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Problem 1

a) The eigenfunctions satisfy the equation

−i~dψp(x)

dx
= pψp(x) , (1)

whose solutions are the usual plane waves

ψp(x) = eipx/~ . (2)

The periodic boundary condition yields

ψp(0) = ψp(L) , (3)

or

1 = eipL/~ . (4)

The allowed values for the momentum are p = 2~πn
L , where n = 0 ± 1,±2, .... Integrating

|ψp(x)|2 = 1 from x = 0 to x = L yields L, so the normalized wavefunctions is ψp(x) = eipx/~√
L
.
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b) The particle density is

ρ =
1

~

∫ ∞
−∞

dp

2π
θ(EF − E) ,

where E =
√
m2c4 + c2p2 and E =

√
m2c4 + c2p2F . The step function is one for |p| < |pF |

and zero otherwise. The absolute value gives a factor of two and we end up with

ρ =
1

π~

∫ pF

0
dp =

pF
π~

. (5)

The energy density is

E =
1

~

∫ ∫ ∞
−∞

dp

2π
Eθ(EF − E) ,

=
1

π~

∫ pF

0
dp
√
m2c4 + c2p2

=
m2c3

2π~

[
xF

√
x2F + 1 + log

(
xF +

√
x2F + 1

)]
, (6)

where we have used the substitution x = sinhu and x = p
mc . The pressure is calculated in

the same manner,

P =
1

~

∫ ∞
−∞

∫
dp

2π
(EF − E)θ(EF − E)

=
1

π~

∫ pF

0
dp

[√
m2c4 + c2p2F −

√
m2c4 + c2p2

]
=

m2c3

2π~

[
xF

√
x2F + 1− log

(
xF +

√
x2F + 1

)]
, (7)

c) The ultrarelativistic limit is given by m→ 0, which yields

E =
cp2F
2π~

. (8)

P =
cp2F
2π~

. (9)

In the ultrarelativistic case, we have

P = E . (10)
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Problem 2

a) After integrating over angles, the normalization constant is determined by the integral

1 = |A|24π
∫ ∞
0

re−2αrr2dr

= |A|24π 3

8α4
. (11)

Choosing the phase of the wavefunction to be zero, we find

A =

√
2

3π
α2 . (12)

b) The expectation value of the kinetic energy can be expressed as the integral

〈T 〉 = − ~2

2m

∫
ψ∗∇2ψ d3r . (13)

For a spherically symmetric function ψ(r), the Laplace operator reduces to

∇2ψ =
1

r2
d

dr

(
r2
dψ

dr

)
. (14)

This yields

〈T 〉 = − ~2

2m
4π

∫ ∞
0

ψ∗
[

1

r2
d

dr

(
r2
dψ

dr

)]
r2dr

=
~2

2m

α2

2
. (15)

c) The expectation value of the potential energy is

〈V 〉 = −k
∫ ∞
0

ψ∗
1

r
ψr2dr

= −4

3

~2

2m

α

a0
, (16)

where have used that k = e2

4πε0
= ~2

ma0
.

d) The total energy is the sum of 〈T 〉 and 〈V 〉

〈E〉 =
~2

2m

[
1

2
α2 − 4

3

α

a0

]
. (17)
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The value that minimizes the total energy is found by solving d〈E〉
dα = 0, which yields

α =
4

3a0
. (18)

Since d2〈E〉
dα2 > 0, the value (18) corresponds to a minimum. The energy is then

〈E〉min = − ~2

2ma20

8

9
, (19)

which is higher than the true value by a factor 9
8 .

Problem 3

a) Since l = 1, we have ml = 0,±1. We also have sz = ±1
2 and so there are 3 × 2 = 6

states.

b) Let us consider the commutator [Ĵ
2
, L̂2],

[Ĵ2, L̂2] = [L̂2, L̂2] + [Ŝ2, L̂2] + 2[L̂ · Ŝ, L̂2] . (20)

The first commutator is trivially zero, while the second vanishes since the two operators act
on different subspaces. The last commutator vanishes since [L̂, L̂2] = 0 and since the spin
and orbital-angular momentum operators act on different subspaces. Similiar arguments can
be applied to the other commutators involving angular-momentum operators. Moreover,
we find

[Ĵ2, Ĥ] = [L̂2, Ĥ] + [Ŝ2, Ĥ] + 2[L̂ · Ŝ, Ĥ] . (21)

The first commutator vanishes since [L̂, Ĥ] = 0 and the second vanishes since Ĥ is indepen-
dent of spin. The last commutator vanishes by the very same arguments combined. Finally,
[Ĵz, Ĥ] = 0 as can be shown in the same manner

c) l = 1 and s = 1
2 yields j = 1

2 or j = 3
2 . The first case yields 2j + 1 = 2 states and the

second yields 2j + 1 = 4 states. Thus we have one quadruplet and one doublet and total of
6 states. This is the same as in a) as it must be.

d) The state with ml = 1 and ms = 1
2 has mj = 3

2 and there is only one way to obtain

this. Thus this state is also an eigenstate of Ĵ2. We can therefore write

|n13
2
3
2〉 = |n111

2〉 . (22)
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We can now use the ladder operator J− = L− + S− to construct the other rungs of the
ladder with j = 3

2 . Using the general formula J−|jm〉 = ~
√

(j +m)(j −m+ 1)|jm − 1〉,
we find

J−|n13
2
3
2〉 = ~

√
3|n13

2
1
2〉 , (23)

(L− + S−)|n111
2〉 = ~

√
2|n101

2〉+ ~|n11− 1
2〉 . (24)

Since the left-hand side of Eqs. (23) and (24) are equal, we obtain

|n13
2
1
2〉 =

√
2

3
|n101

2〉+

√
1

3
|n11− 1

2〉 . (25)

By repeated use of J−, we find

|n13
2 −

1
2〉 =

√
1

3
|n1− 11

2〉+

√
2

3
|n10− 1

2〉 , (26)

|n13
2 −

3
2〉 = |n1− 1− 1

2〉 . (27)

The second ladder has j = 1
2 and the top rung has mj = 1

2 This state must be orthogonal
to the state

|n13
2
1
2〉 . (28)

This yields

|n11
2
1
2〉 =

√
1

3
|n101

2〉 −
√

2

3
|n11− 1

2〉 . (29)

The second rung is then found either by using J− or by requiring orthogonality to the state
(26). Either way, we obtain

|11
2
1
2 −

1
2〉 =

√
2

3
|n− 11

2〉 −
√

1

3
|n10− 1

2〉 (30)

Problem 4

a) Since L̂2, Ŝ2, L̂z and Ŝz commute among themselves and commute with the Hamilto-
nian Ĥ of an electron moving in an arbitrary spherically symmetric potential V (r), these
operators have a simultaneous complete set of eigenvectors.

b) For a given value of l, there are 2l + 1 possible values for ml. We also have a two-fold
degeneracy due to the spin of the electron, giving a total degeneracy of

g = 2(2l + 1) . (31)
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c) The angular part of the matrix element is proportional to∫
Y ∗lml

(θ, φ) cos θYl,m′
l
(θ, φ)dΩ . (32)

The φ-dependence of Ylm(θ, φ) is eimφ. giving us a factor ei(m
′
l−ml)φ, which vanishes upon

integration over φ unless ml = m′l. The parity of Ylm(θ, φ) is (−1)l. Since cos θ changes
sign under parity, θ → π − θ and φ = φ + π, the integrand is odd in θ and the integral
over θ vanishes. Thus the matrix elements of the perturbation are all zero and there is no
first-order Stark effect.

Problem 5

The gravitational pull on a spherical shell of the matter inside the shell is balanced by the
force on the same shell arising from the pressure of matter. The pressure could be due
to thermal motion or if the temperature is low, the quantum pressure due to the Pauli
principle.

—————————————————————————— ————————————
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