
FY3107/8304 Mathematical approximation methods in physics
Solution to exam, November 2018

Remarks on weighting: All subproblems (1a, ..., 3f) were given weight 1 in the marking, except 2d
(weight 0.5), 3a (weight 0.75), 3b (weight 0.25), and 3e (weight 0.5).

Problem 1

(a) For a 2nd order homogeneous linear ODE

d2g

ds2
+ p(s)

dg

ds
+ q(s)g(s) = 0, (1)

a point s = s0 with s0 finite is a singular point if p(s) and/or q(s) are not analytic at s0. A singular point
s0 is a regular singular point (RSP) if both (s− s0)p(s) and (s− s0)2q(s) are analytic at s0. Otherwise
the singular point s0 is an irregular singular pont (ISP).

For the modified Bessel equation, p(s) = 1/s and q(s) = −(1 + ν2/s2). It follows that s = 0 is an RSP
for this ODE, and that it has no other singular points in the complex plane.

The extended complex plane consists of the complex plane plus the ”point at infinity” (s = ∞). The
nature of the point s = ∞ is determined by introducing t = 1/s and analyzing the point t = 0 in the
standard way. We get

d

ds
=

dt

ds

d

dt
= − 1

s2
d

dt
= −t2 d

dt
, (2)

d2

ds2
=

(
−t2 d

dt

)(
−t2 d

dt

)
= t4

d2

dt2
+ 2t3

d

dt
. (3)

Also defining h(t) = g(s), the modified Bessel equation is thus transformed into

t4
d2h

dt2
+ 2t3

dh

dt
+ t(−t2)

dh

dt
− (1 + ν2t2)h(t) = 0, (4)

i.e.
d2h

dt2
+

1

t

dh

dt
−
(

1

t4
+
ν2

t2

)
h = 0. (5)

The factor 1/t4 multiplying h implies that t = 0, and thus s =∞, is an ISP (of the lowest rank).

(b) As s = 0 is an RSP, we consider a solution around s = 0 that takes the form of a Frobenius series
with indicial exponent α:

g(s) =

∞∑
n=0

ans
α+n (6)

with a0 6= 0. Differentiating this series term by term and inserting into the ODE gives∑
n

an(α+ n)(α+ n− 1)sα+n−2 +
∑
n

an(α+ n)sα+n−2 −
∑
n

ans
α+n − ν2

∑
n

ans
α+n−2 = 0. (7)

The coefficients of each power sm must sum to 0. For the smallest exponent m = α− 2 this gives

a0[α(α− 1) + α− ν2] = 0. (8)

Since a0 6= 0, this gives the indicial equation α2 − ν2 = 0, i.e. the indicial exponents are

α = ±ν. (9)
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(c) We expect the general solution to have an essential singularity at s =∞ since this is an ISP for the
ODE. Therefore we try a solution on the form g(s) = exp(R(s)) (exponential substitution). This gives

dg

ds
= eR

dR

ds
, (10)

d2g

ds2
= eR

[
d2R

ds2
+

(
dR

ds

)2
]
. (11)

Inserting this into the ODE and cancelling the common nonzero factor exp(R) gives

R′′ + (R′)2 +
1

s
R′ − 1− ν2

s2
= 0 (12)

(from now on, a prime denotes differentiation with respect to s in this subproblem). As s → +∞,
ν2/s2 � 1. Let us also assume that R′′ and R′/s are � (R′)2. This gives

(R′)2 ∼ 1 ⇒ R′ ∼ ±1 (s→ +∞) (13)

From this it follows that R′/s ∼ ±1/s, so it was consistent to neglect R′/s compared to (R′)2 as s→ +∞.
The same is true for R′′. Integrating gives

R(s) ∼ ±s (s→ +∞). (14)

Next we write R(s) = ±s+ C(s). Thus R′ = ±1 + C ′ and R′′ = C ′′. Inserting into (12) gives

C ′′ + (±1 + C ′)2 +
1

s
(±1 + C ′)− 1− ν2

s2
= 0. (15)

Expanding out and cancelling equal terms gives

C ′′ ± 2C ′ + (C ′)2 ± 1

s
+
C ′

s
− ν2

s2
= 0. (16)

Here ν2/s2 � 1/s and C ′/s� C ′. Next, differentiating the relation C(s)� s (which follows from (14))
gives C ′ � 1, so (C ′)2 � C ′. Differentiating one more time leads us to neglect C ′′ too. Thus

±2C ′ ∼ ∓1

s
⇒ C ′ ∼ − 1

2s
(s→ +∞) (17)

It follows that (C ′)2 ∼ 1/(4s2) and C ′′ ∼ 1/(2s2), so our approximations were consistent. Integrating
(17) gives

C(s) ∼ −1

2
ln s (s→ +∞). (18)

Next we write

C(s) = −1

2
ln s+D(s). (19)

Thus C ′ = −1/(2s) +D′ and C ′′ = 1/(2s2) +D′′. Inserting into (16) gives

1

2s2
+D′′ ± 2

(
− 1

2s
+D′

)
+

(
− 1

2s
+D′

)2

± 1

s
+

1

s

(
− 1

2s
+D′

)
− ν2

s2
= 0. (20)

Expanding out and cancelling equal terms gives

D′′ ± 2D′ + (D′)2 +
1

s2

(
1

4
− ν2

)
= 0. (21)

Differentiating the relation D(s)� ln s (which follows from (18)) gives D′ � 1/s and D′′ � 1/s2, so we
may neglect D′′ and (D′)2. This gives

D′ ∼ ∓ 1

2s2

(
1

4
− ν2

)
(s→ +∞) (22)
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Integrating the right-hand side gives

± 1

2s

(
1

4
− ν2

)
+ k ≡ E(s) + k, (23)

where k is an integration constant.1 Since the function E(s) ∝ 1/s� 1 as s→ +∞,

D(s) ∼ k (s→ +∞). (24)

Summarizing, we have so far found

R(s) ∼ ±s− 1

2
ln s+ k (s→ +∞) (25)

The difference between the left-hand side and the right-hand side in this asymptotic relation is

D(s)− k ∼ E(s) (s→ +∞) (26)

As this difference is � 1 (s→ +∞), it is permissible to exponentiate the asymptotic relation (25). This
gives the leading behaviour

y = exp(R(s)) ∼ exp

(
±s− 1

2
ln s+ k

)
= Ks−1/2 exp(±s) (s→ +∞) (27)

where K = exp(k) (which obviously can be different for the ± cases).

(d) One wants to find the eigenvalues E of an eigenvalue problem whose ODE is of Schrodinger type,

ε2y′′ = (V (x)− E)y, (28)

with y → 0 as x → ±∞. The WKB method (in the so-called physical optics approximation) is used to
find approximate solutions in the various regions with V (x) > E and V (x) < E. However, this WKB
approximation breaks down in the vicinity of the so-called turning points where V (x) = E. Thus near
the turning points a different approach is required. This consists of linearizing the potential V (x) around
each turning point, and then doing a simple change of variables which turns the linearized ODE into
the Airy equation. The solution of this Airy equation is then matched to the WKB solutions on both
sides of the turning point. For a problem with two turning points this procedure eventually leads to a
condition for the discrete eigenvalues E known as the WKB quantization condition.

(e) We have

df

dx
= βxβ−1I + xβ

ds

dx

dI

ds
, (29)

d2f

dx2
= β(β − 1)xβ−2I + 2βxβ−1

ds

dx

dI

ds
+ xβ

d2s

dx2
dI

ds
+ xβ

(
ds

dx

)2
d2I

ds2
. (30)

Inserting this into the Airy equation d2f/dx2−xf = 0, dividing the equation by the coefficient function
of d2I/ds2, and simplifying, gives

d2I

ds2
+

(
2β

xs′
+

s′′

(s′)2

)
dI

ds
+

(
β(β − 1)

x2(s′)2
− x

(s′)2

)
I = 0. QED. (31)

(f) In order to compare (31) with the modified Bessel equation, we first need to express the coefficient
functions in terms of the variable s. We have

s′ = Dγxγ−1, (32)

s′′ = Dγ(γ − 1)xγ−2. (33)

1Integration constants also appear when integrating the asymptotic expressions for R′ and C′ above. But in these cases
such a constant was � the antiderivatives themselves and could thus be neglected in the asymptotic expressions (14) and
(18) for R and C.
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Let us first consider the factors in the coefficient function of dI/ds:

xs′ = Dγxγ = γs, (34)

s′′

(s′)2
=

Dγ(γ − 1)xγ−2

D2γ2x2(γ−1)
=
γ − 1

Dγxγ
=
γ − 1

γs
. (35)

Thus the coefficient function of dI/ds becomes (2β + γ − 1)/(γs). Setting this equal to the coefficient
function 1/s of the first-derivative term in the modified Bessel equation, γ cancels out, and we find

β =
1

2
. (36)

Next consider the factors in the coefficient function of I. From (34) we get x2(s′)2 = γ2s2. Furthermore,

x

(s′)2
=

x

D2γ2x2(γ−1)
=

1

D2γ2x2γ−3
=

1

D2γ2

( s
D

)(3−2γ)/γ
(37)

Setting the coefficient function of I equal to that of the modified Bessel equation gives

β(β − 1)

γ2s2
− 1

D2γ2

( s
D

)(3−2γ)/γ
= −1− ν2

s2
. (38)

Here, the coefficients of the terms proportional to s−2 must be equal, giving

ν2 =
β(1− β)

γ2
=

1

4γ2
. (39)

Eq. (38) furthermore dictates that
1

D2γ2

( s
D

)(3−2γ)/γ
= 1, (40)

from which it follows that 3− 2γ = 0 and D2γ2 = 1. Therefore

γ =
3

2
and D =

2

3
. (41)

Finally, from (39), ν2 = 1/9, i.e.

ν =
1

3
. (42)

In summary, the Airy solution f(x) = x1/2I
(
2
3x

3/2
)
, where I(s) is a solution of the modified Bessel

equation for ν = 1/3.2

Problem 2

(a) We will use the method of dominant balance, so we try the assumption that for x → +∞ two of
the three terms in the ODE balance against each other and dominate the remaining term which is thus
negligible in comparison. Obviously there are three possible alternatives for which term is assumed
negligible. One alternative is

y′ � y ∼ 1

x
⇒ y′ ∼ − 1

x2
� y ∼ 1

x
as x→ +∞, (45)

2Consistent with this finding, it can be shown that the standard basis Ai(x) and Bi(x) of solutions of the Airy equation
can be expressed as (x > 0)

Ai(x) =
1

3
x1/2

[
I−1/3

(
2

3
x3/2

)
− I1/3

(
2

3
x3/2

)]
, (43)

Bi(x) =
1
√

3
x1/2

[
I−1/3

(
2

3
x3/2

)
+ I1/3

(
2

3
x3/2

)]
, (44)

where I±1/3(s) are so-called modified Bessel functions of the first kind (the functions I±ν(s) form a basis of solutions for
the modified Bessel equation when ν is not an integer).
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which is consistent. The two other alternatives are not consistent as they both give outcomes that
contradict the starting assumption:

y � y′ ∼ 1

x
⇒ y ∼ lnx� 1

x
as x→ +∞ (46)

1

x
� y′ ∼ −y ⇒ y ∼ Ce−x � 1

x
as x→ +∞ (47)

Thus the leading behaviour is

y ∼ 1

x
(x→ +∞). (48)

(b) We factor out the leading behaviour by writing

y(x) =
1

x
w(x). (49)

This gives y′ = −w/x2 + w′/x. Inserting these expressions into the ODE for y, we find the following
ODE for w:

w′ +

(
1− 1

x

)
w = 1. (50)

We assume an asymptotic expansion of power series form for w(x), i.e.

w(x) ∼
∞∑
n=0

anx
−αn (x→ +∞). (51)

As this should be an asymptotic power series for x→ +∞, we must have α > 0, and to get the correct
leading behaviour for y(x), we must have a0 = 1. Inserting this series into (50) gives∑

n

an(−αn)x−αn−1 +
∑
n

anx
−αn −

∑
n

anx
−αn−1 ∼ 1 (x→ +∞) (52)

We find the coefficients by comparing them for each power xm. The largest possible exponent m is 0,
which gives a0 = 1 (which we already knew). Removing this term from both sides, we can rearrange to
get

∞∑
n=1

anx
−αn ∼

∞∑
n=0

an(αn+ 1)x−αn−1 (53)

The least negative exponent on the right-hand side is m = −1 (occurs for n = 0), with coefficient a0 = 1.
Thus an identical term 1x−1 must appear on the left-hand side. The only3 possibility is that this comes
from the term with n = 1, which requires α = 1. Inserting α = 1 in (53) and equating coefficients of
identical powers then gives

an+1 = (n+ 1)an, n = 0, 1, 2, . . . , (54)

so (also using a0 = 1)
an = n! (55)

Therefore the asymptotic expansion of y(x) is

y(x) ∼ 1

x

∞∑
n=0

n!x−n =

∞∑
n=0

n!x−(n+1) (x→ +∞) (56)

(c) Let me write y(x) ∼
∑∞
n=0 fn(x) with fn(x) = n!x−(n+1). The ratio of successive terms is therefore

fn+1(x)

fn(x)
=

(n+ 1)!x−(n+2)

n!x−(n+1)
=
n+ 1

x
. (57)

3The correct power x−αn = x−1 could also be obtained by taking n = N for some integer N > 1, which requires
α = 1/N . However, this would imply that the left-hand side also contains terms proportional to x−n/N for 1 ≤ n < N ,
which do not appear on the right-hand side. Therefore α = 1 is the only possibility.
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Thus fn(x) will first decrease with n before increasing without limit. The ”optimal asymptotic approxi-
mation” consists of summing all terms up to but not including the smallest term, which is an estimate
of the error. The smallest term occurs for the smallest n such that fn+1(x)/fn(x) > 1. Using (57) gives
n > x− 1. Thus n is the integer between x− 1 and x. Here I assumed that x is a generic real number,
i.e. not an integer.4 Ignoring the minute distinction between the integer n and (generically) noninteger
x, we set n = x in the estimate for the error:

fx(x) = x!x−(x+1) ∼
√

2πx
(x
e

)x
x−(x+1) =

√
2π

x
e−x (x→ +∞) (58)

i.e. the error decreases exponentially with x. Here I used the asymptotic (Stirling) approximation for
the factorial function given in the formula set.

(d) As the ODE is 1st order inhomogeneous linear, the exact solution can be obtained using the inte-
grating factor method. Thus we multiply the ODE by exp(

∫ x
1dt) = exp(x), giving

exy′ + exy =
d

dx
(exy) =

ex

x
. (59)

Next, rename the independent variable as t and integrate from t = a to t = x:∫ x

a

dt
d

dt
(ety(t)) = ety(t)

∣∣∣x
a

= exy(x)− eay(a) =

∫ x

a

dt
et

t
. (60)

Inserting y(a) = A and solving for y(x) gives

y(x) = Aea−x + e−x
∫ x

a

dt
et

t
. (61)

(e) The integral in (61) can not be evaluated in closed form in terms of elementary functions. To develop

an asymptotic expansion, we try integration by parts:
∫
vu′ = vu

∣∣∣ − ∫ v′u. Writing et = (d/dt)et ≡ u′

and v = 1/t gives∫ x

a

dt
et

t
=

∫ x

a

dt
1

t

d

dt
et =

et

t

∣∣∣x
a
−
∫ x

a

dt (−1)
1

t2
et =

ex

x
− ea

a
+

∫ x

a

dt
et

t2
. (62)

Now the new integral on the right can be evaluated in the same way. Iterating this process will give a
series involving inverse powers of x. It will be convenient to define

In(x) ≡ e−x
∫ x

a

dt
et

tn
(n = 1, 2, . . .) (63)

This gives

exIn(x) =

∫ x

a

dt
1

tn
d

dt
et =

et

tn

∣∣∣x
a
−
∫ x

a

dt (−n)
1

tn+1
et =

ex

xn
− ea

an
+ nexIn+1(x), (64)

i.e.

In(x) =
1

xn
− ea−x

an
+ nIn+1(x). (65)

Starting with I1(x) which appears in (61), iterating a few times gives

I1(x) =
1

x
− ea−x

a
+ 1 · I2(x) =

1

x
+

1

x2
− ea−x

(
1

a
+

1

a2

)
+ 2I3(x)

=
1

x
+

1

x2
+

1 · 2
x3
− ea−x

(
1

a
+

1

a2
+

1 · 2
a3

)
+ 3I4(x)

=
1

x
+

1

x2
+

1 · 2
x3

+
1 · 2 · 3
x4

− ea−x
(

1

a
+

1

a2
+

1 · 2
a3

+
1 · 2 · 3
a4

)
+ 4I5(x). (66)

4If x is an integer, fn+1(x)/fn(x) = 1 for n = x− 1, i.e. there are two smallest terms, for n = x− 1 and n = x.

6



The pattern is clear:

I1(x) =

N−1∑
n=0

n!x−(n+1) − ea−x
N−1∑
m=0

m! a−(m+1) +NIN+1(x) (67)

for any integer N ≥ 1. Note that as x → +∞, any term ea−xm!/a−(m+1) in the second sum is, due
to the exponential decay in x, subdominant (i.e. it goes to 0 faster than any inverse power of x), i.e.
it doesn’t contribute to the asymptotic expansion of I1(x), which is thus given by the N → ∞ limit of
the first sum alone in (67). For the same reason, the term Aea−x in (61) does not contribute to the
asymptotic expansion of y(x). Thus we get

y(x) ∼
∞∑
n=0

n!x−(n+1) (x→ +∞) (68)

in agreement with the result in (b).

Problem 3

(a) The function a(x) should satisfy a(x) 6= 0 for 0 ≤ x ≤ 1. If a(x) > 0, the boundary layer will be at
x = 0; if a(x) < 0, the boundary layer will be at x = 1. (These are the most important conditions. In
addition, a(x) and b(x) should be continuous functions.)

(b) This problem is of the type considered in (a) with a(x) = 1 + x2 and b(x) = −1. As a(x) > 0, it
follows that there is a boundary layer of thickness ε at x = 0.

(c) The outer solution obeys a simplified ODE obtained by neglecting the term εy′′:

(1 + x2)y′ − y = 0 ⇒ dy

y
=

dx

1 + x2
. (69)

Integrating gives
ln y = arctanx+ C̃ ⇒ y = C exp(arctanx). (70)

Imposing the boundary condition at x = 1 gives

y(1) = 1 = C exp(arctan 1) = C exp(π/4) ⇒ C = exp(−π/4). (71)

Thus
y(x) = exp(arctanx− π/4) ≡ youter(x). (72)

(d) The inner solution also obeys a simplified ODE. To identify this we introduce the inner variable X =
x/δ where δ is the thickness of the boundary layer. Thus d/dx = (1/δ)d/dX and d2/dx2 = (1/δ2)d2/dX2.
We also introduce Y (X) = y(x). Since we are considering the inner region, we may also replace a(x) by
its leading-order approximation a(0) = 1. This gives the ODE

ε

δ2
d2Y

dX2
+

1

δ

dY

dX
− Y = 0. (73)

From (b) we know5 that δ = ε. Thus terms 1 and 2 are O(1/ε) while term 3 is O(1). Therefore term 3
is negligible compared to terms 1 and 2 as ε→ 0+, giving the simplified ODE

d2Y

dX2
+
dY

dX
= 0. (74)

This gives dY
dX = −C2 exp(−X) where C2 is an integration constant. Integrating again gives

Y (X) = C1 + C2 exp(−X) i.e. y(x) = C1 + C2 exp(−x/ε) (75)

5Alternatively, if one doesn’t know this, it can be deduced from a dominant-balance analysis, as discussed in 3(f) for a
different ODE.
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where C1 is another integration constant. Imposing the boundary condition at x = 0 gives

y(0) = 1 = C1 + C2 ⇒ C1 = 1− C2. (76)

Thus
y(x) = 1 + C2[exp(−x/ε)− 1] ≡ yinner(x). (77)

To determine C2 one needs to match yinner(x) and youter(x) in the overlap region6 characterized by x→ 0,
X = x/ε→∞, as ε→ 0+ (these conditions are e.g. satisfied for x = O(

√
ε)), i.e. we set

youter(x = 0) = Y (X →∞) ≡ ymatch. (78)

This gives
ymatch = exp(−π/4) = 1− C2 ⇒ C2 = 1− exp(−π/4). (79)

Thus
yinner(x) = [1− exp(−π/4)] exp(−x/ε) + exp(−π/4). (80)

(e) The uniform approximation is given by

yuniform(x) = yinner(x) + youter(x)− ymatch

= [1− exp(−π/4)] exp(−x/ε) + exp(arctanx− π/4). (81)

(f) Now a(x) = x2. The fact that a(x) > 0 for x > 0 prohibits a boundary layer at x = 1 or at an
interior point. Thus the only possibility is a boundary layer at x = 0. However, since a(x) = 0 there, the
conditions for a thickness-ε boundary layer are not satisfied. To deduce the thickness δ of the boundary
layer, we proceed like we did at the beginning of (d) by introducing X = x/δ and Y (X) = y(x). Also
using a(x) = δ2X2 gives the ODE

ε

δ2
d2Y

dX2
+ δX2 dY

dX
− Y = 0. (82)

δ can be determined by a dominant-balance analysis: one assumes that as ε→ 0+ one term is negligible
compared to the two other terms which balance each other. There are three alternatives:

• Term 1 is negligible: Balancing terms 2 and 3 gives δ = 1. Thus terms 2 and 3 are O(1), while
term 1 is O(ε) which is indeed negligible compared to terms 2 and 3. So the initial assumption
does not lead to a contradiction in itself. However, since δ is found to be independent of ε, this
case does not describe a solution with a boundary layer (the thickness of a boundary layer should
go to zero as ε→ 0). This could have been anticipated, as term 1 is the one we would have ignored
if we wanted to find the outer solution.

• Term 2 is negligible: Balancing terms 1 and 3 gives ε/δ2 = 1, i.e. δ = ε1/2. Thus terms 1 and 3
are O(1) while term 2 is O(ε1/2) which is indeed negligible compared to terms 1 and 3.

• Term 3 is negligible: Balancing terms 1 and 2 gives ε/δ2 = δ, i.e. δ = ε1/3. Thus terms 1 and 2 are
O(ε1/3), while term 3 is O(1) and therefore dominant, which contradicts the initial assumption.

We conclude that the boundary layer at x = 0 has thickness δ = ε1/2.

6Since finding C2 involves a comparison with youter(x), it could be argued that the expression (77) should be considered
the end of the calculation of yinner(x). If so, the calculation of C2 would be done as a part of (e) instead.
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