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The Norwegian University of Science and Technology
Department of Physics

Contact person:
Name: Jan Myrheim
Telephone: 900 75 172

Examination, course FY3403 Particle physics
Wednesday December 6, 2017

Time: 09:00–13:00

Grades made public: Saturday January 6, 2018

Allowed to use: All calculators, mathematical and physical tables,
including the Particle physics booklet.

Some constants are given at the end of this problem set.
All subproblems are given the same weight in the grading.

Problem 1:

Neutral K mesons decay mostly to two π mesons, either π0π0 or π+π−. Even though isospin
is not conserved in the decay, it makes sense to ask what is the total isospin of the two pions.
We consider the decay in the rest frame of the K meson.

a) We know that the orbital angular momentum of the two pions must be ` = 0. Why?

We also know that the total isospin must be either I = 0, I = 1, or I = 2. Why?

b) For simplicity we write, for example, | + 0〉 for a state of two pions where particle 1 is a
π+ and particle 2 is a π0. States like |+ 0〉 ± |0+〉 are symmetric or antisymmetric under
interchange of particles 1 and 2.

How many states can we make that are symmetric, and how many that are antisymmetric?

How many states have isospin 0, 1, or 2?

Which isospin states are symmetric, and which are antisymmetric?

Use the table of Clebsch–Gordan coefficients (page 6 below) to answer this question, if
you do not find the answer simply by counting.

c) The two pions from the decay of a neutral K meson can not have total isospin I = 1.
Why not?

d) An approximate selection rule for hadronic decays by the weak interaction says that if
the strangeness changes, then the total isospin changes by ∆I = ±1/2. Explain how this
selection rule, together with other information, determines uniquely the total isospin of
the two pions from the decay of a neutral K meson.

What prediction does this give for the branching ratio between the two charge states π0π0

and π+π−?

The experimental result is 30.69 % for π0π0 and 69.20 % for π+π−, which in total over
many decays gives nearly equal numbers of π0, π+, and π−. Comment?
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Problem 2:

Assume that a K0 or K
0

is at rest. The following analysis is much simplified if we assume that
the CP symmetry is exact. In this approximation, which is less than one percent wrong, the
short lived and long lived neutral K mesons, KS and KL, are eigenstates of CP ,

|KS〉 = |K1〉 =
1√
2

(|K0〉 − |K0〉) ,

|KL〉 = |K2〉 =
1√
2

(|K0〉+ |K0〉) .

a) We define the charge conjugation operator C such that

C|K0〉 = |K0〉 , C|K0〉 = |K0〉 .

What are the eigenvalues of CP in the two states |K1〉 and |K2〉?

b) Assuming CP conservation we would expect the states KS = K1 and KL = K2 to have
very different lifetimes. Explain why.

A K0 or K
0

is usually produced in a strong interaction process with a definite strangeness S,

that is, either as a K0 or a K
0
. Assume that a K0 (with S = +1) is produced at t = 0, that is,

the state of the particle at time t = 0 is

|ψ(0)〉 = |K0〉 =
1√
2

(|K1〉+ |K2〉) .

Still assuming CP conservation, the state at a later time t is

|ψ(t)〉 = C(t)

(
e
−
(
imS+

ΓS
2

)
t |K1〉+ e

−
(
imL+

ΓL
2

)
t |K2〉

)
,

where C(t) is a time dependent normalization factor. Here mS and mL are the masses of KS

and KL, whereas ΓS = 1/τS and ΓL = 1/τL are the inverse lifetimes. We use natural units with
~ = 1 and c = 1.

c) Write the state |ψ(t)〉 as a linear combination of |K0〉 and |K0〉 .

We see that the amplitudes of |K0〉 and |K0〉 oscillate, this means that the strangeness
of the particle oscillates.

Assuming that we observe the particle at time t as either a K0 or a K
0
, what are the

relative probabilities of the two alternatives K0 or K
0
?

These relative probabilities go to constant limits when t→∞.

What are the limits, always assuming CP conservation?
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d) One way to observe the particle as either a K0 or a K
0

is to observe a semileptonic
decay and assume that the selection rule ∆S = ∆Q holds. This is because the two

processes K0 → π−e+νe and K
0 → π+e−νe have ∆S = ∆Q and are allowed, whereas

K0 → π+e−νe and K
0 → π−e+νe have ∆S = −∆Q and are forbidden. Hence we

conclude that the decaying particle was a K0 if we observe π−e+, or else a K
0

if we
observe π+e−.

The selection rule ∆S = ∆Q for strangeness changing semileptonic decays says that the
change in strangeness equals the change in electric charge of the hadrons. Explain this
selection rule by drawing Feynman diagrams for the allowed decays K0 → π−e+νe and

K
0 → π+e−νe .

e) How are the decay rates for K0 → π−e+νe and K
0 → π+e−νe related, assuming that the

CP invariance is exact? Explain your reasoning.

This means that the probabilities for observing π−e+ or π+e− are directly related to the

probabilities that the decaying particle is a K0 or a K
0
.

f) What we observe in our experiment, where we produce a K0 at t = 0, are time dependent
decay rates

Γ+(t) = Γ(ψ(t)→ π−e+νe) and Γ−(t) = Γ(ψ(t)→ π+e−νe) .

We write Γ+ for the rate to the final state with a positron, and Γ− for the rate to the
final state with an electron.

From these rates we may define a time dependent asymmetry parameter

δ(t) =
Γ+(t)− Γ−(t)

Γ+(t) + Γ−(t)
.

What is δ(0) when we start with a K0 at t = 0?

Show that the time dependence is, in the approximations we have used,

δ(t) =
cos(∆mt)

cosh(γ t)
,

where ∆m = mL − mS and γ = (ΓS − ΓL)/2 . Remember that we have assumed CP
invariance.

g) The figure below (next page) shows experimental results for the asymmetry δ(t), from an
eksperiment at CERN (Gjesdal et al., Physics Letters B52, 113 (1974)). The time axis
goes from 0 to 2.5 ns.

Use the figure to estimate approximate values for the mass difference ∆m and the rates
γ and ΓS .

Remember that we have used natural units with ~ = 1 and c = 1. Hence we need to insert
appropriate factors of ~ and c in order to convert ∆m to units of MeV/c2.

Does this experiment give any information about the sign of ∆m?

What is the ratio |∆m|/mK , where mK is the mass of a neutral K meson? Comment?
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h) In what way does the figure show that CP invariance is broken in the semileptonic decay
of neutral K mesons?

From the figure, what is the approximate size of the CP breaking?
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Some (potentially) useful constants:
The speed of light in vacuum c = 299 792 458 m/s
The permeability of vacuum µ0 = 4π × 10−7 N/A2

The permittivity of vacuum ε0 = 1/(µ0c
2) = 8.854 817 187× 10−12 F/m

The reduced Planck’s constant ~ = 1.054 571 6× 10−34 J s
= 6.582 119 0× 10−22 MeV s

~c = 197.732 70 MeV fm
The elementary charge e = 1.602 176 5× 10−19 C
The electron mass me = 9.109 382× 10−31 kg = 0.510 998 9 MeV/c2

The proton mass mp = 1.672 622× 10−27 kg = 938.272 0 MeV/c2

The neutron mass mn = 1.674 927× 10−27 kg = 939.565 4 MeV/c2

The deuteron mass md = 3.343 583× 10−27 kg = 1 875.612 8 MeV/c2

Particle data (showing quark content):
m = mass in MeV/c2, S = strangeness,
I = isospin, G = G-parity, J = spin, P = parity,
C = charge conjugation symmetry for a neutral particle.

Mesons m S IG(JPC) Mesons m S IG(JPC)
or I(JP ) or I(JP )

π0 (uu− dd) 135.0 1−(0−+) π± (ud, du) 139.6 1−(0−)
K0 (ds) 497.6 1 1

2(0−) K+ (us) 493.7 1 1
2(0−)

K
0

(sd) 497.6 −1 1
2(0−) K− (su) 493.7 −1 1

2(0−)

Baryons m S I(JP ) Baryons m S I(JP )

p (proton,uud) 938.3 1
2(12

+
) n (neutron,udd) 939.6 1

2(12
+

)

d (deuteron, pn) 1875.6 0(1+) ∆ (uuu, uud, udd, ddd) 1232 3
2(32

+
)

Λ0 (uds) 1115.7 −1 0(12
+

) Σ0 (uds) 1192.6 −1 1(12
+

)

Σ+ (uus) 1189.4 −1 1(12
+

) Σ− (dds) 1197.4 −1 1(12
+

)
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34. Clebsch-Gordan coefficients 010001-1

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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√
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.


