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The Norwegian University of Science and Technology

Department of Physics

Contact person:
Name: Jan Myrheim
Telephone: 73 59 36 53 (mobil 90 07 51 72)

Examination, course FY8104 Symmetry in physics
Wednesday December 9, 2009

Time: 09.00–13.00

Grades made public: Wednesday December 30, 2009

Allowed to use: Calculator, mathematical tables.

All subproblems are given the same weight in the grading.

Problem 1:

A group G of order 12 has the following multiplication table.

e a b c s t u v w x y z

e e a b c s t u v w x y z
a a e c b t s v u x w z y
b b c e a u v s t y z w x
c c b a e v u t s z y x w

s s u v t w y z x e b c a
t t v u s x z y w a c b e
u u s t v y w x z b e a c
v v t s u z x w y c a e b

w w z x y e c a b s v t u
x x y w z a b e c t u s v
y y x z w b a c e u t v s
z z w y x c e b a v s u t

It is generated for example by the three elements a, b, s with the relations a2 = b2 = s3 = e,
ab = ba, sa = bs, sb = cs, sc = as.

a) Find subgroups of G.

b) Find the conjugation classes.

c) If you find a normal (invariant) subgroup H, find also the multiplication table of the
quotient group G/H.
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d) Find the character table.

Hint: A representation of a quotient group G/H is also representation of G.

The following orthogonality relations hold for a finite group of order N .

Let χ
(µ)
i be the character value of the conjugation class i, with Ni elements, in the

irreducible representation µ. Then

∑

i

Ni(χ
(µ)
i )∗χ

(ν)
i = N δµν ,

∑

µ

(χ
(µ)
i )∗χ

(µ)
j =

N

Ni
δij .

e) The group G is the same as A4, the alternating group of degree 4, which is the subgroup
of even permutations in the symmetric group S4. To see this, take for example
a = (12)(34), b = (14)(23), s = (123)(4).

A4 is also the subgroup of proper rotations, excluding reflections, in the symmetry group
of a regular tetrahedron, for example a methane (CH4) molecule.

The orbital angular momentum quantum number ℓ = 0, 1, 2, . . . labels the irreducible
representations of the full rotation group SO(3). The dimension of an irreducible rep-
resentation is 2ℓ + 1, and the character value as a function of the rotation angle α
is

χ(ℓ)(α) =
sin((ℓ+ 1

2)α)

sin(α
2 )

.

An irreducible representation of SO(3) is in general a reducible representation of the
subgroup A4 ⊂ SO(3).

How does the irreducible representation of SO(3) with ℓ = 2 split into irreducible
representations of A4?
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Some formulae that may be useful in the following:

[A,BC] = [A,B]C +B [A,C] (the Leibniz rule for commutation)

eABe−A = B + [A,B] +
1

2
[A, [A,B]] + · · · + 1

n!
[A, [A, · · · [A,B] · · ·]] + · · ·

Problem 2:

The Hamiltonian of a one dimensional harmonic oscillator is

H =
p2

2m
+

1

2
mω2x2 ,

where m is the mass and ω the angular frequency. For simplicity we set m = 1, ω = 1, and
h̄ = 1 (this is a question of choosing a convenient set of units). Then

H =
1

2
(p2 + x2) = a†a+

1

2
,

where

a =
1√
2

(x+ ip) , a† =
1√
2

(x− ip) . (1)

The position x and momentum p are Hermitean linear operators satisfying the canonical
commutation relation [x, p] = i, or equivalently, [a, a†] = 1.

Let |ψ〉 be a state vector, normalized so that 〈ψ|ψ〉 = 1. The expectation value of H in the
state |ψ〉 is

〈H〉 = 〈ψ|H|ψ〉 = 〈φ|φ〉 +
1

2
,

where |φ〉 = a |ψ〉. The ground state |0〉, in which 〈H〉 is minimal, is given by the equation

a |0〉 = 0 .

In the quantization of the electromagnetic field we describe one single mode of the field with
angular frequency ω as a one dimensional harmonic oscillator. Then a† and a are the creation
and annihilation operators of photons, and |0〉 is the vacuum state with no photons in this
mode.

a) Define

|n〉 =
1√
n!

(a†)n |0〉 for n = 1, 2, . . . .

Show that a |n〉 =
√
n |n − 1〉, and that N |n〉 = n |n〉, where N = a†a = aa† − 1 is the

(photon) number operator.

Show also that the state |n〉 is normalized, 〈n|n〉 = 1.
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b) Let z be an arbitrary complex number, and define a “displacement operator”

D = D(z) = eza†−z∗a .

Show that D is unitary, D† = D−1, and that DaD−1 = a− z.

The operatorD transforms the ground state |0〉 into the state |z〉 = D |0〉, which is called
a coherent state. Show that the coherent state |z〉 is an eigenstate with eigenvalue z of
the non-Hermitean operator a. That is, a |z〉 = z |z〉, or equivalently,

(a− z) |z〉 = 0 .

c) Show that the coherent state can be expanded in terms of the energy eigenstates as

|z〉 = e−
|z|2

2

∞
∑

n=0

zn

√
n!

|n〉 . (2)

It is enough to show that this state solves the eigenvalue equation a |z〉 = z |z〉, and that
it is normalized.

A different method is to use the Campbell–Baker–Hausdorff formula

exp(A) exp(B) = exp

(

A+B +
1

2
[A,B] + . . .

)

,

where the terms left out are commutators of commutators, in order to compute the
product eza†

e−z∗a and thus derive an alternative formula for D = eza†−z∗a.

d) Assume that the state of the oscillator at time t = 0 is the coherent state |z〉, that
|ψ(0)〉 = |z〉. Then the state at time t is |ψ(t)〉 = U |ψ(0)〉 = U |z〉, where U is the time
development operator,

U = U(t) = e−itH .

Show that U |z〉 = e−
it

2 |e−itz〉.
Thus, a coherent state remains a coherent state as it develops in time.

Again there are at least two possible ways to solve the problem. We may either use
directly equation (2), or we may compute

UD = UDU−1U = ezUa†U−1−z∗UaU−1

U .

e) The variance of x in a state |ψ〉 is defined as

(∆x)2 = 〈ψ| (x − 〈x〉)2 |ψ〉 = 〈 (x − 〈x〉)2 〉 = 〈x2〉 − 〈x〉2 .

The variance of p is defined in a similar way. The Heisenberg uncertainty relation

∆x∆p ≥ 1

2

may be proved as follows. Define

b = x+ iλp , b† = x− iλp ,
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with λ as a real parameter, and define also

w = 〈ψ|b|ψ〉 = 〈b〉 = 〈x〉 + iλ〈p〉 .

Since

(b† − w∗)(b− w) = (x− 〈x〉)2 + λ2(p − 〈p〉)2 + iλ [x− 〈x〉 , p− 〈p〉 ]

= (x− 〈x〉)2 + λ2(p − 〈p〉)2 − λ ,

we may define |φ〉 = (b− w) |ψ〉 and deduce that

0 ≤ 〈φ|φ〉 = 〈ψ|(b† −w∗)(b− w)|ψ〉 = (∆x)2 + λ2(∆p)2 − λ

= (∆x)2 +

(

λ∆p− 1

2∆p

)2

− 1

4 (∆p)2
.

Given the state |ψ〉, the inequality must hold for an arbitrary value of λ. In particular,
with λ = 1/(2(∆p)2) we obtain the Heisenberg uncertainty relation.

We say that |ψ〉 is a minimum uncertainty state if ∆x∆p = 1/2. A minimum uncertainty
quantum state is the best possible approximation to a classical state.

In the notation used above, if |ψ〉 is a minimum uncertainty state we have that

〈φ|φ〉 =

(

λ∆p− 1

2∆p

)2

.

Hence, if we choose λ = 1/(2(∆p)2 we must have that |φ〉 = (b− w) |ψ〉 = 0.

We see that a minimum uncertainty state |ψ〉 = |λ,w〉 is characterized by a real pa-
rameter λ and a complex parameter w, and it is an eigenvector of the non-Hermitean
operator b = x+ iλp with w as eigenvalue,

b |λ,w〉 = w |λ,w〉 .

The expectation values and variances of x and p in this state are given by the formulae

〈x〉 + iλ 〈p〉 = w , ∆x =

√

λ

2
, ∆p =

1√
2λ

.

A coherent state is a minimum uncertainty state with λ = 1. A minimum uncertainty
state with λ 6= 1 is called a squeezed state, because it has smaller uncertainty for either
x or p than a coherent state.

The squeezed state corresponding to the ground state |0〉 (the “squeezed vacuum”) is
the state |λ, 0〉 with w = 0, defined by the equation

b |λ, 0〉 = (x+ iλp) |λ, 0〉 = 0 .

Compute UbU−1 where U = e−itH is the time development operator.

What can you say from this about the time development of the squeezed vacuum state
|λ, 0〉?


