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Problem 1

a) After integration by parts, the expectation value of the kinetic energy is

〈ψ|T |ψ〉 =
~2

2m

∫ ∞
−∞
|ψ′(x)|2 dx . (1)

The derivative of the trial wavefunction is

ψ′(x) = −α
3
2
|x|
x
e−α|x| . (2)

Integrating, we find

〈ψ|T |ψ〉 =
~2

2m
α3

∫ ∞
−∞

e−2α|x| dx .

=
~2

2m
α2 . (3)
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Comment: One can also use the standard expression for T , but that requires finding
ψ′′(x). Due to the factor x

|x| , this gives rise to a delta-function

ψ′′ = −2α
3
2 δ(x)e−α|x| + α

5
2 e−α|x| . (4)

Using the expression for ψ and ψ′′ in the expression

〈ψ|T |ψ〉 = − ~2

2m

∫ ∞
−∞

ψ(x)ψ′′(x) dx , (5)

yields the same result, Eq. (3).

b) The contribution to the energy from the potential term is

〈ψ|V |ψ〉 =

∫ ∞
−∞

ψ∗(x)V (x)ψ(x) dx =
1

2
mω2α

∫ ∞
−∞

x2e−2α|x| dx

=
1

4
mω2 1

α2
. (6)

c) The total energy is then

E(α) =
~2α2

2m
+

1

4
mω2 1

α2
. (7)

The potential energy gets smaller as α gets larger. This corresponds to a wavefunction that
is located near the origin (near the minimum of V (x)). On the other hand, the kinetic
energy prefers a small value of α implying that the gradient be as small as possible. Thus
there is a competition between these terms and the optimum is found by extremizing E as
a function of α. dE/dα = 0 yields

~2α
m
− 1

2

mω2

α3
= 0 , (8)

or

α2 =
1√
2

mω

~
. (9)

The corresponding energy is

Eopt =
1

2

√
2~ω , (10)

which is higher than the exact ground-state energy by a factor of
√

2. This is not particular
impressive. Finally, we note that the

d2E

dα2

∣∣∣∣∣
α2= 1√

2
mω
~

=
4~2

m
> 0 , (11)

showing that the extremum in fact is a minimum.
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Problem 2

a) Since H is nonempty there is a nonzero vector that we denote by |ψ〉. Either b|ψ〉 = 0
or b|ψ〉 = |χ〉 6= 0. In the first case we are done, so we focus on the second case. We find

b|χ〉 = b2|ψ〉 = 0 , (12)

where we in the second step have used that {b, b} = 2b2 = 0. We denote by |0〉 the state
annihilated by b̂.

b) Assume b†|0〉 = 0. Then bb†|0〉 = 0 or (1− b†b)|0〉 = |0〉 = 0, which is a contradiction.
Consider |1〉 = b̂†|0〉, which yields 〈1| = 〈0|b̂. Thus

〈1|1〉 = 〈0|bb†|0〉 = 〈0|1− b†b|0〉 = 〈0|0〉 = 1 , (13)

where we have used the anticommutation relation
{
b, b†

}
= 1. Thus |1〉 is a normalized

vector. Moreover, we find

b|1〉 = bb†|0〉 = (1− b†b)|0〉 = |0〉 . (14)

In the same way, we obtain

b†|1〉 = b†b†|0〉 = 0 . (15)

c) The results above show that the space spanned by the vectors |0〉 and |1〉 is closed
under the action of the operators 1, b and b†, and bb† (or b†b). Any product of b and b† can
be reduced to these four using the anticommutation relations. It is therefore closed under
the action of any product of these operators. Thus they span the space and since they are
linearly independent, they form a basis. The space is therefore two-dimensional.

d) The operators b is not hermitian, which follows from the calculations above. Assume
b is hermitian. Then b|0〉 = b†|0〉 = |1〉, but we also know that b annihilates the state |0〉,
implying that |1〉 = 0, which is a contradiction. The calculations above also show that the
operator b has the matrix representation

b =

(
0 1
0 0

)
. (16)

This confirms that b 6= b†. The eigenvector of this matrix is |0〉 with eigenvalues zero, i.e.

b|0〉 = 0|0〉 . (17)

In the same manner, we can calculate the eigenvectors of b†. One finds

b†|1〉 = 0|1〉 . (18)

Note that there is only one eigenvector in each case.
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e) We must construct the 2 × 2 matrix representation of the Hamiltonian by calculat-
ing all its matrix elements. However, the above calculations suggest that |0〉 and |1〉 are
eigenvectors of H. Explicit calculations show

H|0〉 =
1

2
~ω(b†b− bb†)|0〉 = −1

2
~ω|0〉 , (19)

H|1〉 =
1

2
~ω(b†b− bb†)|1〉 =

1

2
~ω|1〉 . (20)

Thus the energy of the state |0〉 is E0 = −1
2~ω and the energy of the state |1〉 is E1 = 1

2~ω.

f) This follows automatically from b†|1〉 = b†b†|0〉 = 0, since by acting with b†b† on the
vacuum state |0〉, one tries to construct a state with two identical fermions in the same
state. The number operator is

N = b†b , (21)

since b†b|0〉 = 0|0〉 and b†b|1〉 = |1〉.

Problem 3

a) The expectation value of the first term in Hhf in a state |ψ〉 is proportional to〈
ψ

∣∣∣∣ [3(Sp · er)(Se · er)− Sp · Se]
r3

∣∣∣∣ψ〉 . (22)

For spherically symmetric states, i.e. s-states, the first term above can be replaced by

1

4π

4π

3

3Sp · Se
r3

=
Sp · Se
r3

, (23)

since multiplying the integrand by |ψ2| does not change the angular average. The result
then follows.

b) In the absence of the spin-spin interaction, the energy eigenstates of hydrogen are
also eigenstates of S2

e, S
2
p, Se,z, and Sp,z. The spin part of the eigenstates are denoted by

|Se,zSp,z〉, where Se,z and Sp,z are the z-component of spin of the electron and the proton,
respectively. Since S2 = 3

4~
2 always, we suppress these quantum numbers for notational

simplicity. The perturbation Se ·Sp does not commute with Se,z or Sp,z but commutes with
S2, and Sz, where S = Se + Sp.

1 The correct zeroth-order wavefunctions are then |SSz〉,
where S is the total spin quantum number and Sz is its z-component. Since the electron

1This is analogous to the case where we consider spin-orbit coupling.
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and the proton both are spin-12 particles, the total spin is either S = 0 or S = 1. We next
write

Se · Sp =
1

2

[
S2 − Ŝ2

e − S2
p

]
. (24)

which implies that

〈SSz|Se · Sp|SSz〉 =
1

2
~2
[
S(S + 1)− 3

2

]
, (25)

The first-order energy correction is then

E
(1)
hf =

µ0ge
2

3mpme
〈SSz|Se · Sp|SSz〉 |ψ100(0)|2 , (26)

where the last factor comes from integrating over space using the delta-function. This yields

E
(1)
hf =

g~4

3mpm2
ec

2a4

{
1
4 , S = 1 ,
−3

4 , S = 0 ,
, (27)

where we have used that ψ100(0) = 1√
πa3

, a = 4πε0~2
me2

and µ0ε0 = 1/c2.

Comment: Calculating the numerical value of the energy shift by plugging in numbers,
one finds a frequency of 1420 Mhz or a wavelength of 21cm. This is shown in Fig. 1. This
line which is in the microwave region of the electromagnetic spectrum, and it is observed
frequently in radio astronomy. It is arguably the most important line in astronomy.

Figure 1: Hyperfine structure and 21 cm line in hydrogen.
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