

Department of Physics

Examination paper for

TFY4250/FY2045 Quantum Mechanics 1

Academic contact during examination: Peter Berg Phone: 735 93462

Examination date: December 12th, 2014 Examination time (from-to): 9am-1pm Permitted examination support material: C: Basic calculators, Rottmann formula collection

Other information: ---

Language: English, Norwegian (bokmål, nynorsk) Number of pages: 8 Number of pages enclosed: 0

Checked by:

Date

Signature

ENGLISH VERSION:

 The raising and lowering operators of the one-dimensional harmonic oscillator are defined by

$$a_{\pm} = \frac{1}{\sqrt{2}} \left[\left(\frac{m\omega}{\hbar} \right)^{1/2} x \mp i \frac{p_x}{(m\hbar\omega)^{1/2}} \right].$$

- a) Express *x* by a linear combination of the raising and lowering operator.
- b) Evaluate the expectation value of x^4 for the ground state |0 >, using the bra-ket notation, and the properties of the raising and lowering operators, which include

$$a_{+} |n\rangle = (n+1)^{\frac{1}{2}} |n+1\rangle_{+}$$

 $a_{-} |n\rangle = \sqrt{n} |n-1\rangle_{-}$

- 2) Let us assume that the spin state of an electron is in the spin-up eigenstate relative to the z-axis.
 - a) Explain in words your answers to the following questions:
 - i) If we measure the spin relative to the x-axis, what is the probability of finding the electron in the spin-up eigenstate (relative to the x-axis)?
 - ii) What is the corresponding expectation value of the spin (relative to the x-axis)?
 - iii) After measuring the spin relative to the x-axis, we measure the spin again relative to the z-axis. What is the probability of finding the electron now in the spin-up state relative to the z-axis?
 - b) Determine the answers to i) and iii) by computation. Keep it brief!

Hint: Use the corresponding, normalized eigenvectors of

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

3) For an ideal gas of identical bosons, we found the following constraint that relates the amount of particles, the volume and the temperature:

$$N = \frac{V}{2\pi^2} \int_0^\infty \frac{k^2}{e^{[(\hbar^2 k^2/2m) - \mu]/k_B T} - 1} dk.$$

As we lower the temperature, Bose condensation occurs when the chemical potential $\mu(T)$ hits zero and the above integral no longer describes the physical situation correctly.

- a) Evaluate the integral at $\mu = 0$ and obtain the formula for the critical temperature T_c at which this happens.
- b) How does T_c scale with the particle density?

Hint:

$$\int_0^\infty \frac{x^{s-1}}{e^x - 1} dx = \Gamma(s)\zeta(s)$$

Here, $\Gamma(s)$ is the gamma function and $\zeta(s)$ the Riemann zeta function, whose values are both O(1) in this problem.

4) A particle moves within the potential

$$V(x) = \begin{cases} \frac{1}{2}m\omega^2 x^2 &, & x > 0, \\ \infty &, & x \le 0. \end{cases}$$

a) Verify (without calculations!) that the exact ground state energy is $E_0 = \frac{3}{2}\hbar\omega$.

b) Use the variational method and the trial function

$$\varphi(x) = \begin{cases} cxe^{-\alpha x} &, & x > 0, \\ 0 &, & x \le 0. \end{cases}$$

to estimate the ground state energy. How good is the estimate?

- 5) Derive the wave-function approximation of the WKB method by use of a power series. To do so, follow these steps:
 - i) Assume that the wave function can be written as

$$\psi(x) = A \exp\left[\frac{i}{\hbar}S(x)\right]$$

where S(x) is generally a complex function.

- ii) Substitute this expression into the time-independent Schroedinger equation. Subsequently, eliminate the exponential function. You should find a nonlinear differential equation.
- iii) Write S(x) as a power series, according to

$$S(x) = S_0(x) + \hbar S_1(x) + \frac{\hbar^2}{2} S_2(x) + \cdot$$

Substitute this power series into the differential equation in ii), and write down the resulting differential equations at the zeroth order and at the first order (in \hbar) iv) Show that

$$S_0(x) = \pm \int_{.}^{x} p(x') dx'$$
$$S_1(x) = \frac{i}{2} \ln p(x)$$

are the solutions of these zeroth and first-order differential equations, where we define $p(x) = \{2m[E - V(x)]\}^{1/2}$.

With this in mind, what is the approximate wave function of $\psi(x)$?

6) Let us derive the Numerov algorithm for the numerical solution of the one-dimensional, time-independent Schroedinger equation, which we rewrite as

$$\psi(x)'' + k(x)\psi(x) = 0 \tag{1}$$

with $k(x) = 2m[E - V(x)]/\hbar^2$. Given a discretization with step-size Δx , we use a Taylor expansion around ψ_n (with $\psi_n = \psi(x_n)$ and $x_n = x_0 + n \cdot \Delta x$) to approximate

$$\psi_{n+1} = \psi_n + \Delta x \,\psi_n' + \frac{\Delta x^2}{2} \psi_n'' + \frac{\Delta x^3}{6} \psi_n^{(3)} + \frac{\Delta x^4}{24} \psi_n^{(4)} + \frac{\Delta x^5}{120} \psi_n^{(5)}.$$

- i) What is the corresponding approximation for ψ_{n-1} , using again a Taylor expansion around ψ_n ?
- ii) Add ψ_{n+1} and ψ_{n-1} . The derivatives of the resulting expression should only include second and fourth orders.
- iii) Approximate the fourth-order derivative by

$$\psi_n^{(4)} = \frac{\psi_{n+1}^{\prime\prime} + \psi_{n-1}^{\prime\prime} - 2\psi_n^{\prime\prime}}{\Delta x^2}$$

and <u>then</u> replace all second derivatives by use of equation (1) above, where we define $k_n = k(x_n)$.

What is the resulting recursive equation for ψ_{n+1} in terms of ψ_n and ψ_{n-1} ?