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Allowed tools: mathematial tables, poket alulator

Some formulas and data an be found on p. 2�.

1. Chirality vs. heliity.

a.) Heliity for a free, massive partile is (3 pts)

� frame dependent

� onserved

b.) Chirality for a free, massive partile is (3 pts)

� frame dependent

� onserved

2. SU(2)

L

.

Consider one generation of quarks before spontanous symmetry breaking, i.e. when they

are massless.

a.) How do the quarks transform under SU(2)

L

transformations? (5 pts)

b.) Show that the Lagrangian desribing these �elds (without interations) is invariant

under global, but not under loal SU(2)

L

transformations. (6 pts)

a.) We have to distinguish left- and right-hiral �elds,

 

L

= P

L

 =

1

2

(1� 

5

) and  

R

= P

R

 =

1

2

(1 + 

5

) :

Left-hiral quark �elds live in the fundamental representation of SU(2)

L

, i.e. Q = (u; d)

T

L

, while

right-hiral �elds are singlets, i.e. u

R

and d

R

. Singlets are invariant under SU(2)

L

transformation,

while the doublets tranform as

Q! Q

0

= exp

�

i� � �

2

�

Q

where � = f�

1

; �

2

; �

3

g parameterise the transformation, and the generators T = �=2 are given

by the Pauli matries.

b.) Sine the right-hiral �elds are singlets, we have to onsider only the left-hiral �elds. Their

Lagrangian

L = i

�

Q�=Q

transform under a global transformation as

L ! L

0

= i

�

QU

y

�=UQ = i

�

Q�=Q = L ;
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sine U

y

U = 1 and the parameters � are onstant. In ase of a loal transformation, the derivative

produe an additional term,

L ! L + i

�

Q

�

U

y

(�

�

U)Q

whih breaks the loal invariane.

3. Polarization sum for a massive spin-1 partile.

a.) Write down a possible set of polarisation vetors "

(r)

�

, r = 1; : : : ; n for a massive spin-1

partile. (4 pts)

b.) Derive the ompleteness relation for a massive spin-1 partile, (6 pts)

n

X

r=1

"

(r)

�

"

(r)�

�

= ��

��

+ k

�

k

�

=m

2

:

A massive vetor �eld A

�

has four omponents in d = 4 spae-time dimensions, while it has only

2s+ 1 = 3 independent spin omponents. Correspondingly, a four-vetor A

�

transforms under a

rotation as (A

0

;A), i.e. it ontains a salar and a three-vetor. Thus the physial omponents of

a massive spin-1 �eld in its rest-frame are given by (0;A). We an hoose the three polarisation

vetors in the rest frame e.g. as the Cartesian unit vetors, "

i

/ e

i

. They satisfy "

(r)

�

"

�

(

r)

= �1

and, sine in the rest-frame k

�

= (m;0) also k

�

"

(r)

�

= 0. Next we evaluate

X

r

"

�(r)

"

�(r)

=

0

B

B

�

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

A

(1)

Next we have to express this using the relevant tensors, here �

��

and k

�

k

�

=m

2

, where we divided

by m

2

to get the right dimension. This gives for k

�

= (m;0)

X

r

"

�(r)

"

�(r)

=

0

B

B

�

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

A

= ��

��

+ k

�

k

�

=m

2

(2)

If we are not able to guess this, we an derive it formally: We set

X

r

"

�(r)

"

�(r)

= A�

��

+Bk

�

k

�

=m

2

:

Asking then k

�

"

�(r)

= 0, gives

0 = Ak

�

+Bk

�

or A = �B. The normalisation ondition requires A = �1.

4. W deays.

Calulate the squared matrix element j

�

Mj

2

for the deay rate of aW boson into a massless
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fermion pair, summed over �nal state spins and averaged over intial ones. Express j

�

Mj

2

as funtion of invariant salar produts, f(p

1

� p

2

; p

1

� k; : : :), where k; p

1

and p

2

are the

four-momenta of the three partiles. (16 pts)

The Feynman amplitude for this proess is

iM = �

ig

2

p

2

"

(r)

�

(k)[�u(p

2

)

�

(1� 

5

v(p

1

)℄ (3)

and thus

jMj

2

=

g

2

8

"

(r)

�

"

(r)

�

[�u(p

2

)

�

(1� 

5

)v(p

1

)℄[�u(p

2

)

�

(1� 

5

)v(p

1

)℄

�

: (4)

We determine [� � � ℄

�

= [� � � ℄

y

either diretly

[u(p

2

)

y



0



�

(1� 

5

)v(p

1

)℄

y

= [v(p

1

)

y

(1� 

5

)

�y



0

u(p

2

)℄ = [v(p

1

)

y

(1� 

5

)

0



�



0



0

u(p

2

)℄ (5)

= [v(p

1

)

y



0

(1 + 

5

)

�

u(p

2

)℄ = [�v(p

1

)

y



�

(1� 

5

)u(p

2

)℄ : (6)

or we use � � 

0

�

y



0

,



5

= 

0



5y



0

= 

0



5



0

= �

5

: (7)

Next we sum over the spins of the fermions, setting A

�

= 

�

(1� 

5

),

X

s

1

;s

2

[�u

a

(s

2

; p

2

)A

�

ab

v

b

(s

1

; p

1

)℄[�v

d

(s

1

; p

1

)

y

A

�

de

u

e

(s

2

; p

2

)℄ = (p=

2

)

ea

A

�

ab

(p=

1

)

bd

A

�

de

= tr[p=

2

A

�

p=

1

A

�

℄ (8)

We anti-ommute the right fator (1�

5

) to the left (or the left to the right), and use (1�

5

)

2

=

2(1� 

5

),

tr[p=

2



�

(1� 

5

)p=

1



�

(1� 

5

)℄ = 2 tr[p=

2



�

(1� 

5

)p=

1



�

℄ : (9)

The fator with 

5

will lead to term ontaining the ompletely anti-symmetri Levi-Civita tensor,

whih is ontrated with the symmetri fator "

(r)

�

"

(r)

�

. Thus this term vanishes. The remaining

term gives

tr[p=

2



�

(1� 

5

)p=

1



�

(1� 

5

)℄ = 2 tr[p=

2



�

p=

1



�

℄ = 8 tr[p

�

2

p

�

1

� (p

2

� p

1

)�

��

+ p

�

2

p

�

1

℄ (10)

We average next over the polarisations of the W ,

1

3

X

r

jMj

2

=

g

2

3

(��

��

+ k

�

k

�

=M

2

)[p

�

2

p

�

1

� (p

2

� p

1

)�

��

+ p

�

2

p

�

1

℄ (11)

=

g

2

3

[(p

2

� p

1

) + 2(k � p

1

)(k � p

2

)=M

2

℄ (12)

5. Neutrino sattering.

Let us assume that at the Galati Center a soure of high-energy neutrons exist. These

neutrons esape from the soure and produe neutrinos via beta-deay whih we aim to
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measure.

a.) Neglet neutrio masses and osillations. Draw the lowest order Feynman diagrams for

the interation of these neutrinos with matter (assumed to onsist of e

�

, u- and d-quarks).

(6 pts)

b.) In whih of the diagrams an the virtual partile be on mass-shell? Find the required

neutrino energy. (6 pts)

.) Estimate the maximal ross setion (in SI or gs units) using the Breit-Wigner formula.

(6 pts)

d.) Desribe qualitatively, how neutrino mixing and osillations would hange this piture

(maximal 100 words). (6 pts)

a.) s-hannel Glashow resonane ��

e

e

�

!W

�

! all, t-hannel CC ��

e

u! e

+

d and t-hannel NC

��

e

X ! ��

e

X with X = fe

�

; u; dg interations.

b.) The Mandelstam variables t and u are always negative, while s is positive. Thus only the

denominator in the propagator of the �rst diagram, / 1=(s �M

2

) an beome zero. In the lab

frame

s =M

2

= (p

1

+ p

2

)

2

= 0 + 2E

�

m

e

+m

2

e

or

E

�

=

M

2

�m

2

e

2m

e

'

M

2

2m

e

' 6� 10

15

eV

.) The prefator of Breit-Wigner formula (13) beomes

4�s

p

2

ms

(2s

r

+ 1)

(2s

1

+ 1)(2s

2

+ 1)

= 16�

3

2

= 24� (13)

where we use that only left-hiral neutrinos are produed. Thus

�(��

e

e

�

!W !

�

ff) = 24�

�(W ! ��

e

e

�

)�(W ! all)

(s�M

2

W

)

2

+ (M

W

�

W

)

2

(14)

=

24�

M

2

W

BR(W ! ��

e

e

�

)BR(all) (15)

where BR denotes the branhing ratio into the onsidered hannel. We inlude all �nal states,

and thus BR(W ! all) = 1. With BR(W ! ��

e

e

�

) = 10:5% it follows

�(��

e

e

�

!W !

�

ff) ' 24�

�

1

80:4

m

5:06� 10

13

�

2

0:105 ' 5� 10

�31

m

2

(16)

For omparison, Fig. 1 shows the ross setions for neutrino interations on eletron targets as

funtion of neutrino energy.
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Figure 1: At low energies, from largest to smallest ross setion, the proesses are (i) ��

e

e !

hadrons, (ii) �

�

e ! ��

e

, (iii) �

e

e ! �

e

e, (iv) ��

e

e ! ��

�

�, (v) ��

e

e ! ��

e

e, (vi) �

�

e ! �

�

e, (vii)

��

�

e! ��

�

e.

d.) The neutrino state �

e

reated in beta-deay is a superposition of mass eigenstates �

i

,

�

e

(0) = U

ei

�

i

= U

e1

�

1

(0) + U

e2

�

2

(0) + U

e3

�

3

(0)

The phase of the mass eigenstates will evolve as

�

i

(x) = �

i

(0) exp(ip

i

x) ' �

i

(0)e

i�

exp[�iEx=(2m

2

i

)℄

The last term implies that the states devlop an osillating phase di�erene as they propagate.

At detetion, we have to split �

i

(L) into avor states, �

i

(L) = U

�

i�

�

�

. Then j h�

�

j �

i

(L)ij

2

gives

the probability to observe avour alpha. As a result, the originally 100% pure �

e

beomes a

superposition of all three avors. In this ase, the importane of the Glashow resonane would

be thereby redued.

Feynman rules and useful formulas
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W±
µ

−

ig

2
√
2
γµ(1− γ5)

1

The gamma matries form a Cli�ord algebra,

f

�

; 

�

g = 2�

��

: (17)

The matrix



5

� 

5

� i

0



1



2



3

: (18)

satis�es (

5

)

y

= 

5

, (

5

)

2

= 1, and f

�

; 

5

g = 0.

� � 

0

�

y



0

: (19)

The trae of an odd number of 

�

matries vanishes, as well as

tr[

5

℄ = tr[

�



5

℄ = tr[

�



�



5

℄ = 0 : (20)

Non-zero traes are

tr[

�



�

℄ = 4�

��

and tr[a=b=℄ = 4a � b (21)

tr[a=b==d=℄ = 4[(a � b) ( � d)� 4(a � ) (b � d) + 4(a � d) (b � )℄ (22)

tr

�



5



�



�



�



�

�

= 4i"

����

(23)

Useful are also a=b=+ b=a= = 2a � b, a=a= = a

2

and the following ontrations,



�



�

= 4 ; 

�

a=

�

= �2a= ; 

�

a=b=

�

= 4a � b ; 

�

a=b==

�

= �2=b=a= : (24)

Completeness relations

X

s

u

a

(p; s)�u

b

(p; s) = (p=+m)

ab

; (25)

X

s

v

a

(p; s)�v

b

(p; s) = (p=�m)

ab

: (26)

Deay rate

d�

fi

=

1

2E

i

jM

fi

j

2

d�

(n)

: (27)

The two partile phase spae d�

(2)

in the rest frame of the deaying partile is

d�

(2)

=

1

16�

2

jp

0

ms

j

M

d
 ; (28)
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Breit-Wigner formula

�(12! R! 34) =

4�s

p

2

ms

(2s

r

+ 1)

(2s

1

+ 1)(2s

2

+ 1)

�(R! 12)�(R! 34)

(s�M

2

R

)

2

+ (M

R

�

R

)

2

(29)

where �

R

is the total deay width of the resonane with mass m

R

and spin s

R

, while s

1

and s

2

are the spins of the partiles in the initial state.

L =

1

2

(�

�

�)(�

�

�)�

1

2

m

2

�

�

2

+

�

 (i�= �m

 

) 

mass energy 1=length 1=time temperature

GeV 1:78�10

�24

g 1:60�10

�3

erg 5:06�10

13

m

�1

1:52�10

24

s

�1

1:16�10

13

K
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