-boson can then
decay into a muon-neutrino and a muon, W~ — =~ + v,. The muon energy

will then be approximately 1/3 of the squark energy [75]

1
E, = §EX(1 — ). (4.72)
The average range of a muon originating from neutralino interactions is then
given by
1—m, 0/mg

. min _ 1 1 min daS(EXO7y)
(BB = s [ aur(GEe -y, pp) D,

(4.73)

0
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Figure 4.23: Average ranges for muons produced in charged-current interac-
tions of neutrinos with energy F,, at threshold energies Eﬁﬁn = land 10 TeV.

where the differential cross section in the variable y is given in equa-
tion 4.62. The average ranges of such muons are shown in figure 4.24 (for
mg = 250 GeV) and figure 4.25 (for m; = 1TeV), with energy threshold of 1
TeV and 10 TeV.
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Figure 4.24: Average ranges for muons produced in s-channel interactions of
neutralinos with energy £, on nucleons for wino-like neutralinos at threshold
energies E™ = 1TeV (solid) and 10 TeV (dashed), and for bino-like neu-
tralinos at ™ = 1TeV (dot dashed) and 10 TeV (dotted). The mass of the

squark is mg = 250 GeV.
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Figure 4.25: Average ranges for muons produced in s-channel interactions
of neutralinos with energy F, for wino-like neutralinos at threshold energies
B = 1TeV (solid) and 10 TeV (long dashed), and for bino-like neutralinos
at £ = 1TeV (short dashed) and 10 TeV (dotted). The mass of the squark

is mg = 1 TeV.
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Figure 4.26: Probability that a neutrino of energy F, produces an observable
muon with energy exceeding E;*™" = 1 TeV and 10 TeV.

4.6.5 Probability for creating muons

The probability that a particle of energy E produces an observable muon is
then [74]

P.(E.E™) = Nao(E)(R(E; ET™). (4.74)

The probability for creating observable muons from neutrino interactions
is shown in figure 4.26. Probabilities for creating observable muons from
neutralino interactions are shown in figure 4.27 and figure 4.28 for m; =
250 GeV and mgz = 1TeV, respectively.
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Figure 4.27: Probability that a neutralino of energy F, produces an ob-
servable muon with energy exceeding Eﬁﬁn for wino-like neutralinos with
B = 1TeV (solid) and 10 TeV (dashed), and for bino-like neutralinos with

B = 1TeV (dotted) and 10 TeV (dot-dashed). The mass of the squark is
mg = 250 GeV.
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Figure 4.28: Probability that a neutralino of energy F, produces an ob-
servable muon with energy exceeding Effi“ for wino-like neutralinos with
E™ = 1TeV (solid) and 10 TeV (dashed), and for bino-like neutralinos with

EX™ = 1TeV (dotted) and 10 TeV (dot-dashed). The mass of the squark is
ms = 1TeV.
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4.6.6 FEvent rates

The event rate of upward-going muons is proportional to the area of the
detector. If we record interactions that occur in the rock or ice surrounding
the detector, the effective volume can be enhanced over the instrumented
volume. The event rate for a particle with energy E in a detector with
effective area A is [74]

dN

Rate = A / dEP,(E; E;nin)S(E)d—E. (4.75)

The total event rate for detecting neutralinos in the energy range 107 —
102 GeV in a detector with area A = 1km?, like IceCube, is shown in table

4.1 for binos. The corresponding total event rate for neutrinos is shown in
table 4.2.

E!. Bino event rate, mg; = 250 GeV | Bino event rate, mg = 1 TeV
1 TeV 1.2713 x 10~* year ! sr? 2.8623 x 1075 year Lsr!
10 TeV 1.0393 x 104 year—!sr—! 2.3703 x 105 year tsr!

Table 4.1: The total bino-produced = event rates per steradian per year
corresponding to the neutralino fluxes given in figure 4.2 for two different
muon energy thresholds. The effective area is A = 1km?.

E" Rate of v
1 TeV | 0.77415 year !sr—1

10 TeV | 0.62058 year—!sr—!

Table 4.2: The total = event rates per steradian per year corresponding to
the neutrino flux given in figure 4.2 for two different muon energy thresholds.
The effective area is A = 1km?.

The expected total event rates for wino-like neutralinos have been omitted

on the grounds that they were suspiciously large (of the order of 107 events
per year per steradian).
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"That is all as it should be, for in a question like
this truth is only to be had by laying together
many varieties of error.”

Virginia Woolf — A Room of Ones Own

Discussions

There are several assumptions behind the estimates that have been presented
in the previous chapter. Whether these assumptions are valid or not is diffi-
cult to say for sure. Many are very model dependent, and since we are to a
large extent ignorant of the true nature of interactions at ultra-high energies,
several uncertainties arise.

5.1 Theoretical and experimental uncertainty

Estimates of the uncertainties on the parton distributions can have an im-
pact on the predicted cross sections. Since measurements of deep-inelastic
scattering by photon exchange is most sensitive to the u-quark, the u-quark
distribution is the most accurately known. The d-quark distribution is af-
fected by the various data sets that are sensitive to u-d differences. The most
uncertain distribution is the gluon distribution, for which the uncertainty is
of order ~ 15% for x values up to ~ 0.3. This uncertainty increases rapidly
for larger values of x [68].

The cascade decay to cosmic ray particles relies on the ratio of the volume
density of the X-particle, nx = p.£2x/mx, to its decay time, 7x [76|. Neither
the cosmic average mass density {1y, nor 7x is of course known, so the
values of these are very model dependent. To further complicate matters,
the mechanisms of the decay rely on the exact nature of the particles. Alas,
no firm prediction on the expected flux of neutralinos can be made.

For light squarks, the cross section for bino-like neutralinos is comparable
to the neutrino-nucleon cross section at high energies, as shown in figure 5.1.
For wino-like neutralinos it is even considerably larger than the neutrino-
nucleon cross section. The assumptions we have made about the neutralino-
nucleon cross section in chapter 4.5 could be responsible for the large expected
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Figure 5.1: The cross sections for charged-current neutrino-nucleon scatter-
ing (dotted line) and for s-channel bino-like neutralino-nucleon scattering as
function of the energy for mg; = 250 GeV (dashed line), m; = 1 TeV (contin-
uous line).

event rates for winos, or it could simply be a consequence of miscalculations.

The s-channel neutralino-nucleon cross section depends heavily on the
squark mass. If the masses of the squarks are not much larger than the
experimental lower value of m; ~ 250 GeV, there is no chance of distinguish-
ing between events from bino-like neutralinos from events from neutrinos in
neutrino telescopes like IceCube. For m; = 1TeV, the cross section is of
order ~ 1072 smaller than the neutrino-nucleon cross section, and hence the
event rate for a given flux is reduced. This is compensated by a smaller
attenuation of the flux. Consequently, it is possible to discern neutralinos
from neutrinos. However, the event rate is too small for optical neutrino
telescopes covering 1km?, even if they are expanded tremendously, to give a
firm signal of neutralinos.

The numbers presented include only neutralino interactions with matter
in the s-channel. Neutralinos could also interact in the t-channel, which
should be taken into account when calculating these interactions.

According to ref. [77], it is not even enough with a Teraton target to
detect a reliable event rate for bino-like LSPs. This seems to hold even for
the lightest squark we have used in our prediction of the cross section.
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5.2. NUMERICAL LIMITATIONS

5.2 Numerical limitations

In our numerical evaluation of the the cross sections, we have chosen certain
values for the energies and used polynomial interpolation routines to evaluate
the cross sections at intermediate energy values. Similar inter- and extrap-
olation routines have been used in the computation of the particle spectra.
The argument values in these routines must be in either strictly increasing
or strictly decreasing order. The loss in accuracy is naturally greatest with
extrapolation.

The integrals in the neutrino cross section have been performed with
the subroutine “trapzd” together with the function “qtrap” from Numerical
Recipes in Fortran 90 [78]. The charged-current neutrino cross section with
matter is slightly larger than the one given in ref. [74], which was evaluated
with the CTEQ3-DIS parton distribution. This discrepancy could at least
partially be explained by improved values for the parton distributions.

In the evaluation of the effective solid angle it was difficult to pinpoint the
exact energy values needed for the surviving differential fluxes (dS(FE, 0)) to
be equal, i.e. distinguishing the effective angle. Because of this, the lines are
not complete and the values are only approximately equal to the “correct”
values.
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“Tt is the mark of an instructed mind to rest satis-
fied with the degree of precision which the nature
of the subject admits and not to seek exactness
when only an approximation of the truth is pos-
sible.”

Aristotle

Closing remarks

To summarize, the possibility of detecting high energy neutralinos in neutrino
telescopes depends strongly on the parameters of SUSY that the cross section
relies on, the effective detector volume and the unknown neutralino and neu-
trino fluxes from decay of superheavy dark matter particles. The prospect of
detecting bino-like neutralinos in IceCube is therefore not promising. New
methods must be investigated if such neutralinos are to be detected in the
future. Already alternative methods have been proposed — like detecting ra-
dio Cerenkov radiation instead of optical Cerenkov radiation. One could also
detect light from fluorescence emitted by very energetic particle showers in
the atmosphere. Some of the planned cosmic ray experiments are the space-
based Extreme Universe Space Observatory (EUSO) [79], which can monitor
the entire Earth, and the OverWhelmingly Large Telescope (OWL) [80], a
detector with even bigger target volume than IceCube.

The suggestion that the dark matter distributed in the Universe consists
to some extent on superheavy X-particles will remain open for still some
time.
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Pauli and Dirac matrices

Pauli matrices

The Pauli matrices are three Hermitian, unitary, traceless 2 X 2 matrices:

0 1 0 —i 1 0
o= , 09 = , 03 = .
! 10 ? i 0 ’ 0 —1

The product rule is as follows:

—~

A1)

00 = 0jj + €0 (A.2)

In particular, we have:
ol=o03=03=1 (A.3)
0109 :iUg, 0903 :iUl, 0301 :iUQ (A4)

Dirac matrices

The Dirac matrices are four unitary traceless 4 x 4 matrices:

1 0 . 0 o
0= , Y= , , Ab
ol (0 1) ol (—02 0) (A.5)

where 1 is the 2 x 2 unit matrix, 0 is the 2 x 2 matrix of zeros and o* are
the Pauli matrices. If we lower the index, the sign changes for the “spatial”

components: v = 7°, v = —".
The 7° matrix is defined by
. 0 1
75 — 170717273 — ( | 0 ) , (AG)
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A. PAULI AND DIRAC MATRICES

and has the properties

()P =1 7"=9" = (A7)
For any 4-vector a*, we define the 4 x 4 matrix ¢ as follows:
4= a7t (A.8)

In terms of the metric

1 0

0 —1
= , A9
9 0 i (A.9)

0 0 -1
the product rules are as follows:

AEAY 4 APy = 2gM dp+ bd = 2a - b (A.10)
=4 (A.11)
VYA = =27, Vuy" = —2d (A.12)
%7”7’\7“ = 4g”’\, Yudbpy' =4a-b (A.13)

The trace theorems are as follows:
Tr(l) =4 (A.14)
Te(y"y") = 4¢",  Tr(dp) =4a-b (A.15)
Tr(y"y" ™) = 49" 9" — ¢ 9" + ¢"7g") (A.16)

In addition, the trace of a product of an odd number of y-matrices is zero.

Since 7° is the product of an even number of y-matrices, it follows that
Tr(v°y*) = 0 and Tr(y°y#4*4*) = 0. If 4° is multiplied by an even number
of v’s, we find

Tr(v%) =0 (A.17)
Tr(7%9#4") = 0 (A.18)
Tr(’y5'y“'y”'y)"y”) = et A (A.19)

where

—1 if prAo is an even permutation of 0123
e =< 1 if pwdo is an odd permutation of 0123 .

0  if any two indices are the same
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Sclected Feynman rules in the MSSM

Vertex factors

\ q qg=u,d,s,cand j =1,2,3,4

X;
The following vertex factors are in the notation of Ref. [52]. For vertices with
qr, = uy, and ¢ = u we have

—i [ gm. / g
E{mNﬂ(l_%) {eeuN OS9W(1/2—6usm Ow )V ](1+75)H
(B1)

For vertices with ¢r = ug and ¢ = u we have

. .2
—1 gmy, 1 ge,sin“ly .
— 9 ———— N1 uJNZ 4+ —F—— N (11— . (B.2
G an) - et + -2 10| L (2)

For vertices with q;, = d; and q = d we have

—1 gmyq /
— 55 N5(1— N —
\/é{QmWC()Sﬂ ( 75) |:€€d 71

For vertices with qr = dg and q = d we have

59 (1/2+ed51n Ow )Nis] (1+75) }
3

(B.

. 2
—1 m egsin 6
—{Mmgu o) — {eede’f{ _ geasin“Ow

V2 | 2mucosp N]‘E}(l—%)”- (B.4)

cos Oy
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B. SELECTED FEYNMAN RULES IN THE MSSM

Similar factors hold for the charm and strange squarks.

Here g is the weak SU(2) gauge coupling constant, 0y, is the weak mixing
angle, e = gsinfy, is the U(1)gy charge. The quark charges are given by
Cy = % and e = —%. The matrix elements N{j appearing in the vertex factors

are

Nj1r = Njicos Oy + Njosin Oy,

Njg/ = — jlsin t9W + NjQCOS ew,
Nj3’ = Nj?n
Nj4/ = Nj4, (B5)

where Nj; (i = 1,2,3,4) are the entries in the neutralino mixing matrix.

External lines

Spin 0: (nothing)
Incoming particle: u

Incoming antiparticle: v

Spin %: ' . -
Outgoing particle: u
Outgoing antiparticle: v
Incoming: €*

Spin 1: t m%ng ‘ .
Outgoing: €*
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