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Problem 1 Multiple choice problems

a) The general rule when adding two spins is that the total spin quantum number can take
the values

s = s1 + s2, s1 + s2 − 1, . . . |s1 − s2|.

When adding more than two spins, we have to repeat this procedure. For 1
2 + 1

2 we get

s = 1
2 + 1

2 ,
1
2 − 1

2 = 1, 0.

For 1
2 + 1

2 + 1
2 ,

s = 1 + 1
2 , 1−

1
2 , 0 +

1
2 ⇒ s = 3

2 ,
1
2 .

Adding the fourth spin, 1
2 + 1

2 + 1
2 + 1

2 , we get

s = 3
2 + 1

2 ,
3
2 − 1

2 ,
1
2 + 1

2 ,
1
2 − 1

2 ⇒ s = 2, 1, 0.

Hence, alternative E is the correct one.

b) The dual vector of |n〉 is 〈n|. For a general vector |ψ〉 =
∑

n cn|n〉, the dual vector is
given by 〈ψ| =

∑
n c

∗
n〈n|. In this case we therefore get

〈ψ| = 1

3
[(1− 2i)∗〈1|+ (2i)∗〈2|] = 1

3
[(1 + 2i)〈1| − 2i〈2|] . (1)

This is option C.
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c) We require

1 = 〈ψ|ψ〉 = |A|2[〈1| − 〈2|+
√
3〈3|][|1〉 − |2〉+

√
3|3〉] = |A|2[1 + 1 + 3] = 5|A|2. (2)

Choosing A real and positive, we get A = 1√
5

— option A is correct.

d) The probabilities associated with each energy is Pn = |cn|2, where c1 = A, c2 = −A and
c3 =

√
3A. Hence,

〈E〉ψ = |A|2[E1 + E2 + 3E3] = ε
1 + 4 + 3 · 9

5
=

32

5
ε. (3)

Option E is the correct answer.

e) Since the total spin is non-zero, the particles cannot have spin s = 0, thus excluding
option A. Moreover, since there is an even number of particles, a total spin of 1 can occur
for four particles with any spin s ≥ 1

2 , which excludes option D.
Since Etot = 7ε < E3, only states with energies E1 = ε and E2 = 4ε can be occupied.

The only way of getting 7ε is if three particles have energies E1 and one has E2. This means
the particles can be bosons, such that there is no restriction on the number of particles in
each state, or they can be fermions with spin s > 1

2 , since for spin quantum number s there
are 2s+ 1 possible values for the projection quantum number m. Hence, we have excluded
options B and C.

This leaves only option E — how can we be sure the system is not in the ground state?
If the particles are bosons, all could be in the state with energy E1, giving a ground state
energy of 4ε. For fermions with s > 1

2 we have at least 4 possible values of m, meaning that
also all fermions could have energy E1. Since the measured energy is larger than 4ε, we
conclude that the system is in an excited state. Hence, E is the correct option.

f) Since electrons are fermions, the total system state has to be antisymmetric and the
electrons cannot occupy the same single-particle state. However, since electrons have two
possible spin states, they can be in the same single-particle energy state if they are in the
spin-singlet configuration. The states with lowest energy are therefore:

ψ1(x1)ψ1(x2)
| ↑↓〉 − | ↓↑〉√

2
⇒ E = 2E1 = 2ε,

ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)√
2

| ↑↓〉 − | ↓↑〉√
2

⇒ E = E1 + E2 = 5ε,

ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)√
2

| ↑↓〉+ | ↓↑〉√
2

⇒ E = E1 + E2 = 5ε,

ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)√
2

[| ↑↑〉 or | ↓↓〉] ⇒ E = E1 + E2 = 5ε for both.
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Since we have four different states all with the same energy, the energies of the three states
with lowest energy are 2E1, 5E1 and 5E1, making B the correct option.

However: The wording of the problem is ambiguous, and it is reasonable to give the
three lowest (degenerate) energies rather than the energies of the three states of the system
with lowest energy. Hence, full points have also been given to those choosing option C.

g) Since the particles are fermions, they cannot all be in the same single-particle state.
However, two particles can occupy each single-particle energy state due to the two possible
spin directions. Hence, to minimize the total system energy we need to (partly) fill the three
lowest energy states, which have quantum numbers (1, 1, 1), (2, 1, 1) and (1, 2, 1). The state
(1, 1, 2) is not occupied since the reduced length in the z direction leads to a larger energy
increase when increasing nz compared to nx and ny. Hence, B is the correct answer.

h) With the inclusion of the magnetic field, we get the energy eigenvalues

E111,σ =
17E0

4
− σH,

E211,σ = E121,σ =
29E0

4
− σH,

E221,σ =
41E0

4
− σH,

E112,σ = 11E0 − σH,

ordered by their value when H = 0, with E0 ≡ ~2π2

2mL2 . In order for the state (1, 1, 2) to be
occupied, this state has to be one of the five single-particle states with lowest energy for
either spin up or down. Since E111,σ, E211,σ, E121,σ and E221,σ always are lower than E112,σ,
we have to find the values of H for which E112,σ < E211,−σ:

11E0 − σH <
29E0

4
+ σH ⇒ 2σH >

15E0

4

⇒ |H| > Hc ≡
15

8
E0.

Hence, D is the correct answer.

Problem 2 Short answer questions

a) Since 〈H〉ψ ≥ E0, the variational method turns the estimation of the ground state
energy into a minimization problem. By using trial functions (states) ψ (|ψ〉) with many free
parameters, it is possible to achieve very good estimates for the ground state of a system.

b) The bra-ket 〈a|b〉 is the probability amplitude of measuring a system in state |a〉 when
it is in state |b〉. |〈a|b〉|2 gives the probability.
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c) The Fermi energy EF is the energy of the highest filled single-particle state in a system
of fermions. The Fermi momentum pF is the corresponding momentum, the radius in
momentum-space separating filled and unfilled states, related by

EF =
p2F
2m

.

Problem 3 Spin in a magnetic field

a) We want to solve the Schrödinger equation

i~
∂

∂t
ψ = Ĥψ. (4)

Since Ĥ is independent of time, we try a separable solution

ψ = χe−iEt/~, (5)

where χ is a spinor. Inserted into Eq. (4) we get

Eχe−iEt/~ = e−iEt/~Ĥχ, (6)

meaning that we are left to solve the eigenvalue equation

Ĥχ = −µBB
(
1 0
0 −1

)
χ = Eχ. (7)

This matrix equation is already diagonal, and we therefore directly get the eigenvalues

E± = ∓µBB, (8)

with stationary eigenvectors

χ+ =

(
1
0

)
, (9a)

χ− =

(
0
1

)
. (9b)

Hence, the general solution is

χ(t) = a+χ+e
iµBBt/~ + a−χ−e

−iµBBt/~. (10)
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b) We begin by calculating the expectation value of the Pauli matrices:

〈σx〉 = χ†σxχ =
1

3

(
1 i

√
2
)(0 1

1 0

)(
1

−i
√
2

)
= 0, (11a)

〈σy〉 = χ†σyχ =
1

3

(
1 i

√
2
)(0 −i

i 0

)(
1

−i
√
2

)
= −2

√
2

3
, (11b)

〈σz〉 = χ†σzχ =
1

3

(
1 i

√
2
)(1 0

0 −1

)(
1

−i
√
2

)
= −1

3
. (11c)

Using S = Sxêx + Sy êy + Sz êz =
~
2σ, we get

〈S〉 = −~
6
[2
√
2êy + êz], (12)

meaning that the spin points mostly in the y direction at t = 0. For 〈H〉 we get

〈H〉 = −µBB〈σz〉 =
µBB

3
. (13)

c) A general, time-dependent solution for the system is

χ(t) = a+χ+e
iµBBt/~ + a−χ−e

−iµBBt/~. (14)

From the state at t = 0 we identify the coefficients

a+ =
1√
3
, (15a)

a− = −i
√

2

3
. (15b)

At t > 0 we therefore have the state

χ(t) =
1√
3

[
χ+e

iµBBt/~ − i
√
2χ−e

−iµBBt/~
]
=

1√
3

(
eiµBBt/~

−i
√
2e−iµBBt/~

)
. (16)

Problem 4 Variational principle

a) The expectation value is

〈H〉 = 〈φ|Ĥ|φ〉
〈φ|φ〉

=
− ~2

2m [−2αI1(2α) + α2I2(2α)] + γI3(2α)

I2(2α)
, (17)
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where In(β) ≡ β−n−1n!. Hence, we get1

〈H〉 =
− ~2

2m

[
−2 α

4α2 + 2α2

8α3

]
+ 6γ

16α4

2
8α3

=
~2

2m
α2 +

3γ

2α
. (18)

b) The trial wavefunction is a good trial function because it normalizable, is zero for x ≤ 0
where the potential is infinite, and it goes to zero when the potential increases for large x.

c) We minimize 〈H〉 with respect to α:

∂〈H〉
∂α

=
~2

m
α− 3γ

2α2
= 0 ⇒ α =

(
3γm

2~2

)1/3

, (19)

where we only keep real and positive solutions.2 Hence, the upper bound for the ground
state energy is

E0 ≤ 〈H〉
∣∣∣∣
α=

(
3γm

2~2

)1/3
=

~2

2m

(
3γm

2~2

)2/3

+
3γ

2

(
2~2

3γm

)1/3

=

(
9~2γ2

4m

)1/3 [
1

2
+ 1

]

≤ 9

4

(
2~2γ2

3m

)1/3

(20)

Problem 5 3D isotropic harmonic oscillator

a) The Hamiltonian separates into three parts for each spatial direction,

Ĥ = Ĥx + Ĥy + Ĥz,

where Ĥi with i ∈ {x, y, z} is the Hamiltonian for a one-dimensional harmonic oscillator.
Since the Hamiltonian is separable, and [Hi,Hj ] = 0 for i 6= j, the eigenvectors of Ĥ should
be products of the eigenvectors of Ĥi, namely |nx, ny, nz〉 ≡ |nx〉|ny〉|nz〉, where we use ni
to label the energy eigenstate in direction i. Inserting this ansatz in to the Schrödinger
equation we get

Ĥ|nx, ny, nz〉 = [Ĥx|nx〉]|ny〉|nz〉+ |nx〉[Ĥy|ny〉]|nz〉+ |nx〉|ny〉[Ĥz|nz〉]

= ~ω
[(
nx +

1

2

)
|nx〉|ny〉|nz〉+ |nx〉

(
ny +

1

2

)
|ny〉|nz〉+ |nx〉|ny〉

(
nz +

1

2

)
|nz〉

]
= ~ω

(
nx + ny + nz +

3

2

)
|nx, ny, nz〉 ≡ Enxnynz |nx, ny, nx〉,

1Dimensional analysis is a great way to check if this expression is reasonable. Since the argument of the
exponential function has to be dimensionless, we must have [α] = m−1. Hence, the expectation values of
the kinetic and potential energy should be proportional to ~2α2/m, and γ/α, respectively. Moreover, the
probability density [|ψ(x)|2] = [|A|2x2] = m−1, that is [|A|2] = m−3. Hence, |A|2 ∝ α−3.

2Again, we could have used dimensional analysis to check if the expression for α seems reasonable.
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showing that |nx, ny, ny〉 indeed are energy eigenstates of the total system Hamiltonian with
the energy eigenvalues given in the problem text. Since n = 0, 1, 2, . . . for the 1D case, we
must have ni = 0, 1, 2, . . . .

b) We calculate the commutator between the Hamiltonian and L̂z :

[Ĥ, L̂z] =
∑
i

[
p̂2i
2m

+
1

2
mω2x̂2i , x̂p̂y − ŷp̂x

]
.

Since operators along different directions commute, the above simplifies to

[Ĥ, L̂z] =
1

2m
[p̂2x, x̂p̂y] +

1

2m
[p̂2y,−ŷp̂x] +

mω2

2
[x̂2,−ŷp̂x] +

mω2

2
[ŷ2, x̂p̂y]

=
i~
m
[−p̂yp̂x + p̂xp̂y] + i~mω2[−ŷx̂+ x̂ŷ] = 0 + 0.

The Hamiltonian is unchanged when interchanging x, y and z, meaning that we also have
[Ĥ, Li] = 0 for i = x, y. Therefore,

[Ĥ, L̂2] =
∑
i

[Ĥ, L̂2
i ] =

∑
i

{
[Ĥ, L̂i]L̂i + L̂i[Ĥ, L̂i]

}
=

∑
i

(0 + 0) = 0.

c) By adding and subtracting the expressions for the ladder operators, we get

aj + a†j =

√
2mω

~
x̂j ,

aj − a†j = i

√
2

~mω
p̂j .

Rearranging these expressions, we get

x̂j =

√
~

2mω
(a†j + aj), (21)

p̂j = i

√
~mω
2

(a†j − aj). (22)

Inserting into the given definition for L̂z, we get

L̂z =
i~
2

[
(a†x + ax)(a

†
y − ay)− (a†y + ay)(a

†
x − ax)

]
= i~(axa†y − a†xay). (23)

Here, we have used the fact that the ladder operators in different directions commute, such
that a(†)x a

(†)
y − a

(†)
y a

(†)
x = 0.

7



d) The energy 5
2~ω corresponds to the first excited states, meaning |1, 0, 0〉, |0, 1, 0〉 and

|0, 0, 1〉. These three states are orthonormal, and it is possible to construct sets of three
other orthornormal energy eigenvectors with the same energy using these as a basis:

|n = 1, r〉 = cr100|1, 0, 0〉+ cr010|0, 1, 0〉+ cr001|0, 0, 1〉,

where r labels the three orthonormal vectors. Operating with L̂z, we get

L̂z|1, r〉 = i~(axa†y − a†xay)[c100|1, 0, 0〉+ c010|0, 1, 0〉+ c001|0, 0, 1〉]
= i~[c100(|0, 1, 0〉 − 0) + c010(0− |1, 0, 0〉) + c001(0 + 0)]

= i~ [c100|0, 1, 0〉 − c010|1, 0, 0〉+ 0 · c001|0, 0, 1〉] ,

which we require to be equal to ~m|1, r〉. Hence, we get the set of equations

mcr100 = − icr010,

mcr010 = icr100,

mcr001 = 0,

or m i 0
−i m 0
0 0 m

cr100cr010
cr001

 = 0.

To find the nontrivial solutions, we require that the determinant of the above matrix is zero:

m(m2 + i2) = 0 ⇒ m = 0,±1.

Inserting these values in the above system of equations, and requiring normalization, we
find the simultaneous eigenstates of Ĥ and L̂z with energy 5

2~ω and angular momentum
projection quantum numbers m = −1, 0, 1:

|1,m = ±1〉 = |1, 0, 0〉 ± i|0, 1, 0〉√
2

, with L̂z|1,m = ±1〉 = ±~|1,m = ±1〉, (24)

|1,m = 0〉 = |0, 0, 1〉, with L̂z|1,m = 0〉 = 0 · ~|1,m = 0〉. (25)

Problem 6 Anisotropic harmonic oscillator

a) From the expression for the raising and lowering operators given in the previous problem,
we find

ẑ =

√
~

2mω
(a†z + az), (26)

such that we get the first-order correction to the ground state

E
(1)
0 =

κ~
2mω

〈0, 0, 0|(a†z + az)
2|0, 0, 0〉 = κ~

2mω
〈0, 0, 0|aza†z|0, 0, 0〉 =

κ~
2mω

. (27)
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b) The first excited state is three-fold degenerate, and we should generally use degenerate
perturbation theory. However, in the previous problem, we saw that we could find energy
eigenstates which are also eigenstates of L̂z with unique eigenvalues. Since L̂z commutes
with the perturbation, we can use non-degenerate perturbation theory if we use these states
as our unperturbed states. We then get

E
(1)
1,±1 =

κ~
2mω

〈1,±1|(a†z + az)
2|1,±1〉. (28)

Both |1,±1〉 are proportional to |nz = 0〉, and we therefore get the same correction as for
the ground state:

E
(1)
1,±1 =

κ~
4mω

[〈1x|〈0y| ± i〈0x|〈1y|] [|1x〉|0y〉 ± i|0x〉|1y〉] 〈0z|(a†z + az)
2|0z〉 =

κ~
2mω

. (29)

For the remaining state, we find

E
(1)
1,0 =

κ~
2mω

〈1, 0|(a†z + az)
2|1, 0〉 = κ~

2mω
〈0x|0x〉〈0y|0y〉〈1z|(a†z + az)

2|1z〉

=
κ~
2mω

〈1z|a†zaz + aza
†
z|1z〉 =

3κ~
2mω

. (30)

The first excited states to first order in κ are therefore

E1,±1 = ~ω
[
5

2
+

κ

2mω2

]
, (31)

E1,0 = ~ω
[
5

2
+

3κ

2mω2

]
, (32)

which means that the degeneracy is partially lifted for the first excited state.
Even though we used the angular momentum eigenstates in the above calculations, it

would have been just as efficient to use |1, 0, 0〉, |0, 1, 0〉 and |0, 0, 1〉 directly: Since the
perturbation only affects the z part of the states, matrix elements between states that have
orthogonal x and y parts are zero, reducing the matrix to a diagonal matrix.

c) The exact solution can be found by rewriting the z dependent part of the Hamiltonian,

Ĥz =
p̂2z
2m

+

[
1

2
mω2 + κ

]
ẑ2 ≡ p̂2z

2m
+

1

2
mω2

z ẑ
2, (33)

where ωz =
√
ω2 + 2κ/m. This is just a harmonic oscillator with ω → ωz, and the

eigenenergies are given by Enz = ~ωz(nz + 1
2). Hence, the exact eigenenergies of the 3D

harmonic oscillator are

Enxnynz = ~ω(nx + ny + 1) + ~ωz
(
nz +

1

2

)
. (34)
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To compare with the results from perturbation theory, we expand the exact solution to
first order in κ. Using

ωz ≈ ω +
κ

mω
, (35)

we get

Enx,ny ,nx ≈ ~ω
(
nx + ny + nz +

3

2

)
+

~κ
mω

(
nz +

1

2

)
, (36)

which is in perfect agreement with the results from perturbation theory to first order in κ,
i.e. when κ is small.
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