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Oppgave 1

a. With Ĥ = K̂ + V = − h̄2

2m
∂2

∂x2 + V (x), we can write Schrödinger’s time-independent
equation on the form

− h̄2

2m

∂2ψ(x)

∂x2
= [E − V (x)]ψ(x) that is,

d2ψ/dx2

ψ
=

2m

h̄2 [V (x)− E].

(i) In classically allowed regions (where E > V (x)), we see that the curvature d2ψ/dx2 is
negative when ψ is positive (and vice versa). This means that ψ must curve towards the
x-axis. Examples:

(ii) In classically forbidden regions (where E < V (x)), the curvature has the same sign as
ψ. ψ then will curve away from the axis. Examples:

For one-dimensional potentials V (x) the energy levels are non-degenerate, with only one
eigenstate ψn(x) for each energy level En. (The degeneracy is gn = 1.) When the potential
is symmetric (with respect to the origin x = 0), the parity operatotor will commute with
the Hamiltonian, and it is possible to show that ψn is also an eigenfunction of the parity
operator, with parity +1 (ψn symmetric) or −1 (ψn antisymmetric). One also finds that
the ground state is symmetric, the first excited state is antisymmetric, the second excited
state is symmetric, and so on.

b. For x > a, the time-independent Schrödinger equation,

ψ′′ =
2m

h̄2 [V (x)− E]ψ =
2m

h̄2 (V0 − E)ψ ≡ κ2ψ,

has the general solution
ψ(x) = C e−κx +D e+κx.

Since the last term diverges in the limit x→∞, we have to choose D = 0 to get an
acceptable solution. Thus,

ψ(x) = C e−κx for x > a, with κ ≡ 1

h̄

√
2m(V0 − E), q.e.d.
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The penetration depth may be defined as the depth at which |ψ|2 is reduced by a factor
1/e:

|e−κlp.d.|2 = e−1 =⇒ lp.d. =
1

2κ
.

c. When the number N of bound states is large (>> 1), the energies E1 and E2 of the
ground state and the first excited state will be much smaller than V0. Therefore,

κi =
1

h̄

√
2m(V0 − Ei) ≈

1

h̄

√
2mV0 for i = 1, 2.

Since 8mV0a
2/h̄2 ≈ π2N2, we find that

lp.d.

a
=

1

2κia
≈

√√√√ h̄2

8mV0a2
≈ 1

πN
<< 1,

showing that the penetration depths for ψ1 and ψ2 are almost equal and much smaller
than a.

Inside the well, the two solutions behave as ψ1 = A1 cos k1x and ψ2 = A2 sin k2x.
Since the penetration depths are small, we see from the figure that k1 · 2a ≈ π and
k2 · 2a ≈ 2π. Thus the energies are only a little bit lower than the corresponding energies
for a box with width 2a:

E1 =
h̄2k2

1

2m
≈ π2h̄2

8ma2
and E2 = 4

h̄2k2
2

2m
≈ π2h̄2

2ma2
≈ 4E1, q.e.d.

d. When b is small compared to lp.d., we have

κi
b

2
= 2κi

b

4
=
b/4

lp.d.

<< 1, i = 1, 2.

Then the solutions for the region −1
2
b < x < 1

2
b ,

ψ1 = B1(e
κ1x + e−κ1x) and ψ2 = B2(e

κ2x − e−κ2x),

will not curve very much over the interval −1
2
b < x < 1

2
b, even less than shown in the

figure, which exaggerates the effect:
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We then understand that the wave number k1 and hence the energy E1 will be slightly
larger than for the case b = 0. We also see that k2 and E2 will be slightly smaller than
for b = 0.

e. When b is large compared to lp.d., on the other hand, the two wave functions are
strongly suppressed in the barrier region in the middle, and ψ1 and ψ2 in the well regions
are very similar to the ground state for an isolated well of width a:

Here, we see that the two wave numbers are almost equal, both being approximately equal
to k2 for the case b = 0. Thus the two energy levels are almost degenerate, E1 of course
being slightly smaller than E2:

E2
>≈ E1 ≈

π2h̄2

2ma2
.

Oppgave 2

a. From the formula for the current density we find for region III (x > L):

jIII = Re
[
t∗e−ikx h̄

im

d

dx
t eikx

]
=
h̄k

m
|t|2.

Similarly, with ψi = exp(ikx) alone, or ψr = r exp(−ikx) alone, we would find

ji =
h̄k

m
· 1 and jr = − h̄k

m
|r|2,

respectively. With ψI = exp(ikx) + r exp(−ikx), we find

jI = Re
[(
e−ikx + r∗eikx

) h̄k
m

(
eikx − re−ikx

)]

=
h̄k

m

[
1− |r|2 +Re

(
r∗e2ikx − re−2ikx

)
︸ ︷︷ ︸

]
= ji + jr, q.e.d.,

since the underbraced quantity is purely imaginary.

b. For a stationary state, the probability current density (and the probability density)
are time-independent. Then there can be no accumulation of probability anywhere, and
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since we are here dealing with a one-dimensional problem, the current density has to be
constant, not only in time but also along the x-direction. Thus

jI = jII = jIII .

This means that ji = −jr + jIII = |jr|+ jIII . Our interpretation is that the incoming
probability current is divided into a reflected current and a transmitted current, and that
the transmission and reflection probabilities are

T =
jIII

ji
= |t|2 and R =

|jr|
ji

= |r|2,

respectively.

c. With

k2 = 2mE/h̄2, q2 = 2m(E − V0)/h̄
2 and k2 − q2 = 2m(E − E + V0)/h̄

2 = 2mV0/h̄
2,

we have

T = |t|2 =
4k2q2

4k2q2 cos2 qL+ (k2 + q2)2 sin2 qL
=

4k2q2

4k2q2 + (k2 − q2)2 sin2 qL

=
4E(E − V0)

4E(E − V0) + V 2
0 sin2 qL

, q.e.d.

In the limit E/|V0| → ∞, we have

T = lim
E/|V0|→∞

1

1 +
V 2
0

4E(E−V0)
sin2 qL

= 1,

in accordance with classical mechanics (which states that transmission takes place when-
ever E > V0). For finite values of E/V0 (> 1), we see that the transmission probability
T is smaller than 1, contrary to the classical result. However, there are exceptions: For
values of E and V0 such that

qL =
L

h̄

√
2m(E − V0) = nπ, n = 1, 2, · · · ,

we get complete transmission also quantum mechanically. Since q = 2π/λII , we see
that T equals 1 whenever the width L of the barrier or well is an integer multiple of 1

2
λII ,

where λII is the wavelength in region II. (We are here supposing that E > V0.)

d. With a = 2πa0 and k ≈ π/a = 1/2a0, we have an energy that is smaller than the
height V0 of the barrier,

E =
h̄2k2

2me

≈ h̄2

8mea2
0

< V0 =
5h̄2k2

8mea2
0

.

In the formula for T we must then replace q by iκ, where

κ =

√
2meV0

h̄2 − 2meE

h̄2 =
1

a0

.
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With sin2 qL = [sin(iκL)]2 = − sinh2(κL), we then have a (tunneling) transmission prob-
ability

T =
4E(V0 − E)

4E(V0 − E) + V 2
0 sinh2(κL)

.

Since κL = 1
a0
· 5a0 = 5 is rather large, we have approximately

sinh2(κL) ≈ 1

4
(eκL − e−κL)2 ≈ 1

4
e2κL >> 1.

This means that the second term in the denominator is much larger than the first one.
Thus

T ≈ 16E(V0 − E)

V 2
0

e−2Lκ,

which is much smaller than 1. With E/V0 = 1/5 we find

T =
64

25
e−10 = 1.16× 10−4.

To estimate the “lifetime” τ , we must find the semiclassical velocity and collision
frequency of the particle. The velocity is of typical “atomic” size:

v =
√

2E/me =
h̄

2mea0

=
e2

4πε0h̄c

c

2
= 1

2
αc.

This gives a collision frequency

ν =
v

2a
=

αc

8πa0

= 1.65× 1015s−1,

and a time

t1 =
1

ν
= 6.07× 10−16s

between each collision. The probability to find the particle “still in jail” at time t then is
(1− T )t/t1 . This means that the “lifetime” τ is given by

(1− T )τ/t1 = 1/e =⇒ τ =
t1
T

= 5.22× 10−12s.

Oppgave 3

a. The existence of a simultaneous set of eigenfunctions of a set of operators requires
that the operators commute among themselves. In the present case we have for example:

[Ĥ, L̂
2
] = 0 = [Ĥ, L̂z] = [L̂

2
, L̂z].

The “magnetic” quantum number ml is restricted to the values 0,±1,±2, ...,±l. This
means that there are 2l+ 1 spherical harmonics for a given value of the quantum number
l.

The magnetic quantum number ml does not enter the radial equation, which deter-
mines the energies. Therefore, the energy eigenvalues (Enl) in this problem can be charac-
terized by the quantum numbers n and l, and each of these levels will have a degeneracy
2l + 1, which is typical for a spherically symmetric potential.
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Since the wave function ψ must be zero for r > a, where the potential is infinite, we
must have unl(a) = 0 to get a continuous wave function, just as for the one-dimensional
box.

Using the normalized spherical harmonics, we have from the normalization condition:

1 =
∫
|ψnlml

|2d3r =
∫
|Ylm|2dΩ

∫ a

0
[Rnl(r)]r

2dr = 1 ·
∫ a

0
[unl(r)]

2dr, q.e.d.,

when we work with real radial functions.

b. We see that the radial equation has “one-dimensional form”, and for l = 0 we have

d2u

dr2
= −2mE

h̄2 u = −k2 u, with E ≡ h̄2k2

2m
and u(0) = u(a) = 0,

that is, an ordinary box of width a. The general solution is

u = A sin kr +B cos kr,

where the condition u(0) = 0 gives B = 0, and the condition u(a) = 0 gives ka = nπ,
or kn0 = nπ/a, with n = 1, 2, 3, · · · . We get a normalized solution (

∫ a
0 [un0(r)]

2dr = 1)

by choosing A =
√

2/a. The energies and the complete solutions for the s-waves then
are

En0 =
h̄2k2

n0

2m
=

h̄2π2

2ma2
n2 = n2E10 and ψn00 =

un0

r
Y00 =

1√
2πa

sin(nπr/a)

r
, n = 1, 2, · · · .

c. The figure shows the effective potential, which in this case consists only of the cen-
trifugal barrier h̄2l(l + 1)/2mr2 , for l = 1 and l = 2.

We note that the centrifugal barrier is proportional to l(l + 1) and makes the well more
shallow and also more narrow for increasing l. Based on this we must expect that the
energies for a given number n of nodes increase in the order of increasing l:

En0 < En1 < En2 < · · · .

We also expect the energy to increase when the number of nodes increases for a fixed l:

E11 < E21 < E31 < · · · ,

as we have already verified for the s-waves. This is because an increasing number of nodes
means increasing curvature and increasing kinetic energy.

From this kind of reasoning, we expect the ground state to be an s-wave, with no zeros
except those for r = 0 and r = a, that is, ψ100.
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d. With kr = x we have for small r:

ua =
sin kr

kr
− cos kr = x−1(x− x3/3! +O(x5))− (1− x2/2! +O(x4)) = x2/3−O(x4),

ub = −cos kr

kr
−sin kr = −x−1(1−x2/2!+O(x4))−(x−x3/3!+O(x5)) = −1/x−x/2+O(x3).

Only ua behaves as (kr)l+1 ∝ rl+1 = r2 for small r, which is acceptable, while ub behaves
unacceptably for small r and can not be normalized.

Since ua is a solution of the radial equation and behaves as it should for small r, it
only remains to require that u(a) = 0 :

l = 1 : u(a) =
sin ka

ka
− cos ka = 0 =⇒ tan ka = ka, q.e.d.

e. In c, we concluded that the ground state must correspond to nl = (1, 0), and
u10 ∝ sin(k10r), with

k10 =
π

a
and E10 =

h̄2k2
10

2m
=
h̄2π‘2

2ma2
.

Based on the discussion in c, we must expect that the first excited level corresponds either
to nl = 1, 1 or nl = 2, 0. In the latter case we have already found the energy:

nl = 20 : k20 =
2π

a
= 2k10 =⇒ E20 = 4E10.

To find the energy of the states ψ11m = r−1u11Y1m, corresponding to nl = 1, 1, we
must find the smallest value of k which gives ua a zero at x = a;

sin kr

kr
− cos kr

∣∣∣∣∣
r=a

= 0 =⇒ sin ka

ka
− cos ka = 0,

corresponding to the condition tan ka = ka. To find this k-value it would be instructive
to plot x−1 sinx−cosx as a function of x (see the Comment below). However, it is fairly
easy to locate the first zero using the calculator. We already know that this function is
positive for small x, starting out as x2/3. For x = π it is still positive (=1). For x = 2π
it is equal to −1, so the first zero is somewhere between π and 2π. Using the calculator,
it is fairly easy to find that the first zero occurs for x = ka = 4.4934, corresponding to

k11 =
4.4934

a
=
π

a

4.4934

π
= 1.4303 k10, and E11 = (1.4303)2E10 = 2.046E10,

which is lower than E20. Thus the first excited level is E11 (for n = 1 and l = 1), with
the wave functions

ψ11m = Cr−1

(
sin k11r

k11r
− cos k11r

)
Y1m, m = 0,±1.

Comment: The dashed curve in the figure below shows

u11(r) = C

(
sin k11r

k11r
− cos k11r

)
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(plotted with the “E11-line” as axis). Note that u11 has a turning point where the “E11-
line” crosses the centrifugal barrier for l = 1. Also shown is the “E12-line” (n = 1, l =
2), which is in fact the second excited level (with energy E12 ≈ 3.366E10), and the
corresponding function u12, which turns out to be

u12 =

(
3

(k12r)2
− 1

)
sin(k12r)−

3

k12r
cos(k12r).

In addition we see that the s-waves u10 and u20 are ordinary box curves. We also observe
that u20 corresponds to the third excited level.


