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This exam consists of 4 problems, each of which counts 25% towards the result.

You may answer in Norwegian or English. I will visit twice during the exam, at
approximately ten o’clock and twelve o’clock. Feel free to ask if you need help inter-
preting the questions.

Problem 1

In this problem, you do not have to show your reasoning or calculations. Just write
what you think is the correct alternative for each question.

a) An electron is described by a wave-packet

Ψ(x, t) =

∫ ∞
−∞

φ(k)ei(kx−ωt) dk,

where ω = h̄k2

2m
, and m is the electron mass. The coefficients φ(k) have a distri-

bution

φ(k) =

√
σ

2π3/2
e−σ

2(k−k0)2/2,

where σ is a real constant larger than 0. This distribution has a large and
narrow peak at k = k0. The width of this peak is finite (i.e. larger than 0).

What are the expectation values of the variance of the position, ∆x =
√
〈x2〉 − 〈x〉2

and the momentum 〈px〉 of the wave packet?

A ∆x = 0 〈px〉 = 0
B ∆x = 0 〈px〉 = h̄k0

C ∆x = σ/
√

2 〈px〉 = h̄k0 − h̄σ
D ∆x = σ/

√
2 〈px〉 = h̄k0

E ∆x = σ2/
√

2 〈px〉 = h̄k0
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b) Fermi’s golden rule is related to transitions between states, and can be written
in different forms. One of them is

Γi→f =
2π

h̄

∣∣∣〈f |V̂ |i〉∣∣∣2 ρ,
where ρ is the density of final states.

What does Γi→f describe?

A The transition probability.
B The transition amplitude.
C The transition probability per unit time.
D The transition amplitude per unit time.
E The Fermi energy.

c) Consider a system of two non-interacting particles with spin 0. The first particle
is in an eigenstate of its operator for the square of the total angular momentum,
L̂2

1,

L̂2
1|l1,m1〉 = h̄2l1(l1 + 1)|l1,m1〉,

with l1 = 7. The second particle is in an eigenstate of L̂2
2,

L̂2
2|l2,m2〉 = h̄2l2(l2 + 1)|l2,m2〉,

with l2 = 3.

The possible values for the square of the total angular momentum of the two-
particle system are then

h̄2l(l + 1),

where l is an integer that can take the values

A l = −7,−6 . . . , 6, 7
B l = 0, 1, 2, 3, 4, 5, 6, 7
C l = 0, 1, . . . , 9, 10
D l = 3, 4, 5, 6, 7
E l = 4, 5, 6, 7, 8, 9, 10
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d) In the photoelectric effect, shining light onto a piece of metal can expel electrons
from the metal into the vacuum surrounding the metal. A simple (but useful)
model for the electrons in a metal, which can help us understand this effect, is
to treat the metal as a system where the potential is 0 inside the metal, and V0

outside. If the Fermi energy of the metal is EF , what is the longest wavelength,
λ0, of light that will allow electrons to be liberated from the metal?

A λ0 = hc
V0−EF

B λ0 = h̄ω
EF

C λ0 = hc
EF

D λ0 = hf
V0−EF

E λ0 = hc
V0

e) It is common to represent spin states as two-component column vectors called
spinors, where the inner product of two spinors χ1 and χ2 is given by χ†1χ2.
Which of the following pairs of spinors do not make up an orthonormal basis?

A χ1 =

(
1
0

)
, χ2 =

(
0
1

)
B χ1 = 1

2

(
i√
3

)
, χ2 = 1

2

(
−i√

3

)
C χ1 = 1

2

(
i√
3

)
, χ2 = 1

2

( √
3

i

)
D χ1 = 1√

2

(
1
1

)
, χ2 = 1√

2

(
−1
1

)
E χ1 = 1√

3

(
1 + i
i

)
, χ2 = 1√

3

(
i

1− i

)
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x

z

y

Lx
Ly

Lz

f) A system consists of a rectangular box with sides Lx = 2L, Ly = L, and
Lz = 3

2
L, and where the potential is 0 inside the box, and infinite outside the

box, and where the box contains 5 identical non-interacting spin-3
2

particles.
The energy eigenstates for a particle of mass m in this box are

ψnxnynz = A sin

(
nxπx

Lx

)
sin

(
nyπy

Ly

)
sin

(
nzπz

Lz

)
,

where A is a normalisation constant, and nx, ny, and nz are positive integers.

What is the Fermi energy, EF , when the system is in the ground state?

A EF = 109
36

h̄2π
2mL2

B EF = 109
36

h̄2π2

2mL2

C EF = 169
36

h̄2π2

2mL2

D EF = 11
9
h̄2π2

mL2

E EF = h̄2π2

2mL2

Page 4 of 10



Problem 2

Consider a spherical box potential, given by

V (r) =

{
0 if r ≤ a
∞ if r > a

.

For this potential, it can be shown that the stationary states are

ψnlm(r) =

{
Rnl(r)Ylm(θ, φ) for r ≤ a
0 for r > a

,

and the associated energies for particles of mass mp are

Enl =

(
h̄Π

(l)
n

)2

2mpa2
.

Here,

Rnl(r) = Anljl

(
Π(l)
n

r

a

)
,

where Anl is a normalisation constant, jl(r) are the spherical Bessel functions, and

Π
(l)
n are the zeros of the spherical Bessel functions (see table in the Appendix). The

quantum number n is an integer larger than 0, l is an integer larger than or equal to
0, and m is an integer between −l and l.

a) If the box contains 18 identical, non-interacting spin-1
2

particles, show that the
ground state energy of the system is approximately

473
h̄2

2ma2
.

b) If the box contains 18 identical, non-interacting spin-1
2

particles, with the sys-
tem in the ground state, what is the pressure on the inside of the box?

c) If the box contains 19 identical, non-interacting spin-1
2

particles, what is the
ground state energy of the system?

Assume now that the spherical box contains a single particle, with mass mp. Initially
(at t < 0) the particle is in the ground state (that is, ψ100(r)). Then, the system is
subjected to a time-dependent perturbation of the form

V̂ (t) = −zp0δ(t).
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After the perturbation, the state of the particle will be

Ψ(r, t) =
∑
nlm

anlmψnlm(r)e−iEnt/h̄,

where anlm are time-independent amplitudes.

d) The first-order approximations to the amplitudes anlm are proportional to the
matrix elements

Vnlm,100(t) = −p0δ(t)

∫
ψ∗nlm(r) z ψ100(r) d3r.

Show that the amplitudes are 0 for all transitions, except to states with l = 1
and m = 0. Hint: You may find it useful to recall that z = r cos θ, and to look
at the spherical harmonics given in the appendix.

Problem 3

In this problem, you will calculate a first-order correction to the energy of the ground
state of hydrogen, taking the finite size of the nucleus into account.

Assume that the nucleus consists of a single proton, and that the proton is a sphe-
re with radius R, charge e, and a uniform charge distribution. This modifies the
potential energy of the electron when r < R, which then becomes

V (r) =
e2

4πε0

(
r2

2R3
− 3

2R

)
for r < R.

a) Show that taking the finite size of the proton into account, as described above,
is equivalent to adding a time-independent perturbation

V̂ (r) =

{
0 for r > R
e2

4πε0

(
r2

2R3 − 3
2R

+ 1
r

)
for r ≤ R

(1)

to the unperturbed Hamiltonian of the hydrogen atom.

b) Show that the first-order correction to the ground state energy of the perturbed
system is

E
(1)
1 =

e2

πε0a3
0

∫ R

0

e−2r/a0

(
r2

2R3
− 3

2R
+

1

r

)
r2dr.
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c) To evaluate this integral, we will first make a simplification. Since the proton
radius is much, much smaller than the Bohr radius (R/a0 ≈ 10−5) we see that
r/a0 is always going to be a very small number. As a good approximation, we
can therefore replace the exponential with its Taylor series, and keep only the
first term, that is

e−2r/a0 ≈ 1.

Using this approximation, calculate the first-order correction to the ground
state energy, and express the answer as a multiple of the unperturbed ground
state energy, E0

1 = − e2

8πε0a0
. (In other words, find x, in the equation E

(1)
1 = xE0

1).

d) In the unperturbed hydrogen atom, the energy E0
n of a state ψ0

nlm depends only
on the quantum number n. Would you expect this to still be the case for the
hydrogen atom with the perturbation described by equation (1)? Explain why
or why not. You don’t have to do any calculations to answer this question.

Problem 4

In the matrix representation, the operators for the components of the electron spin,
Ŝ = [Ŝx, Ŝy, Ŝz], can be expressed as

Ŝx =
1

2
h̄σx, Ŝy =

1

2
h̄σy, Ŝz =

1

2
h̄σz,

where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

are called the Pauli matrices. The electron spin can then be represented as a two-
component column vector called a spinor:

χ =

(
a
b

)
,

where a and b can be functions of time. It is customary to define the two spinors

χ+ ≡
(

1
0

)
, χ− ≡

(
0
1

)
.

a) Verify that χ+ and χ− are eigenvectors of the operator Ŝz, and find their
corresponding eigenvalues.
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b) Find the eigenvalues, S±x, and eigenvectors, χ±x, of the Ŝx operator.

Assume now that an electron is placed in an external magnetic field, pointing in the
x direction, given by

B = B0x̂.

The energy of the interaction between the external field and the spin is dependent
on the direction of the magnetic moment (and thus the spin) of the electron, relative
to the external field. The Hamiltonian operator can be written

Ĥ = ge
−e
2me

B · Ŝ,

where the constants ge, e, and me are respectively the gyromagnetic factor, the
elementary charge and the mass of the electron.

c) At t = 0, the electron is in an eigenstate of Ŝz:

ψ(t = 0) =

(
1
0

)
.

What state is the electron in at time t = π
2ω

, where ω = ge
eB0

me
?

Hint: You may find it useful to recall that the differential equation

d2

dt2
a(t) = −ω2a(t)

has general solutions

a(t) = A+eiωt + A−e−iωt

where A+ and A− are constants.
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Appendix: Tables and Formulae

Schrödinger equation (time dependent)

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t).

Schrödinger equation (time independent)

Eψ(r) =

(
− h̄2

2m
∇2 + V (r)

)
ψ(r).

Potential energy in hydrogen atom

V (r) = − e2

4πε0

1

r

Radial part of the wave function for some hydrogen states

R10 = 2a
−3/2
0 e−r/a0

R20 =
1

2
√

2
a
−3/2
0

(
2− r

a0

)
e−r/(2a0)

R21 =
1

2
√

6
a
−3/2
0

r

a0

e−r/(2a0)

Some spherical harmonics

Y00 =

√
1

4π

Y10 =

√
3

4π
cos θ
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Thermodynamics

dW = PdV

Eigenvalues and eigenvectors

det (A− λI) = 0

(A− λI) ξ = 0

Some properties of the Dirac delta function∫
f(x)δ(x− a)dx = f(a).

1

2π

∫
ei(k−k0)xdx = δ(k − k0).

Some zeros of the spherical Bessel functions

j0 j1 j2 j3 j4

Π
(0)
1 = π Π

(1)
1 = 4.4934 Π

(2)
1 = 5.7635 Π

(3)
1 = 6.9879 Π

(4)
1 = 8.183

Π
(0)
2 = 2π Π

(1)
2 = 7.7253 Π

(2)
2 = 9.0950 Π

(3)
2 = 10.417 Π

(4)
2 = 11.705

Π
(0)
3 = 3π Π

(1)
3 = 10.904 Π

(2)
3 = 12.323 Π

(3)
3 = 13.698 Π

(4)
3 = 15.040

Some constants

Bohr radius a0 = 4πε0h̄
2

mee2
≈ 5.291 · 10−11 m

Proton radius (approximate value) 0.85 · 10−15 m

Planck’s constant h = 6.626070 · 10−34 Js = 4.135667 · 10−15 eVs
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