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Solutions

1a) Mab belongs to O(3) because it is an orthogonal matrix, that is, (Mab)−1 = (Mab)T .
It does not belong to SO(3), because its determinant is −1 and not +1.

Mab leaves the plane z = −y invariant, it is a reflection about this plane, which goes
through the points c and d and is perpendicular to the line between a and b.

The matrices doing the interchanges a↔ c, a↔ d, b↔ c, b↔ d, and c↔ d are

Mac =

 0 0 −1
0 1 0
−1 0 0

 , Mad =

 0 −1 0
−1 0 0
0 0 1

 , Mbc =

0 1 0
1 0 0
0 0 1

 ,

Mbd =

0 0 1
0 1 0
1 0 0

 , Mcd =

1 0 0
0 0 1
0 1 0

 .

1b) The matrix

Mabc = MabMbc =

 0 1 0
0 0 −1
−1 0 0


is the cyclic permutation a 7→ b 7→ c 7→ a and d 7→ d, which has order 3, that is,

(Mabc)
3 = I = the identity matrix .

It is a rotation by 120◦, since it has order 3. It is a rotation and not a reflection, since

detMabc = (detMab)(detMbc) = (−1)(−1) = +1 .

The rotation axis is −d. We may also describe it as a rotation by 240◦ about the rotation
axis +d.

The matrix

Mabcd = MabMbcMcd =

 0 0 1
0 −1 0
−1 0 0


is the cyclic permutation a 7→ b 7→ c 7→ d 7→ a, which has order 4, in fact,

(Mabcd)2 =

−1 0 0
0 1 0
0 0 −1

 , (Mabcd)4 = I .

We may describe it as a composite transformation Mabcd = AB = BA where A is a
rotation by 90◦ about the y axis and B is a reflection about the xz plane,

A =

 0 0 1
0 1 0
−1 0 0

 , B =

1 0 0
0 −1 0
0 0 1

 .
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1c) S4 has five conjugation classe. 14 contains the identity transformation, which is a product
of four 1-cycles. 22 contains the three permutations that are products of two 2-cycles,
for example (12)(34). 31 contains the 3-cycles, for example (123)(4). 212 contains the
2-cycles, for example (12)(3)(4). 4 contains the 4-cycles, for example (1234).

The character χ of our representation is:

χ(14) = Tr I = 3 , χ(22) = Tr(MabMcd) = Tr

1 0 0
0 −1 0
0 0 −1

 = −1 ,

χ(31) = TrMabc = 0 , χ(212) = TrMab = 1 , χ(4) = TrMab = −1 .

We recognize this as χ2 in the table, thus we have an irreducible representation.

If we did not know the character table we would compute∑
p∈S4

|χ(p)|2 = 32 + 3× (−1)2 + 8× 02 + 6× 12 + 6× (−1)2 = 24 .

We get the order of the group, this proves that the representation is irreducible.

1d) How many ways can we permute the corners of the cube?

The first corner we may move to any one of eight positions. This corner has three
neighbours. There are three possible positions for the first neighbouring corner, and
then two possible positions for the second neighbouring corner. That is all the freedom
we have. Thus the total number of possible symmetry transformations is

8× 3× 2 = 48 .

The symmetry group of the cube has twice as many elements as the symmetry group
of the tetrahedron.

One obvious symmetry (symmetry transformation) of the cube which is not a symmetry
of the tetrahedron is the space inversion −I, which commutes with all 3 × 3 matrices.
For every symmetry R of the tetrahedron we have two symmetries ±R of the cube, and
−R is not a symmetry of the tetrahedron. Just by counting, we know that these are all
the symmetries of the cube.

To get the character table of the symmetry group of the cube we double the character
table of the symmetry group of the tetrahedron, as follows.

1 3 8 6 6 1 3 8 6 6
14 22 31 212 4 −14 −22 −31 −212 −4

χ1 1 1 1 1 1 1 1 1 1 1
χ2 3 −1 0 1 −1 3 −1 0 1 −1
χ3 2 2 −1 0 0 2 2 −1 0 0
χ4 3 −1 0 −1 1 3 −1 0 −1 1
χ5 1 1 1 −1 −1 1 1 1 −1 −1

χ6 1 1 1 1 1 −1 −1 −1 −1 −1
χ7 3 −1 0 1 −1 −3 1 0 −1 1
χ8 2 2 −1 0 0 −2 −2 1 0 0
χ9 3 −1 0 −1 1 −3 1 0 1 −1
χ10 1 1 1 −1 −1 −1 −1 −1 1 1
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2a) We need examples of permutations belonging to the different conjugation classes.
Note that we calculated the character of the representation Dβ in problem 1c).

– 22: (12)(34) = T1T3. Representation matrices:

Dα(T1T3) = Dα(T1)Dα(T3) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

Dβ(T1T3) = Dβ(T1)Dβ(T3) =

1 0 0
0 −1 0
0 0 −1

 .

– 31: (123)(4) = T1T2. Representation matrices:

Dα(T1T2) = Dα(T1)Dα(T2) =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 ,

Dβ(T1T2) = Dβ(T1)Dβ(T2) =

 0 1 0
0 0 −1
−1 0 0

 .

– 212: (12)(3)(4) = T1. Representation matrices: Dα(T1) and Dβ(T1).

– 4: (1234) = T1T2T3. Representation matrices:

Dα(T1T2T3) = Dα(T1T2)Dα(T3) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

Dβ(T1T2T3) = Dβ(T1T2)Dβ(T3) =

 0 0 1
0 −1 0
−1 0 0

 .

By tracing these matrices we get the characters:

14 22 31 212 4

χα 4 0 1 2 0
χβ 3 −1 0 1 −1

We see rather directly that χα = χ1 + χ2 and χβ = χ2.

We calculate the character χ of the tensor product representation D = Dα⊗Dβ in the
following way,

χ(p) = TrD(p) = Tr
(
Dα(p)⊗Dβ(p)

)
=
(

TrDα(p)
)(

TrDβ(p)
)

= χα(p)χβ(p)

=
(
χ1(p) + χ2(p)

)
χ2(p) =

(
1 + χ2(p)

)
χ2(p) = χ2(p) + [χ2(p)]

2 .
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We need to decompose the character χγ = (χ2)
2 into irreducible characters. It is:

14 22 31 212 4

χγ 9 1 0 1 1

Its scalar product with itself is

92 + 3× 12 + 8× 02 + 6× 12 + 6× 12 = 96 = 4× 24 .

Hence the sum of squares of multiplicities of irreducible representations is four. Since
a representation of dimension nine (an odd number) can not be the direct sum of two
identical representations, it must contain four irreducible representations, each with
multiplicity one. We see rather directly that

χγ = χ1 + χ2 + χ3 + χ4 .

We could also calculate scalar products, for example

〈χ3, χγ〉 =
∑
p∈S4

(χ3(p))
∗χγ(p)

= 2× 9 + 3× 2× 1 + 8× (−1)× 0 + 6× 0× 1 + 6× 0× 1 = 1× 24 ,

which shows that χγ contains χ3 with multiplicity one.

Altogether, χ = χ1 + 2χ2 +χ3 +χ4, which shows that the representation D = Dα⊗Dβ

of S4 contains five irreducible representations, one of them twice.

2b) Remember that we are studying how small deformations of the methane molecule trans-
form under the rotations and reflections that are symmetries of the undeformed molecu-
le. It is now a question of how to interpret physically the decomposition into irreducible
representations.

We study how the four hydrogen atoms move, but we do not consider translations of
the whole molecule such that it does not change its shape. Then we may forget about
the motion of the carbon atom, because that is uniquely given by the requirement that
the centre of mass should not move.

The molecule may rotate without changing shape, this corresponds to one three di-
mensional irreducible representation, with character either χ2 or χ4. Actually χ4 (we
do not go into here how we know).

Since we consider electromagnetic radiation with wave lengths much larger than the size
of the molecule, the radiation is mainly due to oscillating electric dipole moments. The
methane molecule in its ground state is too symmetric to have a nonzero electric dipole
moment, therefore there is little radiation from rotation without change of shape.

There remain four irreducible representation that define four vibration modes with four
different frequencies.

One of the vibration modes is invariant under the S4 group of transformations, it corre-
sponds to the representation χ1. This is a breathing mode, or pulsation mode, in which
the molecule just expands and shrinks in size. Since this mode is also too symmetric to
have an electric dipole moment, it must radiate rather weakly.

We do not go more deeply into this subject here.
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3a) The special four-momentum

k =


1
0
0
1


is invariant under the Lorentz transformation exp(α1µ1 + α2µ2 + α3λ3) because

µ1 k =


0 0 1 0
0 0 0 0
1 0 0 −1
0 0 1 0




1
0
0
1

 =


0
0
0
0

 ,

µ2 k =


0 −1 0 0
−1 0 0 1
0 0 0 0
0 −1 0 0




1
0
0
1

 =


0
0
0
0

 ,

λ3 k =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0




1
0
0
1

 =


0
0
0
0

 .

3b)

µ1 =


0 0 1 0
0 0 0 0
1 0 0 −1
0 0 1 0

 , (µ1)
2 =


1 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 −1

 , (µ1)
3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Hence,

exp(αµ1) = I + αµ1 +
1

2
α2(µ1)

2 =


1 + α2

2 0 α −α2

2
0 1 0 0
α 0 1 −α
α2

2 0 α 1− α2

2

 .

And

exp(αµ1)k =


1 + α2

2 0 α −α2

2
0 1 0 0
α 0 1 −α
α2

2 0 α 1− α2

2




1
0
0
1

 =


1
0
0
1

 = k .

3c)

[µ1,µ2] = [λ1 + κ2,λ2 − κ1] = [λ1,λ2]− [λ1,κ1] + [κ2,λ2]− [κ2,κ1]

= λ3 − 0 + 0− λ3 = 0 ,

[λ3,µ1] = [λ3,λ1] + [λ3,κ2] = λ2 − κ1 = µ2 ,

[λ3,µ2] = [λ3,λ2]− [λ3,κ1] = −λ1 − κ2 = −µ1 .
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3d) From the last two commutation relations we get that

[−iS3,−iM1] = −iM2 , [−iS3,−iM2] = −(−iM2) ,

or,

[S3,M1] = iM2 , [S3,M2] = −iM1 .

Hence,

[S3,M+] = [S3,M1] + i [S3,M2] = iM2 + i (−iM1) = M1 + iM2 = M+ ,

[S3,M−] = [S3,M1]− i [S3,M2] = iM2 − i (−iM1) = −M1 + iM2 = −M− .

Now assume that S3 |σ〉 = σ |σ〉 and define |ψ〉 = M+ |σ〉, |φ〉 = M− |σ〉. It follows that

S3 |ψ〉 = S3M+ |σ〉 =
(
[S3,M+] +M+S3

)
|σ〉 = (M+ +M+σ) |σ〉

= (σ + 1)M+ |σ〉 = (σ + 1) |ψ〉 ,
S3 |φ〉 = S3M− |σ〉 =

(
[S3,M−] +M−S3

)
|σ〉 = (−M− +M−σ) |σ〉

= (σ − 1)M− |σ〉 = (σ − 1) |φ〉 .

Note that these calculations hold even if |ψ〉 = 0 or |φ〉 = 0. But only nonzero vectors
count as eigenvectors, by definition.

3e) Because M1M2 = M2M1 we have that

M+M− = M−M+ = (M1 − iM2)(M1 + iM2) = M 2
1 +M 2

2 + i (M1M2 −M2M1)

= M 2
1 +M 2

2 ,

and this operator commutes with M1 and M2. We only need to show that it commutes
with S3. Proof, by the Leibniz rule:

[S3,M+M−] = [S3,M+]M− +M+ [S3,M−] = M+M− −M+M− = 0 .

That M+M− must have non-negative eigenvalues follows from the postulate that the
scalar product in the Hilbert space should be positive definite. In fact, if |λ〉 6= 0 and
M+M− |λ〉 = λ |λ〉, and if we define |φ〉 = M− |λ〉, then

0 ≤ 〈φ|φ〉 =
(
〈λ|M †

−
)(
M− |λ〉

)
= 〈λ|M+M−|λ〉 = λ 〈λ|λ〉 .

Here 〈λ|λ〉 > 0, by definition, implying that λ ≥ 0. Hence we may write λ = ρ2 with
ρ ≥ 0. We see that if λ = 0, then 〈φ|φ〉 = 0, implying that |φ〉 = M− |λ〉 = 0. Since
M+M− = M−M+, λ = 0 implies also that M+ |λ〉 = 0, by a similar reasoning. If
M− |λ〉 = M+ |λ〉 = 0, then

M1 |λ〉 =
1

2
(M+ +M−) |λ〉 = 0 , M2 |λ〉 = − i

2
(M+ −M−) |λ〉 = 0 .

This gives a one dimensional representation of the little group, with

M1 |0, σ〉 = M2 |0, σ〉 = 0 , S3 |0, σ〉 = σ |0, σ〉 . (1)

Here σ is an arbitrary real number.
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If ρ > 0, then the irreducible representation of the little group must be infinite dimensio-
nal. With normalized eigenvectors |ρ, σ〉 and suitable choices of relative phases of these
eigenvectors, we get that

S3 |ρ, σ〉 = σ |ρ, σ〉 , M+ |ρ, σ〉 = ρ |ρ, σ + 1〉 , M− |ρ, σ〉 = ρ |ρ, σ − 1〉 .

Photons have ρ = 0, σ = ±1. The quantum number σ is called helicity, it is the spin
component along the direction of motion of the photon. The two different photon states
with σ = +1 and σ = −1 are related by a parity transformation.

There are no known massless particles that are described by the infinite dimensional
representations of the little group. According to Feynman, there is a rule in physics that
everything which is mathematically possible, is compulsory. This case seems to be the
exception that confirms the rule.

The existence of an infinite spin particle would be a catastrophy in cosmology, because
it would be a system with infinite heat capacity. All the energy of the Universe would
be spent on creating such particles.

3f) Straightforward matrix multiplications give that Q2 = I, hence Q−1 = Q, and

Qλ1Q
−1 = λ1 , Qλ2Q

−1 = −λ2 , Qλ3Q
−1 = −λ3 ,

Qκ1Q
−1 = −κ1 , Qκ2Q

−1 = κ2 , Qκ3Q
−1 = κ3 .

Hence,

Qµ1Q
−1 = µ1 , Qµ2Q

−1 = −µ2 .

When we quantize, we should have that

QM1Q
−1 = M1 , QM2Q

−1 = −M2 , QS3Q
−1 = −S3 .

Or equivalently,

QM+Q
−1 = M− , QM−Q

−1 = M+ , QS3Q
−1 = −S3 .

This results from equation (1) if we define

Q |ρ, σ〉 = η |ρ,−σ〉 .

For example,

QM+Q
−1 |ρ, σ〉 = η−1QM+ |ρ,−σ〉 = η−1ρQ |ρ,−σ + 1〉 = η−1ρη |ρ, σ − 1〉

= ρ |ρ, σ − 1〉 = M− |ρ, σ〉 .

The intrinsic parity η is an arbitrary phase factor. The matrix identity Q2 = I would
correspond to the relation Q2 = η2I. This is acceptable, since multiplication by an
overall phase factor η2 in quantum mechanics is a physical identity transformation. If
we fix η = ±1 then we get that Q2 = I.

Photons have intrinsic parity η = −1.
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