NTNU Trondheim, Institutt for fysikk

Examination for F'Y3403 Particle Physics
Contact: Jan Myrheim, tel. 900 75 172

Allowed tools: mathematical tables, pocket calculator
Some formulas and data can be found on p. 2ff.

1. Chirality vs. helicity.

a.) Helicity for a free, massive particle is (3 pts)
(1 frame dependent

[J conserved

b.) Chirality for a free, massive particle is (3 pts)
0 frame dependent

[1 conserved

2. SU(2);.
Consider one generation of quarks before spontanous symmetry breaking, i.e. when they
are massless.

a.) How do the quarks transform under SU(2);, transformations? (5 pts)
b.) Show that the Lagrangian describing these fields (without interactions) is invariant
under global, but not under local SU(2), transformations. (6 pts)

a.) We have to distinguish left- and right-chiral fields,

Yr=Pub= (1) and = Pav = 2 (1+ 7).

Left-chiral quark fields live in the fundamental representation of SU(2);, i.e. Q = (u,d)t, while
right-chiral fields are singlets, i.e. ug and dg. Singlets are invariant under SU(2), transformation,
while the doublets tranform as

Q@ = { 7o

where e = {1, a9, a3} parameterise the transformation, and the generators T' = 7/2 are given
by the Pauli matrices.

b.) Since the right-chiral fields are singlets, we have to consider only the left-chiral fields. Their
Lagrangian

Z =iQ9Q

transform under a global transformation as

L - 2 =iQUTIUQ =iQdQ = £,
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since UTU = 1 and the parameters o are constant. In case of a local transformation, the derivative
produce an additional term,

L — L +iQy'UN(0,U)Q

which breaks the local invariance.

3. Polarization sum for a massive spin-1 particle.

a.) Write down a possible set of polarisation vectors 5,(}"), r=1,...,n for a massive spin-1
particle. (4 pts)
b.) Derive the completeness relation for a massive spin-1 particle, (6 pts)

Zeg)a,(f)* =~ + l{:#lz,,/m2 .
r=1

A massive vector field A* has four components in d = 4 space-time dimensions, while it has only
2s + 1 = 3 independent spin components. Correspondingly, a four-vector A* transforms under a
rotation as (A%, A), i.e. it contains a scalar and a three-vector. Thus the physical components of
a massive spin-1 field in its rest-frame are given by (0, A). We can choose the three polarisation
vectors in the rest frame e.g. as the Cartesian unit vectors, €; & e;. They satisfy 61(}")5“(’“) =-1

and, since in the rest-frame k* = (m, 0) also kﬂsg) = 0. Next we evaluate

0000
ury vy _ | 01 00

z;gg 0010 (1)
000 1

Next we have to express this using the relevant tensors, here n** and k*k” /m?, where we divided
by m? to get the right dimension. This gives for k* = (m, 0)

= —n" + KMEY fm? (2)

el =

o O O O
o = O O

0
0
0
1

O O = O

If we are not able to guess this, we can derive it formally: We set

Z gh(r) gv(r) = At + BEFEY /m?.

Asking then kusl‘(r) =0, gives
0 = Ak” + BE"

or A = —B. The normalisation condition requires A = —1.

4. W decays.
Calculate the squared matrix element |M|? for the decay rate of a W boson into a massless
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fermion pair, summed over final state spins and averaged over intial ones. Express |M]|?
as function of invariant scalar products, f(p; - p2,p1 - k,...), where k,p; and p, are the
four-momenta of the three particles. (16 pts)

The Feynman amplitude for this process is

iM = —2356£">(k)[u(p2)7u(1 = 7"v(p1)] )
and thus 9
IMP? = SeD el (o) (L = 7" )olpn)][alpo)y” (1 = 1 )o(p1)]" (4)

We determine [---]* = [---] either directly

[u(p2) 7%y (1 = ¥*)w(p1)]" = [v(p1)T(1 = ¥*)7" 17 u(p2)] = [v(p1)T(1 = ¥°)7*+"7°7 u(p2)]  (5)
= [o(p1) Y (1 +7°)y" u(p2)] = [8(p1) ™" (1 = ¥*)u(p2)] - (6)

or we use I = 4'T'f40,
7 =" =170 = . (7)
Next we sum over the spins of the fermions, setting A* = v#(1 — %),
Z (G (52, p2) AY (51, 01))[Ba(51,01) At (52, 02)] = (Bo)ea ALy (B1)baAle = tr[py APp AY]  (8)

S$1,52

We anti-commute the right factor (1 —+°) to the left (or the left to the right), and use (1 —+°)2 =
2(1 - 75)7

tr[pyy* (1 — ")y (1 = 7°)] = 2ty (1 — v°)pyv"] - (9)

The factor with ° will lead to term containing the completely anti-symmetric Levi-Civita tensor,

(r) (r)

which is contracted with the symmetric factor €, ’e, *. Thus this term vanishes. The remaining
term gives

tr[pyy" (1 — ")y (1 = 7°)] = 2tx[ppypiv"] = 8tx[phpy — (p2 - p)n™ +pipl]  (10)

We average next over the polarisations of the W,

2

5 SO IMP = L (o + b /M) DAY — (02 9™ + 5] (1)
2

= L {(p2- p1) +2(k - p1) (k- po) /M) (12)

5. Neutrino scattering.
Let us assume that at the Galactic Center a source of high-energy neutrons exist. These
neutrons escape from the source and produce neutrinos via beta-decay which we aim to
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measure.
a.) Neglect neutrio masses and oscillations. Draw the lowest order Feynman diagrams for
the interaction of these neutrinos with matter (assumed to consist of e, u- and d-quarks).

(6 pts)

b.) In which of the diagrams can the virtual particle be on mass-shell? Find the required
neutrino energy. (6 pts)
c.) Estimate the maximal cross section (in SI or cgs units) using the Breit-Wigner formula.
(6 pts)

d.) Describe qualitatively, how neutrino mixing and oscillations would change this picture
(maximal 100 words). (6 pts)

a.) s-channel Glashow resonance v.e~ — W~ — all, t-channel CC ,u — e*d and t-channel NC
Ve X — 1. X with X = {e™,u,d} interactions.

b.) The Mandelstam variables ¢ and u are always negative, while s is positive. Thus only the
denominator in the propagator of the first diagram, oc 1/(s — M?) can become zero. In the lab
frame
s=M?= (p1 +p2)* =0+ 2E,m, +m?
or
M?—m?2  M?

FE, = ~ ~ 10
v S o 6 x 10" eV

c.) The prefactor of Breit-Wigner formula (13) becomes

4 2 1 3
- Csr D) e 3 _oan (13)
P2os (251 4+ 1)(2s9 + 1) 2

where we use that only left-chiral neutrinos are produced. Thus

T(W = Doe " )T(W — all)

o(Tee™ = W — ff) = 24n (s = M2+ (M T ? (14)
- 24_: BR(W — 7.e”)BR(all) (15)
MW

where BR denotes the branching ratio into the considered channel. We include all final states,
and thus BR(W — all) = 1. With BR(W — ee ) = 10.5% it follows

cm
80.4 5.06 x 1013

2
o(Vee” — W — ff) ~ 241 < ) 0.105 ~ 5 x 103! cm? (16)

For comparison, Fig. 1 shows the cross sections for neutrino interactions on electron targets as
function of neutrino energy.
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Figure 1: At low energies, from largest to smallest cross section, the processes are (i) ve.e —
hadrons, (ii) v,e = pre, (iil) vee = vee, (iv) Dee = Dyp, (V) Dee = Dee, (vi) ve — vye, (vii)
ve — vye.

d.) The neutrino state v, created in beta-decay is a superposition of mass eigenstates v;,
Ve(0) = Ueivi = Uer1(0) + Ueava(0) + Uesvs(0)
The phase of the mass eigenstates will evolve as
vi(x) = 13(0) exp(ipiz) ~ v;(0)e'? exp[—iExz/(2m?)]

The last term implies that the states devlop an oscillating phase difference as they propagate.
At detection, we have to split v;(L) into flavor states, v;(L) = U} vs. Then |{vy|v;(L))|? gives
the probability to observe flavour alpha. As a result, the originally 100% pure v, becomes a
superposition of all three flavors. In this case, the importance of the Glashow resonance would

be thereby reduced.

Feynman rules and useful formulas
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The gamma matrices form a Clifford algebra,

{77} =2 (17)

The matrix
=3 =iy (18)
satisfies (v°)7 =15, (v*)? =1, and {v*,~+°} = 0.

T =+T740. (19)

The trace of an odd number of v* matrices vanishes, as well as

tr[y°] = tr[y#4°] = tr[y#4"7°] = 0. (20)
Non-zero traces are
tr[y#~" | = 4" and  tr[¢gf] = 4a - b (21)
tr[dpid] = 4[(a-b) (c-d) —4(a-c) (b-d) +4(a-d) (b-c)] (22)
tr [V’ Ve8] = 4i€was (23)
Useful are also ¢ + f¢ = 2a - b, d¢ = a® and the following contractions,
Yy =4, Vv, = =24, VP, = 4da- b, VP, = 24Pk (24)
Completeness relations
> ua(p, 8)n(p, s) = (p+m)y, , (25)
Zva(pa 3)77(;(]9, 8) = (}6 - m)ab : (26)
Decay rate
_ L 2 g™
dl'y; = oF, |IMyi|” dd™ . (27)

The two particle phase space d®® in the rest frame of the decaying particle is

L [Pls]
de® — — Femsl 40 2
1602 M ’ (28)
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Breit-Wigner formula

4rs (25, + 1) I'(R — 12)['(R — 34)
Pems (251 4+ 1)(252 +1) (s — ME)? + (MgL'p)?

0(12— R — 34) = (29)

where I'p is the total decay width of the resonance with mass mpz and spin sg, while s;
and s, are the spins of the particles in the initial state.

L = (00)(06) — mid” + 0 — my)o

mass energy 1/length 1/time temperature
GeV | 1.78x1072" g | 1.60x 1073 erg | 5.06x 10" ecm=" | 1.52x10* s7 | 1.16 x 103K
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