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NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department of Physics

Contacts during the exam:

Professor Jan Myrheim, tel. 73 59 36 53

Professor Per Hemmer, tel. 73 59 36 48

74310 QUANTUM MECHANICS 1
Tuesday June 1, 1999

09.00 { 15.00

Allowed aids: Acceptable calculator
Rottmann: Matematisk formelsamling

Three pages with expressions and formulae are enclosed.

Examination results will be available on June 22, 1999.

Problem 1

a) A particle with mass m is in the Coulomb potential

V (r) = � e2

4�"0r
:

What is the time-dependent Schr�odinger equation for the particle?
What is meant by a quantum-mechanical stationary state?

At time t = 0 the wave function of the particle is

	(~r; 0) = (3�a30)
� 1

2 e�r=a0 + (48�a50)
� 1

2 re�r=(2a0) cos#; (1)

where a0 is the Bohr radius.
Is this wave function a stationary state?

What is the wave function at a later time t?
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b) An energy measurement is performed when the particle is in the state (1). What are
the possible results, and what are their probabilities?

c) The particle is then in the ground state in the Coulomb potential, with energy E0
1 . A

weak constant electric �eld E in the z direction, corresponding to the potential

H 0 = �eEz;

is applied. Here e is the charge of the particle. Assume that for a weak �eld the resulting
ground-state energy may be expanded as a powers of the �eld strength:

E1(E) = E0
1 + AE +BE2 + : : : (2)

This is the Stark e�ect.
Use stationary perturbation theory to compute A, and to predict the sign of B.

d) What are the possible results one may obtain if one (for a general state) measures the

square ~L2 and the component Lz of the angular momentum?
Let then the particle in the Coulomb potential at t = 0 have the following wave function

�(~r) =
1q

�a30(1 + �2)

�
1 + �

z

a0

�
e�r=a0 ; (3)

with a mean energy

h�jH0j�i = � �h2

2ma20(1 + �2)
:

(This result is given for later use, proof is not required.) Here � is a real parameter, and
H0 is the Hamiltonian of the particle.

What are the possible measurement results for ~L2 and Lz for a particle in the special
state (3)?

e) Show that the ground-state energy E1 for a particle with Hamiltonian operator H never
exceeds the Rayleigh-Ritz estimate

ERR = hf jHjfi =
Z
f �(~r) H f(~r) d3~r;

for any function f(~r) that is normalized:

hf jfi =
Z
jf(~r)j2 d3~r = 1:
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f) Use the function �(~r), equation (3), as a trial function to obtain a Rayleigh-Ritz estimate
for the Stark e�ect in the ground state in Coulomb potential, i.e. for the Hamiltonian
operator

H = H0 � eE z:
It is the coeÆcient B in power series (2) that is to be determined.

Since �(~r) with parameter � = 0 is the ground-state wave function with E = 0, � is
necessarily small when the electric �eld is weak. You may therefore simplify the calculation
by expanding to second order in �.

g) The electron has spin 1=2. The total angular momentum of an electron is ~J = ~L + ~S,

where ~L = ~r� ~p is the orbital angular momentum and ~S is the spin. Denote the quantum
numbers for ~L2, Lz, ~S

2, Sz, ~J
2 and Jz by l, ml = m, s = 1=2, ms, j and mj, respectively.

Assume now that l = 1. Which values are then possible for j and mj?
Show that the state

j i =
q

2
3

��� l = 1; s = 1
2
; ml = 1; ms = �1

2

E
�
q

1
3

��� l = 1; s = 1
2
; ml = 0; ms =

1
2

E

is an eigenstate for ~J2 and Jz, and �nd the eigenvalues. Use, e.g., the relations

~J 2 = ~L 2 + ~S 2 + 2~L � ~S = ~L 2 + ~S 2 + L+S� + L�S+ + 2LzSz ;

where L� = Lx � iLy, S� = Sx � iSy, and

L� jl; s;ml; msi = �h
q
l(l + 1)�ml(ml � 1) jl; s;ml � 1; msi ;

S� jl; s;ml; msi = �h
q
s(s+ 1)�ms(ms � 1) jl; s;ml; ms � 1i :

In this state j i, what is the probability that ms = 1=2?
Use the attached tables of Clebsch{Gordan-coeÆcients, and express the state with

l = 1, s = 1=2, ml = 0 and ms = 1=2 as a linear combination of states with di�erent j.
In this last state, what is the probability that j = 1=2?

h) Relativistic corrections (spin-orbit coupling) and corrections due to quantization of the
electromagnetic �eld make the energy levels of the hydrogen atom dependent on the main
quantum number n, the orbital angular momentum l and in addition on the quantum
number j of ~J2 = (~L + ~S)2. These corrections lift the degeneracy between energy levels
with the same main quantum number n but with di�erent values of l. We will neglect here
all e�ects having to do with the electron spin, except for the energy splitting between the
energy levels 2s og 2p. Let �E denote the energy di�erence, so that �E = E2s � E2p.

What spontaneous transitions between the states 2s, 2p and 1s can take place by electric
dipole radiation if �E > 0, or if �E < 0?
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i) Assume here that the 2s level lies above the 2p level, and that the energy di�erence
(known as the Lamb shift) is

�EL = �h!L = 4; 38 10�6 eV:

A transition from the 2s level to the 2p level may be induced by an oscillating homogeneous
electric �eld, given by the potential

U(z; t) = �eEz sin(!t);

where E and ! are constants.
Use �rst order time dependent perturbation theory to compute the probability for an

induced transition from 2s at t = 0 to 2p at t = T . Neglect the electron spin, and assume
that the �nal state has ml = m = 0.

How large must E be in order that the transition probabilty is 1% during one second,
when ! = !L?

Is there reason to believe that the �rst order approximation is good in this case?
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Parts of this may be useful.

Energy eigenvalues and eigenfunctions in the Coulomb potential

E0
n = � m

2�h2

 
e2

4�"0

!2
1

n2
= � �h2

2ma20

1

n2
:

n l  nlm

1 0  100 = (�a3)�
1

2 e�r=a 1s

0  200 = (32�a3)�
1

2 (2� r=a) e�r=(2a) 2s

2  210 = (32�a5)�
1

2 r e�r=(2a) cos#

1  211 = (64�a5)�
1

2 r e�r=(2a) sin# ei' 2p

 21�1 = (64�a5)�
1

2 r e�r=(2a) sin# e�i'

Physical constants

The speed of light c = 2:9979 � 108 m/s
Planck's constant h = 2��h = 6:6262 � 10�34 Js
The electron charge e jej = 1:6022 � 10�19 C
The electron mass me = 9:1096 � 10�31 kg
The �ne structure constant � = e2=(4�"0�hc) = 1=137:05
The Bohr radius a0 = 4�"0�h

2=(mee
2)

Time independent perturbation theory

For H = H0 + �H1 we have

En = E0
n + hnj�H1jni+

X
m(6=n)

jhmj�H1jnij2
E0
n � E0

m

+O(�3):

Integrals Z 1

0
e�x

2

dx = 1
2

p
�

Z 1

0
tn e�t dt = n!



Attachment 2 of 3

The Laplace operator in spherical coordinates

r2 =
@2

@r2
+
2

r

@

@r
+

1

r2

"
@2

@#2
+ cot#

@

@#
+

1

sin2 #

@2

@'2

#

Orbital angular momentum

In spherical coordinates: ~L2 = ��h2
"
@2

@#2
+ cot#

@

@#
+

1

sin2 #

@2

@'2

#

Eigenvalues:
~L2 Ylm(#; ') = l(l + 1)�h2 Ylm(#; ')
Lz Ylm(#; ') = m�h Ylm(#; ')

Time dependent perturbation theory

In �rst order time dependent perturbation theory the probability amplitude for a tran-
sition from a state  i at time t = 0 to a state  f at t = T , induced by a time dependent
perturbing potential V (~r; t), is

ai!f =
1

i�h

Z T

0
dt Vfi(t) e

i!fit :

 i and  f are eigenstates of the unperturbed Hamiltonian operator with energies Ei and
Ef , respectively. Furthermore, !fi = (Ef � Ei)=�h, and

Vfi(t) =
Z
d3~r  �f(~r)V (~r; t) i(~r) :

In the electric dipole approximation the probability per time for spontaneous emission
of electromagnetic radiation within an in�nitesimal solid angle d
 and with a polarisation
vector ~�, with j~�j = 1, is

d� =
�!3

2�c2

���~� � ~d ���2 d
:
Here ! = (Ei � Ef )=�h, � is the �ne structure constant, and

~d =
Z
d3~r  �f ~r  i :


