

NTNU, DEPARTMENT OF PHYSICS

# Exam FY2450 Spring 2019

Lecturer: Professor Jens O. Andersen Department of Physics, NTNU

> May 28 2019 09:00-13:00

Permitted examination support material: Approved calculator Rottmann: Matematisk Formelsamling Rottmann: Matematische Formelsammlung Barnett & Cronin: Mathematical Formulae Angell og Lian: Fysiske størrelser og enheter: navn og symboler

The problem set consists of four pages. Read carefully. Good luck! Bonne chance! Viel Glück! Veel succes! Lykke til!

### Problem 1

**a)** Define tidal force. Consider the system Earth-Moon. Explain how tidal forces give rise to the tides on Earth.

**b)** Consider the system Earth-Moon-Sun. How often do high tide and low tide occur? Draw a figure and explain when we get neap tide and spring tide. How often do neap tide and spring tide occur?

#### Hint:

- (a) It takes Earth 24h to complete a rotation with respect to the Sun and it takes 24h 50min to complete a rotation with respect to the Moon.
- (b) It takes 29.5 days from new moon to new moon.

#### Problem 2

We consider the Schwarzschild geometry outside a spherically symmetric mass distribution with a total mass M. Using the coordinates  $(ct, r, \theta, \phi)$ , the line element is given by

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)c^{2}dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}.$$
 (1)

**a)** What is the interpretation of the coordinate time t? What is a physical singularity? What is a coordinate singularity? What is a horizon? Give an example of each from the Schwarzschild geometry above.

b) One can introduce the so-called Kruskal–Szekeres coordinates X and T defined as

$$T = \left(\frac{c^2 r}{2GM} - 1\right)^{\frac{1}{2}} e^{\frac{c^2 r}{4GM}} \sinh\left(\frac{c^3 t}{4GM}\right) , \qquad (2)$$

$$X = \left(\frac{c^2 r}{2GM} - 1\right)^{\frac{1}{2}} e^{\frac{c^2 r}{4GM}} \cosh\left(\frac{c^3 t}{4GM}\right) , \qquad (3)$$

valid for  $r > \frac{2GM}{c^2}$  and

$$T = \left(1 - \frac{c^2 r}{2GM}\right)^{\frac{1}{2}} e^{\frac{c^2 r}{4GM}} \cosh\left(\frac{c^3 t}{4GM}\right) , \qquad (4)$$

$$X = \left(1 - \frac{c^2 r}{2GM}\right)^{\frac{1}{2}} e^{\frac{c^2 r}{4GM}} \sinh\left(\frac{c^3 t}{4GM}\right) , \qquad (5)$$

valid for  $r < \frac{2GM}{c^2}$ . In these coordinates the line element can be written as

$$ds^{2} = 32 \left(\frac{GM}{c^{2}}\right)^{2} \frac{GM}{c^{2}r} e^{-\frac{c^{2}r}{2GM}} \left(-dT^{2} + dX^{2}\right) + r^{2} d\Omega^{2} .$$
(6)

Find the equation for radial light rays and draw these lines in an X-T diagram.

c) The point r = 0 corresponds to a line in an X-T diagram. Find the equation for this line and draw it in the same X-T diagram. The surface  $r = \frac{2GM}{c^2}$  also corresponds to a line in an X-T diagram. Find the equation for this line and draw it in the same X-T diagram. Use this equation and the result in **b**) to show that  $r = \frac{2GM}{c^2}$  is a horizon.

d) Consider two stationary observers located outside  $r = \frac{2GM}{c^2}$  at  $r = r_A$  and  $r = r_B$ , respectively. Sketch their worldlines in the same diagram as well as the worldline of a light signal that connects the two observers.

#### Problem 3

**a)** Explain briefly an eclipsing binary. Sketch the apparent brightness as a function of time.

**b**) Use the formula

$$\frac{\omega}{c} = \frac{\omega'}{c} \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 - \frac{v}{c} \cos \alpha}$$
(7)

to derive the expression for the radial velocity  $v_r$  in terms of the Doppler-shifted wavelength,

$$\frac{\Delta\lambda}{\lambda} = \frac{v_r}{c} \,. \tag{8}$$

c) Fig. 1 shows the radial velocity  $v_r$  of a spectroscopic binary as a function of time. The black dots are the actual data points, while the curve has been fitted to these points.



Figure 1: Radial velocities of the star HIP 50796, from Torres et al. (2006, AJ, 131, 1022).

Figure 1: Radial velocity of a spectroscopic binary.

Explain briefly how equation (8) is used to generate plots like Fig. 1. Assume that the line of sight lies in the orbital plane. Is the orbit circular?

## Problem 4

a) Define a four-vector in special relativity. Give an example of a nonzero four-vector whose length is zero.

b) Explain briefly Perihelion precession in general relativity.