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Problem 1

a) Kepler’s laws are

(1) The orbit of a planet is an ellipse with the Sun at one of the two foci, see Fig. 1

Figure 1: Kepler’s first law.

(2) A line segment joining a planet and the Sun sweeps out equal areas during equal
time intervals, see Fig. 2. This statement can be written as

dA

dt
=

L

2m
. (1)

Figure 2: Kepler’s second law.

(3) The square of the orbital period P of a planet is proportional to the cube of the
semi-major axis a of its orbit,

P 2 =
4π2a3

GM
. (2)
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b) The speed v is given by

v = |v| =
√
ṙ2 + r2θ̇2 . (3)

Taking the derivative of Eq. (1) wrt time yields

ṙ =
−er0 sin θ

(1− e cos θ)2
θ̇

= − 1

r0
r2e sin θθ̇

= − L

mr0
e sin θ , (4)

where we have used the hint L
m = r2θ̇. The hint also gives

rθ̇ =
L

mr

=
L

mr0
(1− e cos θ) . (5)

Eqs. (4) and (5) give

ṙ2 + r2θ̇2 =
L2

m2r2
0

[
e2 sin2 θ + (1− e cos θ)2

]
=

L2

m2r2
0

[
1 + e2 − 2e cos θ

]
, (6)

and therefore

v =
L

mr0

√
1 + e2 − 2e cos θ . (7)

The dimensionful constant can be read off and we find

A =
L

mr0
=
GMm

L
. (8)

c) The angle α satisfies

cosα =
v · k
|v||k|

= −v · ey
|v|

. (9)

The scalar product is

v · ey = ṙer · ey + rθ̇eθ · ey
= ṙ sin θ + rθ̇ cos θ , (10)
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where we have used that

er = cos θex + sin θey , (11)

eθ = − sin θex + cos θey . (12)

Using the expressions for ṙ and rθ̇, we find

v · ey = − L

mr0
e sin2 θ +

L

mr0
(1− e cos θ) cos θ

= − L

mr0
[e− cos θ] . (13)

Substituting this expression and the expression for |v| into Eq. (9), we obtain

cosα =
e− cos θ√

1 + e2 − 2e cos θ
, (14)

and we read off B,

B = 1 . (15)

d) We simply use the formula given at the end of problem set, where v and α are given
in Eqs. (14) and (14). This yields

ω

ω′ =

√
1− v2

c2

1− v
c cosα

=

√
1− L2

m2r20c
2 (1 + e2 − 2e cos θ)

1− L
mr0c

(e− cos θ)
. (16)

Problem 2

a) Since the terms inside the first and second paranthesis are dimensionless, M must have
the same dimension as r, i.e. length. The singular points are r = 0 and r = M . Based
on our knowledge of the singularities in the Schwarzschild metric, we guess that r = 0 is a
physical singularity and that r = M is a coordinate singularity.

b) Consider two events (emission of two photons) at rA that are separated by the coordi-
nate time ∆tA. The corresponding proper time for an observer at rest at rA is

∆τA =

(
1− M

rA

)
∆tA . (17)

A similar argument can be used for two events at rB (reception of two photons) and we find

∆τB =

(
1− M

rB

)
∆tB . (18)
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Since the metric is time independent (the path of the second photon in this space-time is
identical to the first simply translated in time), we must have ∆tA = ∆tB, which implies

∆τA
∆τB

=

(
1− M

rA

)
(

1− M
rB

) . (19)

Since the ratio ωB
ωA

is given by the left-hand side of Eq. (19), we find

ωB =

(
1− M

rA

)
(

1− M
rB

)ωA . (20)

In the limit rA → rs, we find ωB → 0 and so we have infinite redshift. This shows that the
r = rs is a horizon, although this is not the Schwarzschild metric.

Problem 3

Friedmann’s equations for a homogeneous and isotropic universe are

3
ȧ2 + k

a2
= 8πρ+ Λ ,

−2
ä

a
− ȧ2 + k

a2
= 8πp− Λ .

a) a = a(t) is the scale factor, k is the spatial curvature, ρ is the energy density from
matter and radiation (ρ = ρm + ρr), p is the pressure, and Λ is the cosmological constant.
ρv = Λ

8π , where ρv is the vacuum energy.

b) Possible values are k = −1, k = 0, and k = 1. k = −1 describes a three-dimensional
hyperbolic geometry (embedded in four-dimensional Minkowski space). k = 0 is three-
dimensional Euclidean space, and k = 1 is describes a three-dimensional sphere (embedded
in four-dimensional Euclidean space).

c) Homogeneous means that all observers are observing the same universe at a given
global time t. Isotropic means that an observer is observing the same in all directions.
One typically assumes isotropy about every point in the universe (there is no center of the
universe).

d) If a is independent of time, ȧ = ä = 0. If ρr = 0, the pressure p is also vanishing. The
second Friedmann then reduces to

− 1

a2
= −Λ , (21)
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which yields the time-independent solution

a =

√
1

Λ
. (22)

The first Friedmann equation reduces to

3

a2
= 8πρm + Λ , (23)

which yields

ρm =
Λ

4π
. (24)

It is interesting to note (although not asked for) that a small perturbation of this universe
(a small change in ρm, = ρm = Λ

4π + δρ) makes it either collapse or expand, i.e. it unstable.

e) There is no gravitational redshift since a is constant. This is at odds with observation.

Problem 4

a) As the gas collapses, the gravitional potential energy decreases. According to the virial
theorem, half of this energy is converted into kinetic energy of the gas and is therefore
heated. The approximate temperature for the fusion of two protons is 107 K.

b) The binding energy is defined by the rest mass energy of the nucleus minus the rest
mass energy of its constituents,

Ebinding = mnucc
2 −NmNc

2 − ZmP c
2 , (25)

where N and Z are the numbers of neutrons and protons in the nucleus.

c) The temperature required for the triple-α process is approximately 107 K. The tem-
perature of the interior of all stars satisfies this requirement and therefore the process takes
place independently of the mass of the star. This process as well as similar processes pro-
duce stable nuclei of C, N , and O. In order to produce heavier nuclei, higher temperatures
are required and these are found only in high-mass stars.

——————————————————————————————————————
Useful formulas

ω

c
=

ω′

c

√
1− v2

c2

1− v
c cosα

. (26)
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