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Problem 1 Multiple choice problems

a) The rule for addition two angular momenta with quantum numbers j1 and j2 is that the
total angular momentum quantum number j can take the values

j = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|.

With j1 = 5 and j2 = 2, we therefore get

j = 3, 4, 5, 6, 7.

Hence, alternative C is the correct answer.

b) Alternative A and D are eigenspinors of Sz, and therefore cannot be the eigenspinors of
Sx. We check the remaining three options:

1√
2

(
0 1
1 0

)(
1
±1

)
=

1√
2

(
±1
1

)
= ± 1√

2

(
1
±1

)
,

1√
2

(
0 1
1 0

)(
1
−i

)
=

1√
2

(
−i
1

)
= − i√

2

(
1
i

)
.

We see that the spinor 1√
2

(
1
1

)
is the only eigenspinor of σx with eigenvalue +1, and is

therefore an eigenspinor of Sx with eigenvalue +~
2 , meaning that alternative E is the correct

answer.
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c) The probability of measuring +~/2 along the x direction for a given state χ is

Px+ = |χ†
x+χ|2,

where

χx+ =
1√
2

(
1
1

)
,

the eigenvector found in c). Calculating the amplitudes for the different options, we get

A Px+ =
1

2

∣∣∣∣(1 1
)(1

0

)∣∣∣∣2 = 0.5

B Px+ =
1

10

∣∣∣∣(1 1
)(2

1

)∣∣∣∣2 = 32

10
= 0.9

C Px+ =
1

10

∣∣∣∣(1 1
)( 2

−i

)∣∣∣∣2 = |2− i|2

10
= 0.5

D Px+ =
1

20

∣∣∣∣(1 1
)(3

1

)∣∣∣∣2 = 42

20
= 0.8

E Px+ =
1

4

∣∣∣∣(1 1
)(1

1

)∣∣∣∣2 = 1.

Alternative B is the correct answer.

d) Since the Hamiltonian is diagonal, we directly read off the energy eigenvalues as
E± = ±~ω, with corresponding eigenspinors

χ+ =

(
1
0

)
, χ− =

(
0
1

)
.

A general solution to the Schödinger equation is therefore χ = a+χ+e
−E+t/~+a−χ−e

−iE−t/~.
At t = 0, the given state can be written as a superposition of the two energy eigenstates
with coefficients a± = 1/

√
2, meaning that at times t > 0 we have

χ(t) =
1√
2
χ+e

−iE+t/~ +
1√
2
χ−e

−iE−t/~ =
1√
2

(
e−iωt

eiωt

)
. (1)

Alternative D is the correct answer.

e) We consider each statement.
A: Even though the particle is in the eigenstate of Sx with eigenvalue ~/2 at t = 0,

Sx and H do not commute, making the expectation value of Sx time-dependent. We will
therefore not always measure Sx = ~/2. This is clear also from the answer in e), where
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the spin state is proportional to the eigenspinor of Sx with eigenvalue +~/2 only at certain
times. Not true.

B: We insert t = π
2ω into the time-dependent state found in e), Eq. (1),

χ
( π
2ω

)
=
e−iπ/2

√
2

(
1
eiπ

)
=
e−iπ/2

√
2

(
1
−1

)
, (2)

which is not an eigenstate of Sy. Not true.
C: At certain times the state in Eq. (1) will be an eigenstate of Sy, e.g. at t = π/4ω. If

we measure at exactly these times, we will know the outcome of a measurement of the spin
along the y direction. Not true.

D: Taking a second look at Eq. (2), we see that this actually is an eigenvector of Sx
with eigenvalue −~/2. If we measured Sx at exactly the given time, we would therefore be
guaranteed to measure Sx = −~/2. Hence this statement is true.

E: The energy eigenstates are simultaneous eigenstates of H and Sz, and a measurement
of the energy would therefore also determine the component of the spin along z. Hence we
do not lose all information about the spin state when measuring the energy. Not true.

Option D is the correct answer.

f) The momentum eigenstates are delta-function normalized,

〈p2|p1〉 = δ(p2 − p1).

Hence, we get

〈p2|p̂|p1〉 = p1〈p2|p1〉 = p1δ(p2 − p1) = p2δ(p2 − p1),

where we can move p1 outside the bracket since it is a number, not an operator. Hence, the
correct answer is alternative A.

g) The easiest way to solve this problem is through dimensional analysis. |Φ|2 is a probability
density in momentum space, and should therefore have dimension of inverse momentum, i.e.
[|Φ|2] = kg−1m−1 s. From Eq. (2) we see that φ(k) has dimension

√
length, [φ(k)] = m1/2,

meaning that φ2(k)/~ has the correct dimension, [φ2(k)/~] = mJ−1 s−1 = kg−1m−1 s. The
only option with the correct dimension is therefore alternative B.

We can also calculate it directly. We insert a completeness relation into the expression
for Ψ(x, t),

Ψ(x, t) = 〈x|Ψ〉 =
∫ ∞

−∞
dp 〈x|p〉〈p|Ψ〉 = 1√

2π~

∫ ∞

−∞
dp eipx/~Φ(p, t).

Using p = ~k, we get

Ψ(x, t) =

√
~
2π

∫ ∞

−∞
dk eikxΦ(p, t) =

∫ ∞

−∞
dk eikxφ(k)e−iω(k)t,
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where in the last equality we have inserted the expression from the problem set. Comparing
the two sides of the equality, we find

Φ(p, t) =

√
2π

~
φ(p/~)e−ip2t/(2m~),

which is option B.

h) The probabilities of measuring E1 and E2 are given by the (absolute value) squared of
the expansion coefficients, P1 = 2/6 and P2 = 4/6, respectively. Hence, we get

〈E〉 = P1E1 + P2E2 = ~ω
2 + 8

6
=

5~ω
3
,

making alternative E the correct answer.

i) The general rule is that the dual of a|v〉 is a∗〈v|. Using this rule for the given state
vector, we therefore get

〈ψ| = 1√
6
[(2 + i)∗〈1|+ (i)∗〈2|] = 1√

6
[(2− i)〈1| − i〈2|] ,

meaning that the correct answer is option C. Since it is stated that the vector is normalized,
we could also have calculated 〈ψ|ψ〉 for each alternative, which would have given 〈ψ|ψ〉 = 1
only for option C.

Problem 2 Short answer questions

a) Bosons states must be symmetric under exchange of identical particles, which allows
many identical bosons to occupy the same single-particle state. Fermion states must be
completely antisymmetric under exchange of identical particles, which means that identical
fermions cannot occupy the same single-particle state (Pauli exclusion principle). In three
dimensions bosons have integer spin, while fermions have half-integer spin.

b) The Pauli principle states that identical fermions within a system cannot occupy the same
single-particle state at the same time. A fermionic state has to be completely antisymmetric
upon interchange of identical particles, resulting in the state 0 if two identical particles are
in the same single-particle state. Hence, such a state cannot exist.

c) Physical observables should be real quantities, and must therefore be represented by
Hermitian operators which have real eigenvalues.
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Problem 3

a) The stationary state wavefunctions should be eigenfunctions of the time-independent
Schrödinger equation, Ĥψ = Eψ, where E is the eigenenergy. Inside the box, the potential
is zero, and we therefore require

− ~2

2m
∇2ψnxnynz = − ~2

2m

∑
i=x,y,z

∂2i A sin
πxnx
Lx

sin
πyny
Ly

sin
πznz
Lz

=
~2

2m

[(
πnx
Lx

)2

+

(
πny
Ly

)2

+

(
πnz
Lz

)2
]
A sin

πxnx
Lx

sin
πyny
Ly

sin
πznz
Lz

=
~2π2

2m

(
n2x
L2
x

+
n2y
L2
y

+
n2z
L2
z

)
ψnxnynz = Eψnxnynz . (3)

Setting Lx = Ly = L, we see that the wavefunctions are energy eigenfunctions with the
eigenenergies given in the problem, and thus solutions to the Schrödinger equation inside
the box. The final requirement is that the wavefunctions should be zero at the boundaries,
since the potential is infinite there. Inserting x = 0, L, y = 0, L and z = 0, Lz we get zero in
all cases when nx, ny, nz are positive integers, making this a valid solution satisfying both
the time-independent Schrödinger equation and the boundary conditions.

b) Since the particles have spin 1
2 , two particles can occupy each energy eigenstate by

being in the spin-singlet state. We therefore need to find the quantum numbers nx, ny, nz
corresponding to the 11 lowest energies when Lz = 0.1L,

Enxnynz =
~2π2

2mL2

(
n2x + n2y + 100n2z

)
≡ E0

(
n2x + n2y + 100n2z

)
. (4)

Since the last term has a prefactor of 100, increasing nx and ny leads to lower energy states
than increasing nz to 2 as long as nx, ny ≤ 20. Hence the 11 lowest energy states are

E111 = 102E0,

E211 = E121 = 105E0,

E221 = 108E0,

E311 = E131 = 110E0,

E321 = E231 = 113E0,

E411 = E141 = 117E0,

E331 = 118E0.

The maximal occupied one-particle energy is therefore E331 = 118 ~2π2

2mL2 . With the given
number of particles in the system, no particles have nz > 1, making the system effectively
two-dimensional.
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c) In the macroscopic limit L is large, and the energy levels lie close together, and we treat
the energy levels as a continuum. Defining n =

√
n2x + n2y + n2z, we write the energy as

E =
~2π2

2mL2
n2 ⇒ n =

√
2mL2E

~π
. (5)

For a given maximal energy E, the total number of energy states is therefore given by the
volume of the positive octant in n-space with radius n given by the above equation, giving
the total number of single-particle states

N = 2 · 1
8

4πn3

3
=
π

3

(
2mL2E

~2π2

)3/2

=
V

3π2~3
(2mE)3/2, (6)

where have multiplied with 2 to account for two spin states per energy level, and have
defined V = L3.

The density of states is then

g(E) =
dN

dE
=

V

2π2

(
2m

~2

)3/2√
E. (7)

Problem 4
Taking the time-derivative of the the expectation value, we get

d

dt
〈F 〉 =

[
∂

∂t
〈ψ|
]
F̂ |ψ〉+ 〈ψ|

[
∂

∂t
F̂

]
|ψ〉+ 〈ψ|F̂

[
∂

∂t
|ψ〉
]
. (8)

The second term is the expectation value of the time-derivative of the operator. To simplify
the remaining terms, we use the Schrödinger equation. For the vector |ψ〉, we have

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉 ⇒ ∂

∂t
|ψ〉 = − i

~
Ĥ|ψ〉 (9)

Taking the adjoint or Hermitian conjugate, we get the Schrödinger equation for the dual
vector,

−i~ ∂
∂t

〈ψ| = [Ĥ|ψ〉]† = 〈ψ|Ĥ ⇒ ∂

∂t
〈ψ| = i

~
〈ψ|Ĥ, (10)

where we have used the fact that Ĥ is Hermitian. Hence, we get

d

dt
〈F 〉 = i

~
〈ψ|ĤF̂ |ψ〉 − i

~
〈ψ|F̂ Ĥ|ψ〉+

〈
∂F̂

∂t

〉
=
i

~
〈ψ|[Ĥ, F̂ ]|ψ〉+

〈
∂F̂

∂t

〉

=
i

~
〈[Ĥ, F̂ ]〉+

〈
∂F̂

∂t

〉
. (11)
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Problem 5

a) The abstract ground state vector is defined by a|0〉 = 0. We multiply with an adjoint
position eigenvector from the left, and insert a completeness relation

0 = 〈x|a|0〉 =
∫
dx′ 〈x|a|x′〉〈x′|0〉 =

∫
dx′〈x|a|x′〉ψ0(x

′). (12)

We now insert the expression for a in terms of the position and momentum operators, and
use the given formula for a bracket containing an operator,

0 =

√
mω

2~

∫
dx′〈x|x̂+

i

mω
p̂x|x′〉ψ0(x

′) =

√
mω

2~

∫
dx′

(
x+

~
mω

∂

∂x

)
δ(x− x′)ψ0(x

′)

=

√
mω

2~

[
xψ0(x) +

~
mω

∂

∂x
ψ0(x)

]
. (13)

We have to solve the differential equation

xψ0(x) +
~
mω

∂

∂x
ψ0(x) = 0, (14)

which we rewrite to
dψ0

ψ0
= − mωx

~
dx

⇒ lnψ0 = − mωx2

2~
+ const. (15)

Hence, the ground state wavefunction is

ψ0(x) = Ae−mωx2/(2~), (16)

where A must be determined by normalization.

b) We determine A by requiring normalization,

1 =

∫ ∞

−∞
dx |ψ0(x)|2 = |A|2

∫ ∞

−∞
dxe−mωx2/~ = |A|2

√
~π
mω

, (17)

where we have used the Gaussian integration formulas given in the formula sheet. Choosing
A real and positive, we get

A =
(mω
π~

)1/4
, (18)

and the normalized ground state wavefunction

ψ0(x) =
(mω
π~

)1/4
e−mωx2/(2~). (19)
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c) We write the perturbation in terms of the raising and lowering operators using

x̂ =

√
~

2mω
[a+ a†], (20)

resulting in

V̂q =
1

4
qx̂4 =

q

4

(
~

2mω

)2

[a+ a†]4. (21)

The first order correction is given by 〈n|V̂q|n〉, and we therefore need to calculate

〈n|[a+ a†]4|n〉 = 〈n|[aa+ aa† + a†a+ a†a†]2|n〉
= 〈n|[aaa†a† + aa†aa† + a†aaa† + aa†a†a+ a†aa†a+ a†a†aa]|n〉, (22)

where we have neglected all terms with an unequal number of raising and lowering operators
since the states are orthonormal, 〈m|n〉 = δmn. Using the given formulas for the effect of
the raising and lowering operators, we get

〈n|[a+ a†]4|n〉 = (n+ 1)(n+ 2) + (n+ 1)2 + n(n+ 1) + n(n+ 1) + n2 + n(n− 1)

= n2 + 3n+ 2 + n2 + 2n+ 1 + 2n2 + 2n+ n2 + n2 − n

= 6n2 + 6n+ 3. (23)

Hence, the first order corrections are

E(1)
n =

3q

16

(
~
mω

)2 [
2n2 + 2n+ 1

]
=

3q(~ω)2

16k2
[
2n2 + 2n+ 1

]
, (24)

which increase rapidly with increasing n. For higher n, the change in the potential due to
the x4-term becomes increasingly more important, and it is therefore reasonable that the
correction should increase for larger n.

d) When k < 0, the potential no longer has a global minima at x = 0, but rather a local
maxima, meaning that the Hamiltonian no longer describes a harmonic oscillator centered
at x = 0. In fact, the frequency ω becomes imaginary for negative k, indicating that our
analysis for k > 0 does not hold when k < 0. Hence, the given harmonic oscillator solutions
(|n〉 and En) are not solutions of a solvable unperturbed Hamiltonian H0 when k < 0, and
we cannot use perturbation theory based on these solutions.

e) The expectation value is given by

〈H〉 = 〈ψc|Ĥ|ψc〉
〈ψc|ψc〉

=
〈ψc| p̂

2
x

2m + 1
2kx̂

2 + 1
4qx̂

4|ψc〉
〈ψc|ψc〉

, (25)
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where the denominator ensures normalization. We calculate the necessary quantities term
by term in the position representation:1

〈ψc|ψc〉 = |C|2
∞∫

−∞

dx e−mΩ(x−x0)2/~ = |C|2
√

π~
mΩ

, (26)

〈ψc|
p̂2x
2m

|ψc〉 =
1

2m

∞∫
−∞

dx ψ∗
c (x)p̂

2
xψc(x) =

1

2m

∞∫
−∞

dx [p̂xψc(x)]
∗p̂xψc(x)

=
~2

2m

∞∫
−∞

dx

∣∣∣∣imΩ

~
(x− x0)Ce

−mΩ(x−x0)2/2~
∣∣∣∣2

= |C|2mΩ2

2

∞∫
−∞

dy y2e−mΩy2/~ = |C|2
√

π~
mΩ

~Ω
4

(27)

〈ψc|
1

2
kx̂2|ψc〉 =

k|C|2

2

∞∫
−∞

dy(y + x0)
2e−mΩy2/~ =

k|C|2

2

√
π~
mΩ

[
~

2mΩ
+ x20

]
(28)

〈ψc|
1

4
qx̂4|ψc〉 =

q|C|2

4

∞∫
−∞

dy(y + x0)
4e−mΩy2/~ =

q|C|2

4

√
π~
mΩ

[
3

4

~2

m2Ω2
+

3~
mΩ

x20 + x40

]
.

(29)
1One elegant solution used by some was based on the special properties of Gaussian functions. From the

probability density we can read off 〈x〉 = x0, 〈px〉 = 0, and

∆x2 = 〈x2〉 − 〈x〉2 = 〈x2〉 − x20 =
~

2mΩ
.

From this we directly get 〈
1

2
kx2

〉
=
k

2
〈x2〉 = k

2

[
~

2mΩ
+ x20

]
.

Moreover, since the Gaussian wavefunction is a minimal uncertainty state, with ∆x∆px = ~
2
, we get〈

p̂2x
2m

〉
=

〈p̂2x〉
2m

=
1

2m

~2

4∆x2
=

~Ω
4
.

In principle one could also calculate 〈x4〉 in a similar way by using the fact that all cumulants κn with n > 2
are zero for a Gaussian distribution. However, since that quickly becomes complicated (and would require a
very good memory), it is probably easier to calculate the integral directly.
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Here, we have defined y = x− x0 and made use of the Gaussian integral formulas given in
the formula sheet, resulting in the following solutions for the integrals,

∞∫
−∞

dy e−αy2 =

√
π

α
,

∞∫
−∞

dy y2e−αy2 = − ∂

∂α

√
π

α
=

1

2

√
π

α

1

α
,

∞∫
−∞

dy y4e−αy2 =
∂2

∂α2

√
π

α
=

3

4

√
π

α

1

α2
,

with α = mΩ/~. All integrals with odd powers of y are zero.
Inserting Eqs. (26) to (29) into Eq. (25), we find the energy expectation value

〈H〉 = 〈ψc|Ĥ|ψc〉
〈ψc|ψc〉

=
~Ω
4

+
k~

4mΩ
+
k

2
x20 +

3q

16

~2

m2Ω2
+

3q

4

~
mΩ

x20 +
q

4
x40

=
~Ω
8

+
3q~2Ω2

64k2
+
k

2

[
1− 3q~Ω

4k2

]
x20 +

q

4
x40 ≡ E(x0), (30)

where we have used Ω =
√

−2k/m to simplify the result by eliminating the mass m from
the expression.

f) According to the variational principle, we have the following inequality for the ground
state energy E0,

E0 ≤
〈ψc|Ĥ|ψc〉
〈ψc|ψc〉

= E(x0). (31)

To find an upper bound for the ground state energy we therefore minimize the expectation
value with respect to the free parameter x0,

0 =
∂E

∂x0
= k

(
1− 3q~Ω

4k2

)
x0 + qx30, (32)

The solutions are x0 = 0 and

x0 = ±

√
−k
q

√
1− 3~Ω

4

q

k2
≡ x±. (33)

Inserting the two solutions into E(x0), we get

E(0) =
~Ω
8

+
3~2Ω2

64

q

k2
, (34)
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and

E(x±) =
~Ω
2

− k2

4q
− 3~2Ω2

32

q

k2
. (35)

We see that E(x±) is lower than E(0), which is consistent with the fact that the average
potential energy of a particle is lowered if the position expectation value, 〈x〉 = x0, is in a
region with negative potential energy.2 The upper bound for the ground state energy is
therefore

E0 ≤
~Ω
2

− k2

4q
− 3~2Ω2

32

q

k2
≈ ~Ω

2
− k2

4q
, (36)

when ~Ωq/k2 � 1. Hence the upper bound for the ground state energy takes the form
of the regular harmonic oscillator ground state energy ~Ω/2, but shifted towards negative
energies by a constant term −k2/4q corresponding to the minima of the potential energy.
This is consistent with the double well structure that appears when k < 0, which in the
limit ~Ωq/k2 � 1 results in two approximately harmonic potentials with spring constant
2|k| centered at x = x± ≈ ±

√
−k/q.3

2In fact, when ~Ωq/k2 � 1 the positions x± correspond to the two minima in the potential energy.
3A comment for those interested: Since the potential is symmetric, the actual wavefunctions of the system

have to be either symmetric or antisymmetric about x = 0. Therefore,

ψ±(x) = C±

[
e−mΩ(x−x0)

2/2~ ± e−mΩ(x+x0)
2/2~

]
would be better trial functions for this system, since they have the right symmetry properties. ψ+ would
be a good trial function for the ground state, which must be symmetric, and ψ− for the first excited state.
However, when ~Ωq/k2 � 1, the expectation values obtained using ψ± are close to identical due to a close to
negligible overlap between the two terms in ψ± — the expectation value of the ground state and the first
excited state are the same! The way to understand this is that the two potential wells have become so deep
that they are decoupled from each other for the lowest energy states. The trial wavefunction ψc with x0 set
to the values x± ≈ ±

√
−k/q ≡ ±xmin found above correspond to superpositions of ψ+ and ψ−,

ψc(x)
∣∣
x0=xmin

∝ [ψ+(x) + ψ−(x)]

∣∣∣∣
x0=xmin

,

ψc(x)
∣∣
x0=−xmin

∝ [ψ+(x)− ψ−(x)]

∣∣∣∣
x0=xmin

,

resulting in two harmonic oscillator-like solutions located either in the right or left well.
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