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Problem 1.

Consider the ODE

y′′ +
1

4x
y′ − 1

x3
y = 0. (1)

a) Find and classify the singular points of (1) in the extended complex plane.

b) Determine the possible leading behaviours of y(x) as x→ 0+.

c) Find the full asymptotic expansion for the solution that goes to 0 as x→ 0+.

d) Determine the possible leading behaviours of y(x) as x→ +∞.

Problem 2.

a) Determine the leading behaviour as x→ +∞ of∫ 2

0
dt cos[x(t2 − 2t)] (2)

b) Determine the leading behaviour as x→ +∞ of∫ ∞
0

dt e−xt−1/t
2

(3)

c) Show that∫ ∞
0

dt e−x sinh(2t) ∼ 1

2

∞∑
k=0

Γ(2k + 1)Γ(k + 1/2)

Γ(k + 1)Γ(1/2)
(−1)kx−2k−1 (x→ +∞) (4)

(The following may be helpful: Γ(a)Γ(1− a) = π/ sin(πa) and Γ(1/2) =
√
π.)

d) For large x, estimate the number of terms in the optimal asymptotic approximation for
the asymptotic series in (4).
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Problem 3.

In this problem we consider a Schrödinger-type equation

ε2y′′ = Q(x)y. (5)

In the lectures we combined the WKB method in the physical-optics approximation with
asymptotic matching to derive an approximation to y(x) satisfying the boundary condition
y(+∞) = 0, for the case that Q(x) has one turning point. The turning point was assumed to
be simple, i.e. Q(x) vanishes linearly at the turning point, with a positive and finite slope.

a) In suitably scaled variables the wavefunction y(x) of a particle with energy E quantized
due to confinement to a potential well V (x) satisfies (5) with Q(x) = V (x)− E.
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Assume that the potential V (x) takes the form

V (x) =

{
∞ x ≤ 0
f(x) x > 0

(6)

where the function f(x) has a positive slope for x > 0. A typical example for V (x)
is shown in the figure. By making use of the known approximate solution for y(x) for
the problem with one simple turning point described above, derive a condition for the
quantized eigenvalues En (n = 0, 1, 2, . . .).

b) Use the eigenvalue condition derived in (a) to predict the eigenvalues En when f(x) cor-
responds to the potential of a 1-dimensional harmonic oscillator of mass m and angular
frequency ω.



Exam in FY3107/FY8304 , Dec 5, 2020 Page 3 of 3

Problem 4.

Consider the initial-value problem

y′′ + y + εy2y′ = 0, y(0) = 0, y′(0) = 1. (7)

Assume an expansion for y(t) on the form

y(t) ∼ Y0(t, τ) + εY1(t, τ) + . . . , (ε→ 0+), (8)

where τ = εt.

a) Show that Y0(t, τ) can be written on the form Y0(t, τ) = A(τ)eit + A∗(τ)e−it, and find
the equation that A(τ) should satisfy in order to avoid problematic terms in the analysis.

b) Determine Y0(t, τ).


