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Suggested solution for 2018 Exam in Electricity and Magnetism

NOTE: The solutions below are meant as guidelines for how the problems may be solved and
do not necessarily contain all the detailed steps of the calculations.

Problem 1: Electric charge and electric field (8 points)
The charge density on the surface of the disk is σ = Q/πR2. First, we need to know what the contribution to the electric field at
the center is from a ring with charge Q′ with radius r. Following the calculations in example 21.9 in YF, we find that

Ex =
∫

dEx =
1

4πε0

λx
(x2 + r2)3/2

∫ 2πr

0
ds =

Q′x
4πε0(x2 + r2)3/2 . (1)

where dEx is the contribution from a segment ds on the ring and λ is the line charge density of the ring (so that Q′ = 2πrλ).
Knowing this, we can now compute the total electric field from the disk by dividing it into infinitesimal rings as shown in
example 21.11 in YF. By replacing the ring charge Q′ in Eq. (1) with the charge dQ = 2πσrdr of a ring with radius r on the
uniformly charged disk and then integrating over the entire disk, we find:

Ex =
σx
4ε0

∫ R

0

2rdr
(x2 + r2)3/2 . (2)

This integral can be looked up or performed by substituting u = x2 + r2, providing the final result

Ex =
σ

2ε0

[
1− 1√

(R2/x2)+1

]
. (3)

Thus, the field points in the x-direction and has a magnitude given by Eq. (3) evaluated at x = x0.

If we replaced the disk by a point particle Q, we would expect the field in that case to be larger because x0 would be closer to the
total charge than in the disk case: in the latter case, the charge Q is spread out on a larger area. Only in the limit x� R would
the disk and point particle start to produce equal electric fields. This can be seen by noting that for x� R, we have:

σ

2ε0

[
1− 1√

(R2/x2)+1

]
=

σ

2ε0

[
1− (1−R2/2x2)+ . . .] =

Q
4πε0x2 − . . . (4)

showing that the correction to the x� R limit for the disk will make its electric field smaller than for the point-particle.

Problem 2: Gauss’ law (8 points)
Total charge given by

Q =
∫ R

0
4πr2

ρ(r)dr. (5)

Plug in ρ(r) and obtain

Q = 4πρ0R3/12. (6)

To obtain the electric field, we use Gauss’ law. For radii larger than R, the field is the same as that of a point-particle with charge
Q. For radii smaller than R, only part of the charge density is contained in the surface we integrate over. For r < R, we obtain

E×4πr2 = Qencl/ε0 =
1
ε0

∫ r

0
4πr′2ρ0(1− r′/R)dr′. (7)
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Performing the integral, one ends up with

E =
Qr

4πε0R3

(
4− 3r

R

)
(8)

for r < R.

Problem 3: Electric potential (8 points)
A conservative electric field means that the work done by the field only depends on the start and end point, not the particular
path taken. Since F = qE, this means that we must be able to write the field as the gradient of a function V , in effect E =−∇V .
In this way, we see that

∫ B
A F ·dr = q[V (A)−V (B)] only depends on the start and end points A and B.

The relation between electric potential V and electric potential energy U is that U = qV where q is the charge of the particle
residing in the potential.

From the listed formulas, it follows that the potential created by a particle q1 is V = q1/4πε0r (when we choose zero potential at
infinite distance). Therefore, the potential energy available when a particle q2 resides at a distance r from q1 is

U =
q1q2

4πε0r
. (9)

We now have to apply this formula to all the pairs of particles in the cube. There are 12 pairs of q and−q separated by a distance
d. There are 12 pairs of equal charges separated by

√
2d. There are 4 pairs of q and −q separated by

√
3d. In total, we thus

obtain

U =
q2

4πε0d

(
−12+

12√
2
− 4√

3

)
. (10)

Since the potential energy is less than zero, this configuration of charges is more beneficial energetically than the scenario where
all charges are infinitely separated (which corresponds to zero potential energy). Thus, we can at least state that the charges
should not repel each other and scatter to infinite separate distance.

Problem 4: Capacitance and dielectrica (8 points)
The students are supposed to know or be able to reason their way to the fact that when three capacitors are coupled in series, the
charge on each plate must be the same and the effective capacitance Ceff, which satisfies Q =CeffV , satisfies:

Ceff =
(

1/C1 +1/C1 +1/C2

)−1
. (11)

The charge on condensator 2 is thus given by

Q =V
(

1/C1 +1/C1 +1/C2

)−1
. (12)

The energy stored on a capacitor is given by U = 1
2 QV and thus the total energy stored in the series coupling case is:

Utot =
1
2

Q(V1 +V2 +V3) =
1
2

QV (13)

since the sum of all potential differences has to equal V and Q is given by Eq. (12).

In the parallell arrangement, the voltage difference across each capacitor must be the same. Thus, the charge on the two capacitors
with C1 has to be the same: Q1. The potential difference across them is then

V1 = Q1/C1. (14)

The last capacitor C2 has a different charge Q2 and the potential difference is the same. Therefore,

Q2 = Q1
C2

C1
. (15)



3

Problem 5: Current, resistance, and electromotive force (8 points)
The curves drawn by the student should at least vaguely resemble the ones in figure 25.6 in YF. For a metal, resistivity increases
with temperature. For a semiconductor, it is reduced as temperature increases. For a superconductor, there is a sharp rise in
resistivity at the critical temperature T = Tc from zero. After that, it behaves like a metal.

One mechanism that causes resistance is scattering of electrons on phonons (lattice-vibrations). Another mechanism is scattering
of electrons on defects in the material, i.e. deviations from a perfect crystal structure.

For a metal, ρ increases because more phonons become available to scatter on at higher temperatures T . For a semiconductor,
the same thing happens, but this effect is countered by the fact that more conduction electrons become available as temperature
increases (thermally excited from the valence band). This causes a net decrease in the resistivity.

The Fermi velocity is the instantaneous velocity of the electrons carrying the current and is typically of order 105−106 m/s in
a metal. The drift velocity is the net velocity with which the electrons carry current, i.e. taking into account the fact that they
scatter. This velocity is much smaller, typically somewhere around 10−5−10−4 m/s. The students should be within 1 order of
magnitude of these ranges in their responses.

Problem 6: DC circuits (8 points)
The power dissipated in the circuit is given by

P = E 2/Reff (16)

where Reff is the effective resistance of the circuit. Let us name R123 the effective resistance corresponding to the parallell
coupling of the resistors R1,R2,R3. We see that

1/R123 = 1/R3 +1/(R1 +R2). (17)

Therefore, we have

Reff = R123 +R4. (18)

Thus, we have to find the value of R3 which causes

295 W = (48 V)2/(R123 +R4). (19)

From the above equation, it follows that we need

R123 +R4 = 7.81Ω. (20)

Thus, R123 = 4.81Ω. But from Eq. (17) we see that

R3 =
R123(R1 +R2)

R1 +R2−R123
. (21)

Plugging in the given values for R1 and R2 as well as the obtained value for R123 gives us R3 = 12.1Ω.

Problem 7: Magnetic fields and magnetic forces (8 points)
There is no work performed by the magnetic field since it acts with a force on the particle that is perpendicular to its instantaneous
motion.

A magnetic field has to have zero divergence since there exists no magnetic monopoles. Therefore, as listed in the formulas, we
have ∇ ·B = 0. This gives us the equation

∂y f (y) = 0. (22)

Therefore, the most general form f (y) can have is

f (y) = c1 (23)
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where c1 is a constant. NB! In the problem text in the exam, the field was said to be inhomogeneous. This could have caused
confusion among students who subsequently might have discarded the constant solution assuming it would be wrong since the
text specified ”‘inhomogeneous”. Students who have reasoned in this manner in their response have been given a full score on
this part of the problem.

Problem 8: Electromagnetic induction (8 points)
Otherwise, conservation of energy would have been violated. The resaon is that if the EMF created a flux which enhanced the
external flux, then that flux increase would have spawned an even stronger EMF and so forth. In this way, the EMF would be
ever-increasing, generating an infinite current.

A small strip of length W and width dr that is a distance r from the axis of the wire will have the following flux piercing it:

dΦ = B(r)Wdr =
µ0IW
2πR2 rdr. (24)

The expression for B(r) was obtained using Ampere’s law for the uniformly distributed current. Thus, the total flux through the
rectangle is obtained by integrating over all r:

Φ =
∫

dΦ =
µ0IW
2πR2

∫ R

0
rdr =

µ0IW
4π

. (25)

Problem 9: Inductance (8 points)
Self-inductance is the phenomenon that a time-dependent current running through a closed circuit will induce a time-dependent
flux through the circuit. This flux, in turn, causes an induced EMF according to Faraday’s law. Thus, the net effect is that the
current through the circuit has self-induced a new current. This new current flows in the opposite direction of the change in
current that induced it in the first place (according to the argument of energy conservation that we discussed in problem 9).

When the switch is closed, the current has to be I = 0+A through the inductors. It cannot have any finite value right after
the switch is closed, because that would have corresponded to an infinite derivative di/dt which in turn would have caused an
infinite induced EMF in the inductor. Instead, all current goes through the 15 Ω resistor. Therefore, the amperemeters show:
A1 = A4 = (25/55) A while A2 = A3 = 0 A.

After a long time, the circuit has reached its steady-state behavior and the current has stopped changing. Therefore, the voltage
drop across each inductor is zero and they play no role. The three parallell-coupled resistors 5, 10, 15 Ω can then be combined
into a single effective resistor Reff = (1/5+ 1/10+ 1/15)−1Ω = 2.73Ω. Therefore, the current through the A1 amperemeter
must be I = 25/(40+2.73) A = 0.585 A since the effective resistance and the 40 Ω resistor are coupled in series.

Therefore, the voltage drop across each parallell branch in the circuit must be 25 V - 40 Ω×0.585 A = 1.6 V since 40Ω×0.585
A is the voltage drop across the 40 Ω resistor. Since we now know the voltage drop across each branch, we can compute the
resulting currents: A2 will show a current (1.6/5) A = 0.32 A, A3 will show a current (1.6/10) A = 0.16 A, while A4 will show a
current 1.6/15 A = 0.107 A.

Problem 10: AC circuits (8 points)
Inductive reactance X is defined as the ratio between the maximum amplitude V0 of the time-dependent voltage across an inductor
and the maximum amplitude I0 of the resulting time-dependent current through the inductor:

X =V0/I0. (26)

It can be thought of as a generalized resistance for time-dependent currents across an inductor. This ”resistance” will depend on
frequency. To see this, consider a current I = I0 cos(ωt). Since V = LdI/dt, we obtain V =−I0ωLsin(ωt) = I0ωLcos(ωt+π/2).
We see that V0 = I0ωL and thus

X = ωL. (27)

Moreover, there is a phase-shift of π/2 between the voltage and the current: they are not in phase with each other. Since the
reactance increases with ω, the inductor will (for a fixed voltage amplitude V0) let a greater current through the smaller ω is.



5

Effectively, high frequencies are blocked while smaller frequencies are let through: a so-called low-pass filter.

Problem 11: Electromagnetic waves (8 points)
The key idea here is to compute the force that acts on you due to the intensity of the lightbeam shining in the opposite direction
(carrying momentum away from the spaceship). We know that F = pA where p is the pressure and A is the area the pressure acts
upon. Now, the pressure exerted by light on an area is p = pradiation = I/c where I is the intensity of the lightbeam. But since
the average effect carried by the lightbeam is Paverage = IA, we see that F = pradiationA = IA/c = Paverage/c. Since we know that
Paverage = 200 W and c = 3×108 m/s, we obtain that you will be accelerated according to Newton’s 2. law:

a = F/m = Paverage/(mc) = 4.44×10−9m/s2. (28)

Not a very large acceleration, but will it be enough to save you? The distance you will be able to cover with this acceleration
(and zero initial velocity) is the standard expression:

x =
1
2

at2 (29)

(obtained by integrating dx/dt = v(t) = at). Inserting x = 16 m, we see that t =
√

2x/a = 23.6 hours. Thus, you barely make it
back before running out of oxygen: only 0.4 hours = 24 minutes to spare.

Problem 12: Mixed topics (12 points)
(a) There is a change in the potential difference between the plates if we insert a dielectric medium because the dielectric
medium becomes polarized. This induces a negative surface charge near the plate with the positive charge and vice versa. As
a result, the net charge density near each plate is reduced and the electric field inside the dielectric is weakened. Thus, the
potential difference is decreased.

(b) A paramagnetic material will orient its internal magnetic moments along the external magnetic field, whereas a diamagnetic
material will create a magnetic moment in the opposite direction of the external field. Thus, the field is enhanced inside the
material in the paramagnetic case and partially shielded in the diamagnetic case. The only thing diamagnetism and Faraday’s
law have in common is that the induced magnetic moment is opposite to the external one. Diamagnetism cannot be explained
by Faraday’s law, since diamagnetism occurs even for static magnetic fields.

(c) Examples are shown in figure 28.29 in the textbook by YF. Hysteresis is a type of memory effect which means that the
magnetization of a material at a given external field B is not uniquely determined by the value of the field: it depends on the
history of the material. For instance, if the material starts with a weak magnetization (due to the presence of domains) and
one gradually increases the external field, the magnetization will continue to increase until it reaches saturation. If one then
reverses the external field, the magnetization will start to diminish but will at B = 0 in general have a different value than it had
originally. At some negative field B < 0, the magnetization will become zero and then reverse direction as the field continues to
increase until it again reaches saturation in the negative direction.


