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1a) A set of equations of the form

_xj(t) = fj(x1(t); x2(t); : : : ; xn(t)) ; j = 1; 2; : : : ; n ;

is autonomous when the functions fj have no explicit dependence on t, only an implicit
dependence on t through the t-dependent variables xj(t).

A non-autonomous set of equations, of the form

_xj(t) = fj(x1(t); x2(t); : : : ; xn(t); t) ; j = 1; 2; : : : ; n ;

can be made autonomous by the inclusion of the extra equation

_t = 1 : (1)

1b) Hamilton's equations

_qj =
@H

@pj
; _pj = �@H

@qj
:

are autonomous if the Hamiltonian H does not depend explicitly on t, that is, if

H = H(q1; q2; : : : ; qn; p1; p2; : : : ; pn) :

Then the time derivative of H is

_H =
nX

j=1

�
@H

@qj
_qj +

@H

@pj
_pj

�
=

nX
j=1

�
@H

@qj

@H

@pj
� @H

@pj

@H

@qj

�
= 0 :

In other words, H is a constant of motion.

1c) Write the equations as _x = fx(x; y), _y = fy(x; y). There are two �xed points, (x; y) = (1; 0)
and (x; y) = (�1; 0). To determine their stability we look at the eigenvalues of the
derivative matrix

M =

 
@fx
@x

@fx
@y

@fy
@x

@fy
@y

!
=

 
0 1

2x 0

!
:

The trace and determinant of M are � = TrM = 0, � = detM = �2x.
At the �xed point (x; y) = (1; 0) we have that

M =

�
0 1
2 0

�
;

and � = 0, � = �2. An eigenvalue � is a root of the characteristic equation

det(M � �I) = �2 � ��+� = �2 � 2 = 0 :
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The eigenvalues are �� = �p2, and the corresponding eigenvectors are

V� =

�
1

�p2
�
:

The linearized equations of motion close to the �xed point are�
_�x
_�y

�
= M

�
�x
�y

�
;

valid for x = 1+ �x, y = �y, where the �'s are small (in�nitesimal) deviations. The general
solution is�

�x(t)
�y(t)

�
= c+e

�+t V+ + c�e��t V� = c+e
p
2 t

�
1p
2

�
+ c�e�

p
2 t

�
1

�p2
�

;

with arbitrary real coe�cients c�. The �xed point is a saddle point, since it has an
unstable direction V+ and a stable direction V�.

At the �xed point (x; y) = (�1; 0) we have that

M =

�
0 1
�2 0

�
;

and � = 0, � = 2. The characteristic equation is

�2 � ��+� = �2 + 2 = 0 :

The eigenvalues are �� = �ip2, and the corresponding eigenvectors are

V� =

�
1

�ip2
�
:

The �xed point is marginally stable, since the eigenvalues are purely imaginary. The
linearized equations of motion close to the �xed point have the general solution�

�x(t)
�y(t)

�
= c e�+t V+ + c�e��t V� = 2Re

�
c ei

p
2 t

�
1

i
p
2

��
;

where c is now an arbitrary complex coe�cient, c = a+ ib with a and b real. Thus�
�x(t)
�y(t)

�
= 2Re

�
(a+ ib) (cos(

p
2 t) + i sin(

p
2 t))

�
1

i
p
2

��

= 2a

�
cos(

p
2 t)

�p2 sin(
p
2 t)

�
� 2b

�
sin(
p
2 t)p

2 cos(
p
2 t)

�
:

The motion is in the clockwise direction. The �xed point looks like a centre, since the
orbits of the linearized equations of motion are periodic. In order to con�rm that it really
is a centre, with periodic solutions of the full nonlinear equations of motion, we look for
a constant of motion.
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We note that the equations of motion are of Hamiltonian form,

_x = y =
@H

@y
; _y = x2 � 1 = �@H

@x
;

with Hamiltonian

H =
y2

2
� x3

3
+ x :

Hence H is a constant of motion, and the exact orbits are level curves of H. The �xed
point (�1; 0) is a local minimum of H, since the �rst order derivatives

@H

@x
= �x2 + 1 ;

@H

@y
= y

vanish there, and the second derivative matrix (the Hessian)

 
@2H
@x2

@2H
@x@y

@2H
@y@x

@2H
@y2

!
=

 
�2x 0

0 1

!

is positive de�nite when x < 0. This implies that the orbits around the �xed point (�1; 0)
are closed, and it completes the proof that this �xed point is a centre.

1d) At the �xed point (1; 0) the value of the Hamiltonian is H = 2=3. The equation

H =
y2

2
� x3

3
+ x =

2

3

de�nes the homoclinic orbit. It starts out from the �xed point at time ! �1 in the
unstable direction �V+, asymptotically as

�
x(t)
y(t)

�
�

t!�1

�
1
0

�
� e

p
2 (t�t1) V+ =

 
1� e

p
2 (t�t1)

�p2 e
p
2 (t�t1)

!
;

where t1 is some constant time. It goes once around the other �xed point (�1; 0), and
returns to the same �xed point (1; 0) at time t! +1 in the stable direction V�, asymp-
totically as �

x(t)
y(t)

�
�

t!+1

�
1
0

�
� e�

p
2 (t�t2) V� =

 
1� e�

p
2 (t�t2)

p
2 e�

p
2 (t�t2)

!
;

where t2 is some other constant time.
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1e)

Figure 1: Phase portrait. Shows that the �xed point (�1; 0) is a centre, whereas (1; 0) is a
saddle point, with a homoclinic orbit leaving it at t = �1 and returning at t = +1.

1f) A �xed singularity of a solution of a di�erential equation is at a value of the independent
variable (t in the present case) where some coe�cient in the equation is singular.

The set of equations _x = y, _y = x2 � 1 has no �xed singularity.

A spontaneous (movable) singularity is a singularity of the solution at a value of t where
the equation is not singular.

Now assume that _x = y, _y = x2 � 1, and that we start at some t = t0 with

x(t0) = x0 > 1 ; y(t0) = y0 > 0 :

Then we know that
_x(t) > y0 ; _y(t) > x 2

0 � 1

for all t > t0. Hence we conclude that x(t) ! +1 and y(t) ! +1 as t increases, either
in the limit t! +1 or perhaps already at some �nite value of t.

Next, we use the fact that the Hamiltonian H(x; y) has a constant value H0 = H(x0; y0).
It follows that

y =

r
2x3

3
� 2x+ 2H0 :

For x su�ciently large we have for example that

_x = y >
x3=2

2
:

Hence we get a lower limit for x(t) by integrating the equation

_x =
x3=2

2
;
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which we rewrite as
dx

x3=2
=

dt

2
:

The general solution is

� 2p
x
=

t� t3
2

;

or equivalently,

x(t) =
16

(t� t3)2
;

where t3 is an integration constant. Remember that this was a lower limit to the exact
solution, which must therefore blow up at some t < t3.

This proves that every solution entering the region x > 1, y > 0 has a spontaneous
singularity.

2a) Di�erentiating Cauchy's integral formula n times we get that

f (n)(z) =
n!

2�i

I
C
dt

f(t)

(t� z)n+1
:

Take f(z) = ez and z = 0, then we get that

1 =
n!

2�i

I
C
dt

et

tn+1
:

2b) To �nd the saddle point s0 we solve the equation

g0(s) = (n+ 1)

�
es

s

�n�es
s
� es

s2

�
= (n+ 1) g(s)

�
1� 1

s

�
= 0 :

The solution is s = s0 = 1.

The second derivative is

g00(s) = (n+ 1)

�
g0(s)

�
1� 1

s

�
+

g(s)

s2

�
= (n+ 1) g(s)

"
(n+ 1)

�
1� 1

s

�2

+
1

s2

#
;

hence
g00(1) = (n+ 1) g(1) = (n+ 1) en+1 > 0 :

If we write s = u+ iv with u and v real, then

g00(s) =
d2g

ds2
=

@2g

@u2
=

@2g

@(iv)2
= �@2g

@v2
:

It follows that
@2g

@u2

����
s=1

= � @2g

@v2

����
s=1

= g00(1) = (n+ 1) en+1 > 0 :

When we go along the real axis in the complex s plane, g(s) is real and has a minimum
at s = 1. At s = 1 we may go in a direction perpendicular to the real axis, then g(s)
remains real to �rst and second order in s�1, and has a maximum at s = 1, with a second
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derivative going to �1 as n ! +1. According to the method of steepest descent, we
should take the the curve C to go through s = 1, perpendicular to the real axis. The main
contribution to the integral comes from a small part of the curve close to s = 1. Hence
we write s = 1 + iv, then we introduce a small � > 0 and write

1

n!
� 1

2�i (n+ 1)n

Z �

��
i dv g(1 + iv) =

1

2� (n+ 1)n

Z �

��
dv

en+1 ei (n+1) v

(1 + iv)n+1
:

Here v is small, and the given formula

1 + iv = eiv�
(iv)2
2

+::: = eiv+
v2
2
+:::

becomes useful. We get that

1

n!
� en+1

2� (n+ 1)n

Z �

��
dv e�

(n+1)v2
2 � en+1

2� (n+ 1)n

Z 1

�1
dv e�

(n+1)v2
2 :

Changing integration variable to w = v
p
(n+ 1)=2 we get that

1

n!
� en+1p

2(n+ 1)� (n+ 1)n

Z 1

�1
dw e�w

2
=

en+1

p
2� (n+ 1)n+

1
2

:

This is Stirling's formula.

3a) The singularities at �nite x are where sinx = 0, that is, x = n� for n = 0;�1;�2; : : :,
and where cosx = 0, that is, x = (n+ 1

2)� for n = 0;�1;�2; : : :.
There must be a very bad singularity at in�nity, since there are in�nitely many singular-
ities in any neighbourhood of in�nity. So we forget about in�nity and consider only the
singularities at �nite x.

These are all regular singular points, since the singularities of the coe�cients 1= sinx and
1= cosx are just simple poles.

3b) Consider the singularity at x = n�. Write x = n� + � where � is small. Then

sinx = sin(n�) cos � + cos(n�) sin � = (�1)n sin � = (�1)n�
�
1� �2

6
+

�4

120
+ : : :

�
;

and

1

sinx
= (�1)n 1

�

 
1 +

�2

6
� �4

120
+ : : :+

�
�2

6
� �4

120
+ : : :

�2

+ : : :

!

= (�1)n 1

�

�
1 +

�2

6
+

7�4

360
+ : : :

�
:

Also

cosx = cos(n�) cos � � sin(n�) sin � = (�1)n cos � = (�1)n
�
1� �2

2
+ : : :

�
;
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and
1

cosx
= (�1)n

�
1 +

�2

2
+ : : :

�
:

Trying a power series solution

y(x) =
X
k

ak�
k

we get the equation

X
k

ak

�
k(k � 1)�k�2 + (�1)nk

�
�k�2 +

�k

6
+

7�k+2

360
+ : : :

�

+(�1)n
�
�k +

�k+2

2
+ : : :

��
= 0 :

The sum over k should be over k = �; �+2; �+4; �+6; : : : for some � such that a� 6= 0.
In order to satisfy this equation in the limit � ! 0 we must require that

a� �[�� 1 + (�1)n] ���2 = 0 :

Thus � must satisfy the indicial equation

�[�� 1 + (�1)n] = 0 :

We have to distinguish between the two cases n even or n odd.

Assume �rst that n is even. Then the equation is

X
k

ak

�
k2�k�2 + k

�
�k

6
+

7�k+2

360
+ : : :

�
+

�
�k +

�k+2

2
+ : : :

��
= 0 ; (2)

and the indicial equation is �2 = 0 with the unique solution � = 0. Hence, in equation (2)
we should sum over k = 0; 2; 4; 6; : : :. The equation, written explicitly, is then

4a2 + a0 +

�
16a4 +

4a2
3

+
a0
2

�
�2 + : : : = 0 :

The terms shown vanish when we take a0 arbitrary and

a2 = �a0
4

; a4 = �a2
12
� a0

32
:

Further recursion relations determine successively ak for k = 6; 8; 10; : : :.

Unfortunately, this procedure gives only one solution, whereas a second order equation
must have two linearly independent solutions. We know what the second solution should
look like, it should have the form

y(x) = y2(x) + y1(x) ln �

with
y1(x) =

X
k=0;2;4;:::

ak�
k ; y2(x) =

X
k=0;2;4;:::

bk�
k :

7



We have then that

y0(x) = y02(x) +
y1(x)

�
+ y01(x) ln � ;

y00(x) = y002(x) +
2y01(x)

�
� y1(x)

�2
+ y001(x) ln � :

De�ne the di�erential operator

L =
d2

dx2
+

1

sinx

d

dx
+

1

cosx
:

Then

Ly = Ly2 +
2

�
y01 +

�
� 1

�2
+

1

� sinx

�
y1 + (Ly1) ln � :

In order to get Ly = 0 we should require that y1 satis�es the homogeneous equation
Ly1 = 0, and that y2 satis�es the inhomogeneous equation

Ly2 = �2

�
y01 +

�
1

�2
� 1

� sinx

�
y1 = �2

�
y01 �

�
1

6
+

7�2

360
+ : : :

�
y1 ;

where the dots represent terms of order �4; �6, and so on. The power series expansions of
y1(x) and y2(x) give �rst equation (2) for the coe�cients ak, and then the equation

X
k=0;2;4;:::

bk

�
k2�k�2 + k

�
�k

6
+

7�k+2

360
+ : : :

�
+

�
�k +

�k+2

2
+ : : :

��

=
X

k=0;2;4;:::

ak

�
�2k�k�2 � �k

6
� 7�k+2

360
+ : : :

�
(3)

for the coe�cients bk. The last equation more explicitly written out is

4b2 + b0 +

�
16b4 +

4b2
3

+
b0
2

�
�2 + : : : = �4a2 � a0

6
+

�
�8a4 � a2

6
� 7a0

360

�
�2 + : : : :

To satisfy the two equations (2) and (3) we can take a0 and b0 arbitrary, then

a2 = �a0
4

; a4 = �a2
12
� a0

32
;

as before, and

b2 = �b0
4
� a2 � a0

24
; b4 = � b2

12
� b0

32
� a4

2
� a2

96
� 7a0

5760
:

Further recursion relations determine successively ak and bk for k = 6; 8; 10; : : :.

Note that if we take a0 = 0 and b0 6= 0, we just recover the power series solution without
the logarithm. The logical choice in order to de�ne a new solution is to take a0 6= 0 and
b0 = 0.

Now to the case where n is odd. Then the equation is

X
k

ak

�
k(k � 2)�k�2 � k

�
�k

6
+

7�k+2

360
+ : : :

�
�
�
�k +

�k+2

2
+ : : :

��
= 0 ; (4)
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and the indicial equation is �(�� 2) = 0 with the two solutions � = 0 and � = 2. Hence,
in equation (4) we should sum over even k starting with either k = 0 or k = 2. The
equation, written explicitly, is then

�a0 +
�
8a4 � 4a2

3
� a0

2

�
�2 + : : : = 0 :

The terms shown vanish when we take a0 = 0, a2 arbitrary, and

a4 =
a2
6

:

Further recursion relations determine successively ak for k = 6; 8; 10; : : :.

Again we get only one solution, and we have to look for a second solution of the form

y(x) = y2(x) + y1(x) ln �

with
y1(x) =

X
k=2;4;6;:::

ak�
k ; y2(x) =

X
k=0;2;4;:::

bk�
k :

In order to get Ly = 0 we should require that y1 satis�es the homogeneous equation
Ly1 = 0 (that is why we sum from k = 2 instead of from k = 0), and that y2 satis�es the
inhomogeneous equation

Ly2 = �2

�
y01 +

�
1

�2
� 1

� sinx

�
y1 = �2

�
y01 +

�
2

�2
+

1

6
+

7�2

360
+ : : :

�
y1 ;

where the dots represent terms of order �4; �6, and so on. The power series expansions of
y1(x) and y2(x) give the equation (4) for the coe�cients ak, and the equation

X
k=0;2;4;:::

bk

�
k(k � 2)�k�2 � k

�
�k

6
+

7�k+2

360
+ : : :

�
�
�
�k +

�k+2

2
+ : : :

��

=
X

k=2;4;6;:::

ak

�
�2(k � 1)�k�2 +

�k

6
+

7�k+2

360
+ : : :

�
(5)

for the coe�cients bk. The last equation more explicitly written out is

�b0 +
�
8b4 � 4b2

3
� b0

2

�
�2 + : : : = �2a2 +

�
�6a4 + a2

6

�
�2 + : : : :

This gives that a0 = 0, a2 is arbitrary, and

a4 =
a2
6

;

as before. Then it gives that b0 = 2a2, b2 is arbitrary, and

b4 =
b2
6
+

b0
16
� 3a4

4
+

a2
48

:

Further recursion relations determine successively ak and bk for k = 6; 8; 10; : : :.
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Note that instead of saying that a2 is arbitrary and b0 = 2a2, we may turn it around and
say that b0 is arbitrary and a2 = b0=2. If we take b0 = 2a2 = 0 and b2 6= 0, we just recover
the power series solution without the logarithm. Hence, the logical way of getting a new
solution is to take b0 = 2a2 6= 0, but we may take b2 = 0.

So far the singularity at x = n�. Consider now the singularity at x = (n + 1
2)�. Write

x = (n+ 1
2)� + � where � is small. Then

sinx = sin

��
n+

1

2

�
�

�
cos � + cos

��
n+

1

2

�
�

�
sin �

= (�1)n cos � = (�1)n
�
1� �2

2
+ : : :

�
;

and
1

sinx
= (�1)n

�
1 +

�2

2
+ : : :

�
:

Also

cosx = cos

��
n+

1

2

�
�

�
cos � � sin

��
n+

1

2

�
�

�
sin �

= �(�1)n sin � = (�1)n+1�

�
1� �2

6
+ : : :

�
;

and

1

cosx
= (�1)n+1 1

�

�
1 +

�2

6
+ : : :

�
:

Trying a power series solution

y(x) =
X
k

ak�
k

we get the equation

X
k

ak

�
k(k � 1)�k�2 + (�1)nk

�
�k�1 +

�k+1

2
+ : : :

�

+(�1)n+1

�
�k�1 +

�k+1

6
+ : : :

��
= 0 : (6)

The sum over k should be over k = �; �+1; �+2; �+3; : : : for some � such that a� 6= 0.
In order to satisfy this equation in the limit � ! 0 we must require that

a� �(�� 1) ���2 = 0 :

Thus � must satisfy the indicial equation

�(�� 1) = 0 ;

with solutions � = 0 and � = 1. The equation more explicitly written out is

(�1)n+1a0�
�1 + 2a2 +

�
6a3 + (�1)na2 + (�1)n+1 a0

6

�
�

+
�
12a4 + (�1)n2a3 + (�1)n a1

3

�
�2 + : : : = 0 :
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It gives that a0 = a2 = 0, a1 is arbitrary, and

a3 = (�1)n+1 a2
6

+ (�1)n a0
36

= 0 ;

a4 = (�1)n+1 a3
6

+ (�1)n+1 a1
36

= (�1)n+1 a1
36

:

Further recursion relations determine successively ak for k = 5; 6; 7; : : :.

Here again we get only one solution, and we have to consider solutions of the form

y(x) = y2(x) + y1(x) ln �

with
y1(x) =

X
k=1;2;3;:::

ak�
k ; y2(x) =

X
k=0;1;2;3;:::

bk�
k :

In order to get Ly = 0 we should require that y1 satis�es the homogeneous equation
Ly1 = 0, and that y2 satis�es the inhomogeneous equation

Ly2 = �2

�
y01 +

�
1

�2
� 1

� sinx

�
y1 = �2

�
y01 +

�
1

�2
� (�1)n

�
1

�
+

�

2
+ : : :

��
y1 ;

where the dots represent terms of order �4; �6, and so on. The power series expansions of
y1(x) and y2(x) give the equation (6) for the coe�cients ak, and the equation

1X
k=0

bk

�
k(k � 1)�k�2 + (�1)nk

�
�k�1 +

�k+1

2
+ : : :

�
+ (�1)n+1

�
�k�1 +

�k+1

6
+ : : :

��

=
1X
k=1

ak

�
�2(k � 1)�k�2 + (�1)n+1

�
�k�1 +

�k+1

2
+ : : :

��
(7)

for the coe�cients bk. The last equation more explicitly written out is

(�1)n+1b0�
�1 + 2b2 +

�
6b3 + (�1)n

�
b2 � b0

6

��
� + : : :

= �2a2 + (�1)n+1a1 +
�
�4a3 + (�1)n+1

�
a2 +

a0
2

��
� + : : : :

This gives that a0 = a2 = a3 = 0, a1 is arbitrary, and

a4 = (�1)n+1 a1
36

;

as before. Then it gives that b0 = 0, b1 is arbitrary, and

b2 = �2a2 + (�1)n+1a1 = (�1)n+1a1 ;

b3 = �2a3
3

+ (�1)n+1
�
a2 +

a0
2

�
= 0 :

Further recursion relations determine successively ak and bk for k = 4; 5; 6; : : :.
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In the examination only the leading asymptotic behaviour at the singular points was asked
for. A su�cient answer is the following:

{ For x = n� + � with n an even integer and � small we have either y(x) � 1 or
y(x) � ln �.

{ For x = n� + � with n an odd integer and � small we have either y(x) � �2 or
y(x) � 2 + �2 ln �.

{ For x = (n + 1
2)� + � with n an even or odd integer and � small we have either

y(x) � � or y(x) � �(1 + ln �).
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