
FY3107/8304 Mathematical approximation methods in physics
Solution to exam, December 2020

A remark on the marking: The performance on subproblems 1c, 3a and 3b was considerably weaker than
I had expected. In the calculation of the candidate’s total percentage, I judged that it was reasonable to
reduce the significance of these three subproblems (but in such a way that those few students who had
done well on them were not disadvantaged by this change).

As all materials were allowed in this exam, it was natural to use various results derived in the lecture
notes and/or in the textbook (Bender & Orszag, hereafter referred to as BO).

Problem 1

(a) We see by inspection that x = 0 is a singular point, and that there are no other singular points for
finite |x|. While x · 1

4x = 1
4 is analytic at x = 0, x2 ·

(
− 1
x3

)
= − 1

x is not. Thus x = 0 is an irregular
singular point.

To investigate the point x = ∞ (complex infinity) we define t = 1/x and Y (t) = y(x) to classify the
point t = 0. This gives

d

dx
= −t2 d

dt
,

d2

dx2
= t4

d2

dt2
+ 2t3

d

dt
, (1)

which leads to the ODE
d2Y

dt2
+

7

4t

dY

dt
− 1

t
Y = 0. (2)

We see that t = 0 is a singular point. Since t · 7
4t = 7

4 and t2 ·
(
− 1
t

)
= −t are both analytic at t = 0,

t = 0 is a regular singular point.

In summary, the ODE has an irregular singular point at x = 0 and a regular singular point at x =∞.

(b) We expect the general solution to have an essential singularity at x = 0 since this is an irregular
singular point for the ODE. Therefore we try a solution on the form y(x) = exp(S(x)) (exponential
substitution). This gives

y′ = S′eS , y′′ = [S′′ + (S′)2]eS , (3)

which after inserting into the ODE for y and cancelling the common factor exp(S) gives

S′′ + (S′)2 +
1

4x
S′ =

1

x3
. (4)

This is a nonlinear ODE that we are unable to solve exactly. Instead we try to do an asymptotic analysis
using the method of dominant balance. Based on previous experience, we first try the assumptions
that S′′, (4x)−1S′ � (S′)2, 1/x3 (x→ 0+). This gives

(S′)2 ∼ 1

x3
⇒ S′ ∼ ± 1

x3/2
(x→ 0+) (5)

Thus S′/(4x) ∼ ±(1/4)x−5/2 and S′′ ∼ ∓(3/2)x−5/2, both � 1/x3 (x → 0+), so the assumptions were
consistent. Integrating gives

S(x) ∼ ∓ 2√
x

(x→ 0+) (6)

Next we write S(x) = ∓2x−1/2 +C(x). Thus S′ = ±x−3/2 +C ′ and S′′ = ∓(3/2)x−5/2 +C ′′. Inserting
into (4) gives

∓(3/2)x−5/2 + C ′′ + (±x−3/2 + C ′)2 +
1

4x
(±x−3/2 + C ′) =

1

x3
. (7)

Expanding out, cancelling and combining terms gives the five-term nonlinear ODE

∓5

4
x−5/2 + C ′′ ± 2C ′x−3/2 + (C ′)2 +

1

4
x−1C ′ = 0. (8)
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Here 1
4x
−1C ′ � 2C ′x−3/2 (x → 0+) (this holds independently of C ′). Furthermore, differentiating the

relation C(x)� x−1/2 (which follows from (6)) gives C ′ � x−3/2, so (C ′)2 � 2C ′x−3/2. Differentiating
again gives C ′′ � x−5/2. Thus we arrive at the dominant balance

2C ′x−3/2 ∼ 5

4
x−5/2 ⇒ C ′ ∼ 5

8
x−1 (x→ 0+) (9)

It can be checked from this result that also the last two terms that were neglected were indeed negligible.
Integrating (9) gives

C ∼ 5

8
lnx (x→ 0+) (10)

Continuing the analysis a little further, it can be shown that the next term in the asymptotic expansion
of S(x) is a constant, i.e.

S(x) ∼ ∓ 2√
x

+
5

8
lnx+ k∓ (x→ 0+) (11)

and that the difference between the lhs and rhs in this asymptotic relation is � 1 (x→ 0+) (I omit the
details here). It is therefore permissible to exponentiate the asymptotic relation (11). This gives the
possible leading behaviours as

y±(x) ∼ exp

(
± 2√

x
+

5

8
lnx+ k±

)
= c±x

5/8 exp

(
± 2√

x

)
(x→ 0+), (12)

where the two constants c± = exp(k±) are arbitrary.

(c) The solution that goes to 0 as x → 0+ is y−(x). In the following I consider this solution only and
therefore drop the subscript to lighten the notation. Setting the constant c = 1 (as it is of no importance
in the following analysis), the solution can be written y(x) = L(x)w(x), where L(x) = xβ exp(−2/

√
x)

is the leading behaviour, with β = 5/8, and w(x) is the unknown function whose asymptotic expansion
we seek. Thus

y′ = Lw′ + L′w, (13)

y′′ = Lw′′ + 2L′w′ + L′′w, (14)

where

L′ = L[βx−1 + x−3/2], (15)

L′′ = L

[
β(β − 1)x−2 +

(
2β − 3

2

)
x−5/2 + x−3

]
. (16)

Inserting into the ODE and cancelling L gives

w′′ + 2(βx−1 + x−3/2)w′ +

[
β(β − 1)x−2 +

(
2β − 3

2

)
x−5/2 + x−3

]
w

+
1

4
x−1w′ +

1

4
x−1(βx−1 + x−3/2)w − x−3w = 0. (17)

Collecting and simplifying coefficients of w′ and w gives

w′′ +

[(
2β +

1

4

)
x−1 + 2x−3/2

]
w′ +

[
β

(
β − 3

4

)
x−2 +

(
2β − 5

4

)
x−5/2

]
w = 0. (18)

Inserting β = 5/8 gives the final form of the ODE for w(x):

w′′ +

(
3

2
x−1 + 2x−3/2

)
w′ − 5

64
x−2w = 0. (19)

We now write w(x) ∼
∑∞
n=0 anx

αn (x→ 0+) where a0 = 1. Inserting into the ODE gives∑
n

αn(αn− 1)anx
αn−2 +

3

2

∑
n

αnanx
αn−2 + 2

∑
n

αnanx
αn−5/2 − 5

64

∑
n

anx
αn−2 = 0. (20)
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We anticipate that α > 0 since the expansion point is x = 0. The n = 0 term in the last sum is
−(5/64)x−2. As the x−2 terms vanish in the first and second sum, this leading contribution must be
cancelled by the third sum. The leading term in this sum comes from n = 1, with exponent α · 1− 5/2.
Thus the exponents must be equal, i.e. α− 5/2 = −2, which gives

α = 1/2. (21)

All sums except the third involve powers xn/2−2. To get the third sum on this form as well we write its
exponent as n/2− 5/2 ≡ m/2− 2, which gives m = n− 1. Thus the third term can be rewritten as

∞∑
n=0

nanx
n/2−5/2 =

∞∑
n=1

nanx
n/2−5/2 =

∞∑
m=0

(m+ 1)am+1x
m/2−2 =

∞∑
n=0

(n+ 1)an+1x
n/2−2, (22)

where we renamed m→ n in the last transition. Now the coefficients of xn/2−2 can be compared, giving

n

2

(n
2
− 1
)
an +

3

4
nan + (n+ 1)an+1 −

5

64
an = 0. (23)

Solving for an+1 gives

an+1 =
5
64 −

n
2

(
n
2 − 1

)
− 3

4n

n+ 1
an (n = 0, 1, 2, . . .) (24)

Starting from a0 = 1, all coefficients an can be obtained from this recursion relation.1

(d) Since x =∞ is a regular singular point, we use the Frobenius method to analyze the solutions of
the corresponding ODE (2) about t = 1/x = 0. It will be useful to consider the ODE on the form

d2Y

dt2
+
p(t)

t

dY

dt
+
q(t)

t2
Y = 0, (27)

where p(t) and q(t) are analytic functions at t = 0. Seeking a solution on Frobenius series form, i.e.

Y (t) = tν
∞∑
n=0

bnt
n (28)

leads to the so-called indicial equation for ν:

ν2 + (p0 − 1)ν + q0 = 0, (29)

where the zeroth-order coefficients p0 and q0 in the Taylor series for p(t) and q(t) can be read off by
comparing (2) and (27). This gives

p0 = 7/4, q0 = 0, (30)

so the indicial equation becomes
ν(ν + 3/4) = 0, (31)

which has solutions
ν1 = 0, ν2 = −3/4. (32)

Since ν1 − ν2 is not an integer, both the linearly independent solutions will be on Frobenius series form.
The leading behaviour is given by the first term tν in each solution, so the possible leading behaviours
are d1t

0 = d1 and d2t
−3/4 (t→ 0), i.e. d1 and d2x

3/4 (x→∞), where d1 and d2 are arbitrary constants.

1With a bit more work, a more explicit result could be obtained by first factorizing the numerator, giving

an+1 = −
1

4

(n− 1/4)(n + 5/4)

n + 1
an, (25)

and then using Γ(1 + w) = wΓ(w) to derive

an = (−1)n
Γ(n− 1/4)Γ(n + 5/4)

4nn!Γ(−1/4)Γ(5/4)
. (26)
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Problem 2

(a) We first rewrite the integral as∫ 2

0

dt cos[x(t2 − t)] = Re

{∫ 2

0

dt eix(t2−2t)

}
. (33)

The integral inside curly brackets is a Fourier integral
∫ b
a
dt f(t) exp(ixψ(t)) ≡ I(x) with f(t) = 1 and

ψ(t) = t2 − 2t. From ψ′(t) = 2(t − 1) it follows that ψ′(t) = 0 at the point t = 1, which is part of the
integration interval and is therefore a stationary point of the integral. Therefore we can find the leading
behaviour as x → +∞ from the method of stationary phase. This gives that the Fourier integral
I(x) with a single stationary point at the left endpoint t = a has leading behaviour2

I(x) ∼ f(a)eixψ(a)±iπ/(2p)
(

p!

x|ψ(p)(a)|

)1/p
Γ(1/p)

p
(x→ +∞) (34)

Here ψ(p)(a) is the lowest-order nonzero derivative at the stationary point, with ± being its sign. In our
integral the stationary point is not an endpoint but an interior point. Since our integrand is symmetric
around the stationary point t = 1, this just doubles the result. We have ψ′′(t) = 2, so p = 2 and the sign
is +. Also using ψ(1) = −1, f(1) = 1, and Γ(1/2) =

√
π, we find that the leading behaviour is

2 Re

{
e−ix+iπ/4

(
2!

x · 2

)1/2 √
π

2

}
=

√
π

x
cos
(
x− π

4

)
(x→ +∞) (35)

(b) Although the integral formally can be written as a Laplace integral
∫ b
a
f(t)exφ(t), Laplace’s method

cannot be used directly since f(t) = e−1/t2 vanishes exponentially fast at t = 0 where the function
φ(t) = −t has its maximum. Instead we must treat this as an integral with a movable (i.e. x-dependent)
maximum. Thus we consider the full integrand exp(Φ(t)) with Φ(t) ≡ −xt − 1/t2. Since Φ(t) → −∞
both for t→ 0 and for t→∞, it must have a maximum somewhere inbetween, which can be found from

0 = Φ′(t) = −x+ 2/t3 ⇒ t =

(
2

x

)1/3

≡ t0. (36)

We can then find the leading behaviour by expanding Φ(t) to second order around its maximum t0,
i.e. writing Φ(t) ≈ Φ(t0) + 1

2Φ′′(t0)(t− t0)2, and extending the integration limits to ±∞, which gives a
Gaussian integral. We find

Φ(t0) = −t0(x+ t−3
0 ) = −

(
2

x

)1/3

x(1 + 1/2) = −3
(x

2

)2/3

, (37)

Φ′′(t) = −6t−4 ⇒ Φ′′(t0) = −6
(x

2

)4/3

. (38)

Thus the leading behaviour of our integral becomes

exp(Φ(t0))

∫ ∞
−∞

d(t− t0) exp

(
−1

2
|Φ′′(t0)|(t− t0)2

)
= exp(Φ(t0))

√
2π

|Φ′′(t0)|

=

√
π

3

(x
2

)−2/3

exp

(
−3
(x

2

)2/3
)
. (39)

(Here we used the Gaussian integral formula
∫∞
−∞ du exp(− 1

2 |a|u
2) =

√
2π/|a|.) The same result would

have been obtained by first changing integration variable to s via t = st0, which transforms the movable
maximum in t to a fixed maximum at s = 1, and then proceeding with Laplace’s method as usual.

2BO, Eq. (6.5.12).

4



(c) When applicable, using Watson’s lemma is probably the simplest way to find the full asymp-
totic expansion. Motivated by this, we change integration variable to s = sinh(2t). This gives ds =
2 cosh(2t)dt = 2

√
1 + s2dt, where we used cosh2 u − sinh2 u = 1 and coshu > 0. This transforms the

integral to
1

2

∫ ∞
0

ds f(s)e−xs with f(s) =
1√

1 + s2
. (40)

The function f(s) has a Taylor series expansion around s = 0 given by

f(s) =

∞∑
k=0

Γ(k + 1/2)

Γ(k + 1)Γ(1/2)
(−1)ks2k. (41)

We give two derivations of (41).

1. It is convenient to define g(v) ≡ (1 + v)−1/2 so that f(s) = g(v) with v = s2. One finds

g′(v) = (−1/2)(1 + v)−3/2 ⇒ g′(0) = − 1

21
, (42)

g′′(v) = (−1/2)(−3/2)(1 + v)−5/2 ⇒ g′′(0) = (−1)2 1 · 3
22

, (43)

g′′′(v) = (−1/2)(−3/2)(−5/2)(1 + v)−7/2 ⇒ g′′′(0) = (−1)3 1 · 3 · 5
23

, (44)

etc. The pattern is clear, giving

g(k)(0) = (−1)k
1 · 3 · 5 · · · (2k − 1)

2k
= (−1)k

Γ(k + 1/2)

Γ(1/2)
, (45)

where the last transition can be shown3 by repeated use of Γ(w + 1) = wΓ(w). Eq. (41) now
follows from Taylor’s theorem: g(v) =

∑∞
k=0

1
k!g

(k)(0)vk.

2. Use the binomial theorem (1 + v)r =
∑∞
k=0

(
r
k

)
vk with r = −1/2 and v = s2. Since in our case r

is a fraction, the factorials in the binomial coefficient
(
r
k

)
= r!

k!(r−k)! should be understood in terms

of the Γ function via n! = Γ(n+ 1). This gives

f(s) =

∞∑
k=0

Γ(1/2)

Γ(k + 1)Γ(−k + 1/2)
s2k. (46)

Here the sign of Γ(−k + 1/2) will oscillate with k. To make this oscillation explicit we use the
relation Γ(a)Γ(1− a) = π/ sin(πa) given in the problem text, with a = −k + 1/2, to write

Γ(−k + 1/2) =
π

sin[π(1/2− k)]

1

Γ(k + 1/2)
=

(Γ(1/2))2

(−1)kΓ(k + 1/2)
, (47)

where we also used Γ(1/2) =
√
π and sin(π/2 − πk) = cos(πk) = (−1)k. Inserting (47) into (46)

gives (41).

The asymptotic expansion can now be obtained from Watson’s lemma, which involves making two
approximations that can be shown to only introduce exponentially small errors: (i) reduce the upper
integration limit to a value ε > 0 small enough that the Taylor series for f(s) is valid, (ii) extend the
integration limit from ε up to ∞, to enable the evaluation of the remaining integral:∫ ∞

0

ds s2ke−xs
t=xs
= x−(2k+1)

∫ ∞
0

dt t2ke−t = x−(2k+1)Γ(2k + 1). (48)

3This result was derived on p. 15 in the lecture notes on the method of steepest descent.
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(d) Denote the terms in the asymptotic expansion by fk. The rule for the optimal asymptotic approxi-
mation is to truncate the series such that the first omitted term has the smallest magnitude of all terms.
Based on the expression for fk and the typical behaviour of the terms of an asymptotic series, we expect
that, at least for sufficiently large x, |fk| will first decrease with k until reaching a minimum at k = k0,
and then increase without bound for larger k. Correspondingly, we expect |fk+1/fk| to increase with
k from a starting value below 1. Thus the minimum k0 of fk can be estimated from where |fk+1/fk|
crosses 1.4 Thus we consider∣∣∣∣fk+1

fk

∣∣∣∣ =

Γ(2(k+1)+1)Γ(k+1+1/2)
Γ(k+1+1)

Γ(2k+1)Γ(k+1/2)
Γ(k+1)

· x
−2(k+1)

x−2k
=

Γ(2k + 3)

Γ(2k + 1)
· Γ(k + 3/2)

Γ(k + 1/2)
· Γ(k + 1)

Γ(k + 2)
· x−2

= (2k + 2)(2k + 1) · (k + 1/2) · 1

k + 1
· x−2, (49)

where we used Γ(w+ 1) = wΓ(w) in the last transition to simplify the ratios of Γ functions. Next, as k0

will be large for x large, we may neglect the small additive constants in each of the k-dependent factors.
This gives ∣∣∣∣fk+1

fk

∣∣∣∣ ≈ (2k)(2k)k

k
x−2 =

4k2

x2
. (50)

Setting this equal to 1 gives

k0 ≈
x

2
. (51)

Problem 3

(a) For x ≤ 0 the potential V (x) = ∞, so the wavefunction y(x) must vanish. Thus, in particular,
y(0) = 0. Therefore, since the wavefunction y(x) should be continuous, the approximation for y(x) for
x > 0 must approach 0 smoothly as x → 0. The calculation for the problem with one simple turning
point gives the following WKB approximation for y(x) to the left of the turning point xT :5

yWKB(x) ∼ 2C[−Q(x)]−1/4 sin

[
1

ε

∫ xT

x

dt
√
−Q(t) +

π

4

]
(52)

where C is a normalization constant. Since for our V (x), the function Q(x) = V (x) − E does not go
to zero as x approaches 0 from the right, the approximation (52) is valid arbitrarily close to x = 0. It
follows that we should impose the condition yWKB(0) = 0. This can only be satisfied if the sine function
in (52) vanishes for x = 0, i.e. if

1

ε

∫ xT

0

dt
√
−Q(t) +

π

4
= mπ ⇒ 1

ε

∫ xT

0

dt
√
−Q(t) =

(
m− 1

4

)
π, (53)

where m is an integer. Furthermore, as the integral is positive, m− 1/4 must be positive, so the possible
values of m are restricted to m = 1, 2, 3, . . .. Since the problem text asks for a labeling of the eigenvalues
starting from quantum number 0, we define n = m− 1, which gives the eigenvalue condition

1

ε

∫ xT

0

dt
√
−Q(t) =

(
n+

3

4

)
π (n = 0, 1, 2, . . .) (54)

(b) The Schrödinger equation for a one-dimensional harmonic oscillator with mass m and angular fre-
quency ω is

− h̄2

2m

d2

dx̃2
ψ(x̃) +

1

2
mω2x̃2ψ(x̃) = Ẽψ(x̃) (55)

4This is technically easier than finding the minimum of fk from dfk/dk = 0, since that would require invoking the
asymptotic (Stirling) approximation for the Γ functions with a large argument.

5This result was derived in the lecture notes, where the turning point was called x2; see p. 8 in the file ”WKB theory
3”. The same result can also be found in Eq. (10.4.13c) in BO, (there the turning point was taken to be at xT = 0).
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where x̃ is the physical position (of dimension length) and Ẽ is the physical energy (of dimension energy).
As shown in detail in the lecture notes,6 this Schrödinger equation can be rewritten as

y′′(x) =

(
1

4
x2 − E

)
y(x) (56)

where x and E are dimensionless variables given by E = Ẽ/(h̄ω) and x = x̃/`, where ` is the length scale
` =

√
h̄/(2mω). This derivation is clearly also valid for x > 0 for the potential V (x) considered here. It

follows that ε = 1, f(x) = x2/4, and xT = 2
√
E. Inserting this into the eigenvalue condition (54) gives∫ 2

√
E

0

dt
√
E − x2/4 = (n+ 3/4)π. (57)

The integral equals Eπ/2.7 Thus

En = 2n+
3

2
⇒ Ẽn = h̄ω

(
2n+

3

2

)
(n = 0, 1, 2, . . .) (58)

Comments:

• The analysis here is based on the physical-optics approximation. This approximation is valid for
(i) ε→ 0 with E fixed, or for (ii) E →∞ (i.e. n→∞) with ε fixed; see BO p. 521. Since ε = 1 in
our application here, the condition (i) is obviously not satisfied, so we would in general expect the
analysis to be valid only as n→∞. However, the prediction (58) for the eigenvalues En turns out
to be correct for all n = 0, 1, 2, . . ..

• The result (58) can be understood from the perspective of the standard one-dimensional harmonic
oscillator problem. To avoid confusion with the quantum number n, let the quantum number for
the standard harmonic oscillator be N = 0, 1, 2, . . ., so that its eigenvalues are EN = h̄ω(N + 1/2)
and the associated eigenfunctions are yN (x). Recall that the eigenfunctions for odd N , i.e.
N = 1, 3, 5, . . ., are odd in x and thus satisfy yN (0) = 0. Thus for x > 0 these will be exact
eigenfunctions also for the potential V (x) studied here. So EN = N + 1/2 with N restricted
to N = 1, 3, 5, . . . are eigenvalues of V (x). Relabeling by defining n via N = 2n + 1, the new la-
bel n runs over n = 0, 1, 2, . . . with associated energy (2n+1)+1/2 = 2n+3/2, consistent with (58).

Problem 4

(a) The solution of this problem involves a multiple-scale analysis. (We take y to be real, as in the
other examples of multiple-scale analysis we have discussed.) From y(t) ∼ Y0(t, τ) + εY1(t, τ) + . . . with
τ = εt we get

y′(t) =
dy

dt
∼ ∂Y0

∂t
+ ε

(
∂Y0

∂τ
+
∂Y1

∂t

)
, (59)

y′′(t) =
d2y

dt2
∼ ∂2Y0

∂t2
+ ε

(
2
∂2Y0

∂τ∂t
+
∂2Y1

∂t2

)
. (60)

Inserting into the ODE and comparing coefficients of equal powers of ε gives

O(ε0) :
∂2Y0

∂t2
+ Y0 = 0, (61)

O(ε1) :
∂2Y1

∂t2
+ Y1 = −2

∂2Y0

∂τ∂t
− Y 2

0

∂Y0

∂t
. (62)

The general real solution to (61) can be written (here ∗ denotes the complex conjugate)

Y0(t, τ) = A(τ)eit +A∗(τ)e−it (63)

6See p. 12-13 in the file ”WKB theory 3”.
7See e.g. the almost identical calculation in the lecture notes; p. 14 in the file ”WKB theory 3”.
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where the function A(τ) remains to be determined. It follows from (63) that

∂Y0

∂t
= i(Aeit −A∗e−it), (64)

∂2Y0

∂τ∂t
= i

(
dA

dτ
eit − dA∗

dτ
e−it

)
. (65)

Inserting these expressions into the rhs of (62), the problematic terms are the secular terms, which
involve the t-dependence e±it. To prevent their appearance one sets their coefficients to 0, which gives
the following ODE for A(τ):

dA

dτ
= −1

2
A2A∗. (66)

(b) To solve this ODE we write A(τ) on polar form, i.e. A(τ) = R(τ)eiθ(τ) with R and θ real with R ≥ 0.
This gives, after cancelling the common factor eiθ(τ) and separating the real and imaginary parts, the
two ODEs

dR

dτ
= −1

2
R3,

dθ

dτ
= 0, (67)

whose solutions are

R(τ) =
R(0)√

τR2(0) + 1
, θ(τ) = θ(0). (68)

Thus

Y0(t, τ) = 2R(τ) cos(t+ θ(τ)) =
2R(0)√
τR2(0) + 1

cos(t+ θ(0)). (69)

The boundary condition y(0) = 0 together with y ∼ Y0 gives Y0(0, 0) = 0, i.e.

cos(θ(0)) = 0. (70)

The boundary condition y′(0) = 1, together with y′ ∼ ∂Y0/∂t = −2R(τ) sin(t+θ(τ)), gives (∂Y0/∂t)(0, 0) =
1, i.e.

−2R(0) sin(θ(0)) = 1. (71)

Thus
θ(0) = −π/2 and R(0) = 1/2, (72)

giving

Y0(t, τ) =
sin t√

1 + εt/4
. (73)

This is the solution for y(t) to leading order in ε in the multi-scale expansion.
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