
Exam Solutions, FY2045 03.12.2018

Problem 1: Time-Independent Perturbation Theory

Here, most answers can be figured out from a symmetry argument. Each term in the energy correction
is a spatial integral from −L/2 to L/2 over the product of three functions. If this product is an odd
function the term will be zero. The perturbation is antisymmetric so all first order corrections have to
be zero. For the groundstate, since it has the cos form (even), only terms that involve the sine form
(odd) will contribute to the second order correction. The infinite square well has an infinite number of
eigenstates, thus the second order correction has an infinite number of terms. In perturbation theory,
convergence is not assured in the power-series expansion.

Problem 2: Spin-Spin Coupling, Fermions

The names triplett and singlett come from the formula for multiplicity (2S+1), hence triplett refers to
S=1 and singlett to S=0. The wavefunction of two identical fermions has to be antisymmetric with
respect to exchanging their coordinates. The spin part of the triplett is symmetric and the singlett
antisymmetric. Hence, the spatial wavefunction of the triplett has to be antisymmetric and the one
of the singlett symmetric so that the total wavefunction is antisymmetric with respect to exchanging
coordinates.

Problem 3: Commutator Relations - Ladder Operator

Assume |ψ〉 to be an eigenstate of Ô. Then writing out the commutator relation and applying to |ψ〉 we
have: [

Ô, Â
]
|ψ〉 = cÂψ〉

ÔÂ|ψ〉 − ÂÔ|ψ〉 = cÂψ〉

ÔÂ|ψ〉 − ÂλO|ψ〉 = cÂψ〉

Ô
(
Â|ψ〉

)
= (λO + c)

(
Âψ〉

)
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Thus, Âψ〉 is also an eigenfunction of Ô. In particular Â is a ladder operator incrementing the eigenvalues

by c. (If there is a minimum or maximum eigenvalue then the generated ladder is unique and Ô has a
discrete spectrum of eigenvalues.) However, the number of eigenstates can be infinite. Eigenstates of

Ô are not eigenstates of Â. There is no requirement that Â is hermitian and by definition they do not
commute.

Problem 4: Commutator Relations

Eigenstates of a hermitian operator with different eigenvalue are orthonormal so 〈a|Ĥ|c〉, 〈a|Ĥ|d〉, 〈b|Ĥ|c〉,
and 〈b|Ĥ|d〉 must be 0. From the following argument, also 〈a|Ĥ|b〉 has to be 0. Let |r〉 and |s〉 be

eigenstates of F̂ :

F̂ |r〉 = λr|r〉, F̂ |s〉 = λs|r〉, λr 6= λs[
F̂ , Ĥ

]
= 0 = 〈r|

[
F̂ , Ĥ

]
|s〉 = 〈r|F̂ Ĥ|s〉 − 〈r|ĤF̂ |s〉

= 〈F̂ r|Ĥs〉 − 〈r|Ĥ|λss〉 = (λr − λs)〈r|Ĥ|s〉

Since λr 6= λs, 〈s|Ĥ|r〉 = 0.

Problem 5: Time-Dependent Perturbation Theory

a) Inserting the expansion

|Ψ(t)〉 =
∑
n

an(t)|Ψ0
n(t)〉

into the time-dependent Schrödinger equation and using the product rule gives:

∑
n

ih̄dandt |Ψ0
n(t)〉+ an ih̄

d

dt
|Ψ0
n(t)〉︸ ︷︷ ︸

En|Ψ0
n(t)〉

 =
∑
n

an

Ĥ0|Ψ0
n(t)〉︸ ︷︷ ︸

En|Ψ0
n(t)〉

+V̂ (t)|Ψ0
n(t)〉


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The last term on the left hand side and the first term on the right hand side are equal and drop.
Multiplying by the bra 〈Ψ0

k(t)|· (and using orthogonality 〈Ψ0
k(t)|Ψ0

n(t)〉 = δkn) yields:

ih̄
dak(t)

dt
=
∑
n

〈
Ψ0
k(t)|V̂ (t)|Ψ0

n(t)
〉
an(t)

b) The essential approximations are that the system is initially (t = 0) in the eigenstates i of the
unperturbed system so an = δni and that the perturbation is weak (and/or we consider a sufficiently
short time).

ih̄
dak(t)

dt
≈
∑
n

eiωkntVkn(t)δni = eiωkitVki(t)

Integration for state number f leads to:

af (t)− af (0) =
1

ih̄

∫ t

0

eiωit
′
Vfi (t′) dt′

Since we are assuming an = δni for t = 0 we have:

af (t) ≈ δfi +
1

ih̄

∫ t

0

eiωfit
′
Vfi (t′) dt′

c) Inserting the harmonic perturbation

V̂ (r, t) = V̂(r)e−iωt + V̂†(r)eiωt

into

af (t) ≈ δfi +
1

ih̄

∫ t

0

eiωfit
′
Vfi (t′) dt′

(Vfi = 〈ψf |V̂ |ψi〉 = 〈ψf |V̂fi|ψi〉e−iωt + 〈ψf |V̂†fi|ψi〉eiωt = Vfie−iωt + V∗fieiωt) gives:

ai→f (t) =
1

ih̄
Vfi
∫ t

0

ei(ωfi−ω)t′dt′ +
1

ih̄
V∗if
∫ t

0

ei(ωfi+ω)t′dt′

(Vfi is time independent and δfi = 0). Integration leads to:

ai→f (t) = Vfi
1− ei(ωfi−ω)t

h̄ (ωfi − ω)
+ V∗if

1− ei(ωfi+ω)t

h̄ (ωfi + ω)

Since Vfi is assumed to be small the transition amplitude will only be significant if the denominator is
small, i.e. ω ≈ ±ωfi.

Problem 6: Rectangular Box

ψnxnynz
(r) = A sin

nxπx

Lx
sin

nyπy

Ly
sin

nzπz

Lz

a) The energy eigenvalues can be found from the Schrödinger equation. The potential inside the box
is V = 0. Thus:

Ĥψnxnynz (r) = Eψnxnynz (r) = − h̄2

2m
∇2ψnxnynz (r)

Enxnynz =
h̄2π2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)

b) Assuming that Lx=Lz, and Ly = 2L.
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Enxnynz =
h̄2π2

2mL2

(
n2
x +

n2
y

4
+ n2

z

)

E111 =
9

4

h̄2π2

2mL2

E121 = 3
h̄2π2

2mL2

E131 =
17

4

h2π2

2mL2

E211 = E112 =
21

4

h̄2π2

2mL2

Figure 1: Qualtitative sketch.

c) Given seven identical spin 1/2 particles and assuming the system to be in the ground-state, levels
with energies E111, E121, E131 will host two particles each. The remaining particle is in the degenerate
levels with energies E112, E211. (Here one may choose to put the particle in either of the states) From:

dW = −dE = PdV

P = −dE
dV

, Pi = − dE

AdLi

Assuming that the seventh particle is in state ψ112, the total energy is:

Etot = 2E111 + 2E121 + 2E131 + E112

Etot =
h̄2π2

2m

(
7

L2
x

+
29

L2
y

+
10

L2
z

)
The force and pressure in the x-direction are:

Fx = − dE

dLx
= 7

h̄2π2

mL3

px =
Fx
A

=
Fx

2L · L
=

7

2

h̄2π2

mL5

The pressures for the y- and z- directions are then:

py =
29

8

h̄2π2

mL5
, pz =

10

2

h̄2π2

mL5
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Problem 7: Spin - Matrix Representation

a) The matrix representation of the raising operator:

Ŝ+ = Ŝx + iŜy =
1

2
h̄

(
0 1
1 0

)
+

1

2
h̄

(
0 1
−1 0

)
=

1

2
h̄

(
0 2
0 0

)

Applying the raising operator once to find χ+,z and once more to yield the zero vector:

Ŝ+

(
0
1

)
= h̄

(
0 1
0 0

)(
0
1

)
= h̄

(
1
0

)

⇒ χ+,z =

(
1
0

)

Ŝ+

(
1
0

)
= h̄

(
0 1
0 0

)(
1
0

)
= h̄

(
0
0

)
=

(
0
0

)
b) The eigenvalues are found from (see formula sheet):

Ŝy =
1

2
h̄

(
0 −i
i 0

)
det

(
−λ −i h̄2
i h̄2 −λ

)
= λ2 − 1

4
h̄2i(−i)

⇒ λ = ±1

2
h̄ = S±,y

And the eigenvectors: (
− 1

2 h̄ − 1
2 h̄i

1
2 h̄i − 1

2 h̄

)
χ+,y =

(
0
0

)

⇒ χ+,y =
1√
2

(
1
i

)
(

1
2 h̄ − 1

2 h̄i
1
2 h̄i

1
2 h̄

)
χ−,y =

(
0
0

)

⇒ χ−,y =
1√
2

(
i
1

)
c) Solution Alternative 1 (As suggested in the problem description) The Hamiltonian can be

written as:

Ĥ = −ω
2
Ŝi = − h̄ω

4

(
0 −i
i 0

)
Inserting into the Schrödinger equation

ih̄
∂

∂t

(
a(t)
b(t)

)
= − h̄ω

4

(
0 −i
i 0

)(
a(t)
b(t)

)
This gives us the two coupled equations:

∂

∂t
a(t) =

ω

4
b(t)

∂

∂t
b(t) = −ω

4
a(t)
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Differentiating the second equation with respect to time and setting into the first one (and vice versa)
gives :

∂2

∂t2
a(t) = −ω

2

42
a(t)

∂2

∂t2
b(t) = −ω

2

42
b(t)

From the general solution of this differential equation (provided in the problem description):

a(t) = A+e
iω4 t +A−e

−iω4 t

b(t) =
4

ω

∂a(t)

∂t
= iA+e

iω4 t − iA−e−i
ω
4 t

So ψ(t) is written as:

ψ(t) =

(
a(t)
b(t)

)
=

(
A+e

iω4 t +A−e
−iω4 t

iA+e
iω4 t − iA−e−i

ω
4 t

)

Using the initial conditions (t=0) to determine the the coefficients A+, A−:

ψ(t = 0) =

(
A+ +A−
iA+ − iA−

)
=

(
1
0

)
⇒ A+ = A− =

1

2

ψ(t) =
1

2

(
ei

ω
4 t + e−i

ω
4 t

iei
ω
4 t − ie−iω4 t

)
=

(
cos
(
ωt
4

)
− sin

(
ωt
4

) )
⇒ ψ

( π
2ω

)
=

(
cos
(
π
8

)
− sin

(
π
8

) )
Solution Alternative 2 (Expanding the state into eigenfunctions of the Hamiltonian) We can

expand any state in terms of the stationary states (the two eigenstates represent a complete basis set),
i.e.:

ψ(t) = a+χ+,ye
−iE+

h̄ t + a−χ−,ye
−iE−h̄ t

The coefficients a+,a− are found as always by projecting ψ(t) on the eigenstates:

a+ = 〈χ+,y|ψ(t)〉 =
1√
2

(
1 −i

)( 1
0

)
=

1√
2

a− = − 1√
2

Hence ψ(t) is written as:

ψ(t) =
1√
2

1√
2

(
1
i

)
e

iωt
4 − 1√

2

1√
2

(
−1
i

)
e−

iωt
4 =

=
1

2

(
e

iωt
4 + e−

iωt
4

ie
iωt
4 − ie− iωt

4

)
=

(
cos
(
ωt
4

)
− sin

(
ωt
4

) )

⇒ ψ
( π

2ω

)
=

(
cos
(
π
8

)
− sin

(
π
8

) )
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