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Problem 1

a) The Doppler shift is given by

∆λ

λ′
=

vr
c
, (1)

where ∆λ = λ′− λ and vr is the component of the velocity in along the line of sight and λ′

is the wavelength when the source is at rest, i.e. λ′ = 601.7 nm.
At t = 0 and t = 1

2P , we see that the two lines are shifted equally. These points therefore
correspond to vr = vcm. This yields

vcm =
∆λ

λ′
c =

0.1nm

601.7nm
3× 108m/s

= 49859m/s . (2)

Since the light is redshifted, the binary is moving away from the observer. Moreover, since
the motion is circular, we know that the time t = 1

4P corresponds to

vr = v1 + vcm , (3)

vr = vcm − v2 , (4)

for the two stars. Similarly, the time t = 3
4P corresponds to

vr = v1 − vcm , (5)

vr = v2 + vcm , (6)

for the two stars. Using the first set of equations, we find 1

v1 = vr − vcm , (7)

v2 = vcm − vr (8)

Using Eq. (1) to calculate vr in the two cases, we find

v1 =
∆λ

λ′
c− vcm

=
0.3nm

601.7nm
3× 108m/s− 49859m/s = 99718m/s , (9)

v2 =
∆λ

λ′
c− vcm

= 49859m/s +
0.1nm

601.7nm
3× 108m/s = 99718m/s . (10)

The speeds are the same, which should come as a surprise given the symmetry of the
measured wavelength. Since the speeds are same, the masses are the same too.

1We can equally well use the second set of equations and obtain the same result. The different relative
signs are cancelled by the change of sign of ∆λ.
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b) The center of mass is still moving along the line of sight, it is only the speeds v1 and
v2 we have to project correctly onto the line of sight. At t = 0 and t = 1

2P , the components
of v1 and v2 along the line of sight are still vanishin so we will measure the same redshift
as in a). For the times t = 1

4P and t = 3
4P , we have to multiply v1 and v2 by the factor

sin(90◦− i) = 0.8 since this is the components of the speeds in the direction of the observer.
Thus we obtain for t = 1

4P .

v1 cos(37◦) + vcm =
∆λ

λ′
c , (11)

which can be solved with respect to ∆λ, giving ∆λ = 0.26nm. The remaining shift can be
calculated in the same manner and this yields the table

Time/P t = 0 t = P/4 t = P/2 t = 3P/4

Wavelength Gløs 601.8nm 601.96nm 601.8nm 601.64nm

Wavelength Drag 601.8nm 601.64nm 601.8nm 601.96nm

Table 1: Measured wavelengths as a function of time for an inclination angle of i = 37◦.

Problem 2

a) The binding energy is the mass difference of 12C and its constituents, 6 protons, neu-
trons, and electrons times c2.

∆E = (12× 931.5− 6× 939.57− 6× 938.28− 6× 0.511)MeV

= 92.166MeV . (12)

b) The energy is converted into joules

∆E = 1.602× 10−19J/eV × 92.166× 106eV = 1.47× 10−11J . (13)

The energy of a photon is E = hc
λ , giving

λ =
hc

∆E
= 1.34× 10−14m , (14)

where we have used h = 6.6×10−34Js and c = 3×108m/s. Since visible light is 400−700nm
or (400−700)×10−9, we see that the wavelength is a factor 107 too short. It is too energetic
by the same factor.
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Problem 3

a) We need the inverse of the relations given in the lecture notes, which are obtained by
making the substitution v → −v and swapping primed and unprimed coordinates. This
yields

kx = γ

(
kx
′
+
v

c

ω′

c

)
, (15)

ky = ky
′
, (16)

kz = kz
′
, (17)

ω

c
= γ

(
ω′

c
+
v

c
kx
′
)
. (18)

Using (k0, kx
′
, ky

′
, kz

′
) = (ω

′

c , 0,
ω′

c , 0) in S′ and Eq. (18), we find

ω = γω′ . (19)

Using Eq. (15)–Eq. (18), we find

kx = γ
v

c

ω′

c
=
v

c

ω

c
, (20)

ky =
ω′

c
=

1

γ

ω

c
, (21)

kz = 0 . (22)

The angle θ si given by

tan θ =
ky

kx
=

1

γ

c

v
. (23)

b) Since the photon is propagating in the negative x-direction, the four-vector in S′ is
(ω
′

c ,−
ω′

c , 0, 0). The frequency ω is given by Eq. (18)

ω

c
= γ

(
ω′

c
− v

c

ω′

c

)
=
ω′

c

√
1 + v

c

1− v
c

. (24)

Inserting the expression for v(t) yields

ω

c
=

ω′

c

√√√√√
√

1 +
(gt
c

)2 − gt
c√

1 +
(gt
c

)2
+ gt

c

. (25)

Since ω < ω′, the photon is redshifted. In the limit t → ∞, ω → 0, i.e. the photons are
infintely redshifted.
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Problem 4

a) Setting r(θ∗) = R, we find the angle θ∗ that corresponds to the intersection between
the circle and the parabola. This yields

cos θ∗ = −1 +
r0
R
. (26)

b) The angular momentum of the particle of mass m is

L = mr2
dθ

dt
, (27)

which yields dt = m
L r

2dθ. The time T it takes from moving from the point (R,−θ∗) to the
point (R, θ∗) on the parabola, i.e the time the comet is inside the circle is

T =

∫ T

0
dt =

m

L

∫ θ∗

−θ∗
r2dθ

=
mr20
L

∫ θ∗

−θ∗

dθ

(1 + cos θ)2
. (28)

c) For completeness, we show how to evaluate the integral, although the students were
not asked to do this.

We make the substitution x = tan θ
2 . This gives

dθ =
2dx

1 + x2
, 1 + cos θ = 2 cos2 θ2 =

2

1 + x2
. (29)

Inserting this into Eq. (28), we can write

T =
mr20
2L

∫ x∗

−x∗

[
1 + x2

]
=

mr20
L

[
tan θ

2 +
1

3
tan3 θ

2

]
.

Finally, using 2 cos2 θ2 = 1 + cos θ and 2 sin θ
2 cos θ2 = sin θ, we find

T =
2mr20
L

(2 + cos θ∗) sin θ∗

3 (1 + cos θ∗)2
. (30)

Using Eq. (26), we can write sin θ =
√

1− cos2 θ = 2
√

r0
R

√
1− r0

2R . This yields

T =
2
√

2mr20
3L

(
R

r0

) 3
2 (r0

R
+ 1
)√

1− r0
R
. (31)

For an elliptical orbit, we have L
m =

√
GMr0. Inserting this into Eq. (31), one obtains

T =
2
√

2

3

√
R3

GM

(r0
R

+ 1
)√

1− r0
2R

. (32)
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d) The period of Earth’s rotation around the Sun is TEarth = 2π
√

R3

GM . Thus the ratio

becomes

f =

√
2

3π

(r0
R

+ 1
)√

1− r0
R
. (33)

To maximize the ratio f , we solve df
dr0

= 0, which yields r0,max = R.

fmax =
2

3π
. (34)

Since TEarth is 365 days, this corresponds to

Tmax =
2

3π
365 = 77.5days . (35)

——————————————————————————————————————
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