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Problem 1

In this problem, you do not have to show your reasoning or calculations.

a) The easiest way to solve this problem is by dimensional analysis and some
simple reasoning. We know that k, being a wave number, has units of inverse
length. From this, we can immediately see that σ has units of length, since the
argument to the exponential in the definition of φ(k) should be dimensionless.
From this information, we can rule out option C, as is has inconsistent units
for the momentum, and we can rule out option E, as it has wrong units for the
variance of the position.

Furthermore, it is stated in the problem that φ(k) has a peak at k = k0, which
implies that the expectation value for the momentum should be h̄k0. This rules
out option A. Finally, since the width of the distribution of k is finite, the
uncertainty in momentum is finite, and hence the uncertainty in position must
also be finite (i.e., not 0). This rules out option B.

We are left with the only possible alternative being option D.

b) Fermi’s golden rule describes transition probabililty per unit time. If you didn’t
remember, you could guess this from the expression, since Γi→f has units of
inverse time, and since it contains the absolute square of a matrix element it
seems likely a probability, not an amplitude.

The answer is option C.

c) The triangular inequality for addition of angular momenta says that

|l1 − l2| ≤ l ≤ l1 + l2.

Hence, the answer is option E.

d) The amount of energy required to liberate an electron from a piece of metal,
known as the work function of the metal, is the depth of the potential well,
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minus the Fermi energy, i.e. V0 − EF . The wavelength of a photon with this
energy is hc

V0−EF
.

The correct answer is option A.

e) By calculating the norms and inner products, we find that all of the vectors
have unit length, but the vectors in option B are not orthogonal to each other.

f) From the time independent Schrödinger equation (given in the Appendix), we
find that the energy of a particle in this box is given by

Enxnynz =
h̄2π2

2mL2

(
n2
x

4
+
n2
y

1
+

4n2
z

9

)
.

Since the particles have spin 3/2, we can have four particles in each spatial
state, meaning there will be four particles in the ground state, and one particle
in an excited state. The particle in the excited state will have to have nx =
2, ny = 1, nz = 1, as this is the excited state with the lowest energy. The
Fermi energy of the system is thus equal to

E211 =
h̄2π2

2mL2

(
4

4
+

1

1
+

4

9

)
=

11

9

h̄2π2

mL2
.

The correct answer is option D.

Problem 2

a) Since the energy is proportional to the square of Π
(l)
n , the state with the lowest

energy is simply that corresponding to the smallest value of Π
(l)
n . The spatial

state with the lowest energy is thus the state with n = 1, l = 0. In this state,
we can place 2 particles, each with m = 0, and with opposite spin. The next
available state with the lowest energy corresponds to n = 1, l = 1. In this
state, the particles can have m = −1, m = 0 and m = 1, and again opposite
spin, for a total of 6 particles. Finally, in the state n = 1, l = 2, we can have
10 particles, with m = −2 . . . 2, and opposite spin. The energy thus becomes

h̄2

2ma2

[
2
(

Π
(0)
1

)2
+ 6

(
Π

(1)
1

)2
+ 10

(
Π

(2)
1

)2]
≈ 473

h̄2

2ma2
.
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b) We have that the work done by the system on the surroundings, if there is an
infinitesimal increase in the volume of the box, is

dW = PdV.

Since work done by the box corresponds to a reduction in the internal energy
of the box, we have

P = −dE

dV
.

Using that for a sphere of radius a, we have

dV

da
= 4πa2,

we find

P = −dE

dV

= − 1

4πa2
dE

da

=

[
2
(

Π
(0)
1

)2
+ 6

(
Π

(1)
1

)2
+ 10

(
Π

(2)
1

)2] h̄2

4πma5

≈ 473
h̄2

4πma5

c) In this case, the next available state with the lowest energy is n = 2, l = 0,

since Π
(0)
2 < Π

(3)
1 . The energy then becomes

h̄2

2ma2

[
2
(

Π
(0)
1

)2
+ 6

(
Π

(1)
1

)2
+ 10

(
Π

(2)
1

)2
+
(

Π
(0)
2

)2]
≈ 512.5

h̄2

2ma2
.

d) We rewrite the integral∫
ψ∗nlm(r) z ψ100(r) d3r =

∫
Rnl(r)Ylm(φ, θ) r cos θ R10(r)Y00(φ, θ) r

2dΩdr.

We then use the second part of the hint, and find that Y10 =
√

3Y00 cos θ, and
we get

1√
3

∫
Ylm(φ, θ) Y10(φ, θ) dΩ

∫
Rnl(r) r R10(r)r

2 dr.

From the orthogonality of the spherical harmonics, we can then tell that the
integral will be zero, except when l = 1, m = 0.
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Problem 3

a) If we calculate V ′(r) = V0(r) + V̂ (r), where V0(r) is the potential energy of the
unperturbed hydrogen atom, we find

V ′(r) =

{
− e2

4πε0
1
r

for r > R
e2

4πε0

(
r2

2R3 − 3
2R

)
for r ≤ R

,

which is what we want: The unperturbed potential for r < R, and the potential
inside a uniformly charged sphere for r > R.

b) To solve this problem, it is necessary to remember (or guess from the given
expression) that the first order correction to the energy of a state is given by

E
(1)
1 = 〈ψ(0)

n |V̂ |ψ(0)
n 〉,

where ψ
(0)
n is the unperturbed state. Using this, and the ground state of the

hydrogen atom (the relevant radial function and spherical harmonic are given
in the appendix), we find

E
(1)
1 =

∫
R10Y00 V̂ R10Y00 d3r.

Since the perturbation depends only on r (and not θ and φ), we can separate
out the angular part, which gives a factor of 1 since the spherical harmonics
are orthonormalised. Since the perturbation is 0 for r > R, we integrate only
from 0 to R, and we get

E
(1)
1 =

∫ R

0

R10 V̂ R10 r
2dr

=
e2

πε0a30

∫ R

0

e−2r/a0
(
r2

2R3
− 3

2R
+

1

r

)
r2dr.
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c)

E
(1)
1 =

e2

πε0a30

∫ R

0

(
r2

2R3
− 3

2R
+

1

r

)
r2dr

=
e2

πε0a30

[
r5

10R3
− r3

2R
+
r

2

]R
0

=
1

10

R2e2

πε0a30

=

(
−4

5

R2

a20

)(
− e2

8πε0a0

)
.

As was stated in the problem, R/a0 ≈ 10−5, which means that this perturbation
modifies the ground state energy of hydrogen by a factor of about 10−10. In
other words, this is a tiny effect.

d) As the perturbation is a function of r, we expect states with different radial
probability distribution to be differently affected. Hence, states with the same
n, but different l will be affected differently. Thus, the energy of a state in the
perturbed system depends not only on n, but also on l.

Problem 4

a)

Ŝz

(
1
0

)
=
h̄

2

(
1 0
0 −1

)(
1
0

)
=
h̄

2

(
1
0

)
,

Ŝz

(
0
1

)
=
h̄

2

(
1 0
0 −1

)(
0
1

)
= − h̄

2

(
0
1

)
.

We see that χ+ and χ− are eigenvectors of the operator Ŝz, and their eigenvalues
are h̄/2 and −h̄/2.
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b) To find the eigenvalues, we solve the equation

det

(
−λ h̄/2
h̄/2 −λ

)
= 0

⇒ λ2 − h̄2

4
= 0

⇒ λ = ± h̄
2
.

We find that S+x = h̄/2 and S−x = −h̄/2.

To find the eigenvectors, we solve the equation

(A− λI) ξ = 0

for each of the eigenvalues.

For λ = h̄/2, we get

h̄

2

(
−1 1

1 −1

)(
a
b

)
= 0

⇒ a = b.

Then we use the normalisation condition, a2 + b2 = 1, to obtain

χ+x =
1√
2

(
1
1

)
.

Similarly, for the eigenvalue −h̄/2, we obtain

χ−x =
1√
2

(
1
−1

)
.

c) First, we rewrite the Hamiltonian, using the given definition of ω, and the fact
that B only has a non-zero component along the x direction:

Ĥ = −ω
2
Ŝx = − h̄ω

4

(
0 1
1 0

)
.

Then, we insert this into the Schrödinger equation:

ih̄
∂

∂t

(
a(t)
b(t)

)
= − h̄ω

4

(
0 1
1 0

)(
a(t)
b(t)

)
.
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This gives us two coupled differential equations:

∂

∂t
a(t) = i

ω

4
b(t), (1a)

∂

∂t
b(t) = i

ω

4
a(t). (1b)

Differentiating the second equation once with respect to time, and inserting
the result into the first equation, and vice versa, we get

∂2

∂t2
a(t) = −ω

2

42
a(t),

∂2

∂t2
b(t) = −ω

2

42
b(t).

Using the general solution from the hint for each of these equations, we get

a(t) = A+ei
ω
4
t + A−e−i

ω
4
t, (2a)

b(t) = B+ei
ω
4
t +B−e−i

ω
4
t. (2b)

To find the coefficients, we first insert Eqs. (2a) and (2b) into Eq. (1a), which
gives the additional conditions

A+ = B+,

−A− = B−.

We then use the given initial condition,

ψ(t = 0) =

(
1
0

)
,

to find

a(t = 0) = A+ + A− = 1,

b(t = 0) = A+ − A− = 0,

which finally gives us

A+ = 1/2, A− = 1/2.
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To find the state of the electron at time t = π
2ω

, where ω = ge
eB0

me
, we can then

just insert these values into Eqs. (2a) and (2b):

ψ(t =
π

2ω
) =

(
1
2
ei
π
8 + 1

2
e−i

π
8

1
2
ei
π
8 − 1

2
e−i

π
8

)
,

=

(
cos π

8

i sin π
8

)
.
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