NTNU Trondheim, Institutt for fysikk

Examination for FY3403 Parti
le Physi
s

Conta
t: Jan Myrheim, tel. 900 75 172

Allowed tools: mathematical tables, pocket calculator Some formulas and data can be found on p. 2ff.

1. Chirality vs. helicity.

- a.) Helicity for a free, massive particle is (3 pts)
- \Box frame dependent
- \Box conserved
- b.) Chirality for a free, massive particle is (3 pts)
- \Box frame dependent
- \Box conserved

2. $SU(2)_L$.

Consider one generation of quarks before spontanous symmetry breaking, i.e. when they are massless.

a.) How do the quarks transform under $SU(2)_L$ transformations? (5 pts) b.) Show that the Lagrangian describing these fields (without interactions) is invariant under global, but not under local $SU(2)_L$ transformations. (6 pts)

a.) We have to distinguish left- and right-chiral fields,

$$
\psi_L = P_L \psi = \frac{1}{2} (1 - \gamma^5) \psi
$$
 and $\psi_R = P_R \psi = \frac{1}{2} (1 + \gamma^5) \psi$.

Lett-chiral quark neigs live in the fundamental representation of $SU(2)_L,$ i.e. $Q=(u,a)_{\bar L},$ while right-chiral fields are singlets, i.e. u_R and d_R . Singlets are invariant under $SU(2)_L$ transformation, while the doublets tranform as

$$
Q \to Q' = \exp\left\{\frac{\mathrm{i}\alpha \cdot \tau}{2}\right\} Q
$$

where $\alpha = {\alpha_1, \alpha_2, \alpha_3}$ parameterise the transformation, and the generators $\mathbf{T} = \tau/2$ are given by the Pauli matri
es.

b.) Since the right-chiral fields are singlets, we have to consider only the left-chiral fields. Their Lagrangian

$$
\mathscr{L} = \mathrm{i} \bar{Q} \partial Q
$$

transform under a global transformation as

$$
\mathscr{L} \to \mathscr{L}' = \mathrm{i} \bar{Q} U^{\dagger} \partial U Q = \mathrm{i} \bar{Q} \partial Q = \mathscr{L},
$$

since $U^*U\equiv 1$ and the parameters $\boldsymbol{\alpha}$ are constant. In case of a local transformation, the derivative produ
e an additional term,

$$
\mathscr{L} \to \mathscr{L} + i \bar{Q} \gamma^{\mu} U^{\dagger} (\partial_{\mu} U) Q
$$

which breaks the local invariance.

3. Polarization sum for ^a massive spin-1 parti
le.

a.) Write down a possible set of polarisation vectors $\varepsilon_u^{\vee\prime}$, $r=1,\ldots,n$ for a massive spin-1 particular contracts that the contracts of the contr

b.) Derive the completeness relation for a massive spin-1 particle, (6 pts)

$$
\sum_{r=1}^n \varepsilon_{\mu}^{(r)} \varepsilon_{\nu}^{(r)*} = -\eta_{\mu\nu} + k_{\mu} k_{\nu} / m^2.
$$

A massive vector neig A^r has four components in $a = 4$ space-time dimensions, while it has only $2s+1=3$ independent spin components. Correspondingly, a four-vector A^{r} transforms under a rotation as (A^0, A) , i.e. it contains a scalar and a three-vector. Thus the physical components of a massive spin-1 field in its rest-frame are given by $(0, A)$. We can choose the three polarisation vectors in the rest frame e.g. as the Cartesian unit vectors, $\varepsilon_i \propto e_i$. They satisfy $\varepsilon_u^{(i)} \varepsilon^{\mu(r)} = -1$ and, since in the rest-frame $k^{\mu} = (m, 0)$ also $k_{\mu} \varepsilon_{\mu}^{\circ}{}' = 0$. Next we evaluate

$$
\sum_{r} \varepsilon^{\mu(r)} \varepsilon^{\nu(r)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$
 (1)

Next we have to express this using the relevant tensors, here η^{**} and $\kappa^{**}\kappa^{**}/m^*$, where we divided by m^2 to get the right dimension. This gives for $\kappa^2 = (m, 0)$

$$
\sum_{r} \varepsilon^{\mu(r)} \varepsilon^{\nu(r)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = -\eta^{\mu\nu} + k^{\mu}k^{\nu}/m^{2}
$$
(2)

If we are not able to guess this, we can derive it formally: We set

$$
\sum_{r} \varepsilon^{\mu(r)} \varepsilon^{\nu(r)} = A \eta^{\mu\nu} + B k^{\mu} k^{\nu} / m^2.
$$

Asking then $\kappa_{\mu} \varepsilon^{\mu}$ \vee = 0, gives

$$
0 = Ak^{\nu} + Bk^{\nu}
$$

or $A = -B$. The normalisation condition requires $A = -1$.

4. ^W de
ays.

Calculate the squared matrix element $|\mathcal{M}|$ for the decay rate of a W boson into a massless

page 2 of 5 pages

fermion pair, summed over final state spins and averaged over intial ones. Express $|\bar{\mathcal{M}}|^2$ as function of invariant scalar products, $f(p_1 \cdot p_2, p_1 \cdot k, \ldots)$, where k, p_1 and p_2 are the four-momenta of the three particles. (16 pts)

The Feynman amplitude for this pro
ess is

$$
i\mathcal{M} = -\frac{ig}{2\sqrt{2}}\varepsilon_{\mu}^{(r)}(k)[\bar{u}(p_2)\gamma^{\mu}(1-\gamma^5 v(p_1))]
$$
\n(3)

and thus

$$
|\mathcal{M}|^2 = \frac{g^2}{8} \varepsilon_{\mu}^{(r)} \varepsilon_{\nu}^{(r)} [\bar{u}(p_2)\gamma^{\mu}(1-\gamma^5)v(p_1)][\bar{u}(p_2)\gamma^{\nu}(1-\gamma^5)v(p_1)]^*.
$$
 (4)

we determine $|\cdot \cdot| = |\cdot \cdot|$ either directly

$$
[u(p_2)^{\dagger} \gamma^0 \gamma^{\nu} (1 - \gamma^5) v(p_1)]^{\dagger} = [v(p_1)^{\dagger} (1 - \gamma^5) \gamma^{\nu \dagger} \gamma^0 u(p_2)] = [v(p_1)^{\dagger} (1 - \gamma^5) \gamma^0 \gamma^{\nu} \gamma^0 v^0 u(p_2)] \quad (5)
$$

$$
= [v(p_1)^{\dagger} \gamma^0 (1 + \gamma^5) \gamma^{\nu} u(p_2)] = [\bar{v}(p_1)^{\dagger} \gamma^{\nu} (1 - \gamma^5) u(p_2)]. \tag{6}
$$

or we use $1 = \gamma 1 \gamma$,

$$
\overline{\gamma}^5 = \gamma^0 \gamma^{5\dagger} \gamma^0 = \gamma^0 \gamma^5 \gamma^0 = -\gamma^5. \tag{7}
$$

Next we sum over the spins of the fermions, setting $A^F = \gamma^F (1 - \gamma^*)$,

$$
\sum_{s_1, s_2} [\bar{u}_a(s_2, p_2) A_{ab}^{\mu} v_b(s_1, p_1)] [\bar{v}_d(s_1, p_1)^{\dagger} A_{de}^{\nu} u_e(s_2, p_2)] = (\not{p}_2)_{ea} A_{ab}^{\mu} (\not{p}_1)_{bd} A_{de}^{\nu} = \text{tr}[\not{p}_2 A^{\mu} \not{p}_1 A^{\nu}] \tag{8}
$$

We anti-commute the right factor $(1 - \gamma)$ to the left (or the left to the right), and use $(1 - \gamma)$ = \angle (1 γ),

$$
\text{tr}[\phi_2 \gamma^{\mu} (1 - \gamma^5) \phi_1 \gamma^{\nu} (1 - \gamma^5)] = 2 \text{tr}[\phi_2 \gamma^{\mu} (1 - \gamma^5) \phi_1 \gamma^{\nu}]. \tag{9}
$$

The factor with γ^5 will lead to term containing the completely anti-symmetric Levi-Civita tensor, which is contracted with the symmetric factor $\varepsilon_u^{\gamma\gamma} \varepsilon_v^{\gamma\gamma}$. Thus this term vanishes. The remaining term gives

$$
\text{tr}[\phi_2 \gamma^\mu (1 - \gamma^5) \phi_1 \gamma^\nu (1 - \gamma^5)] = 2 \, \text{tr}[\phi_2 \gamma^\mu \phi_1 \gamma^\nu] = 8 \, \text{tr}[p_2^\mu p_1^\nu - (p_2 \cdot p_1) \eta^{\mu\nu} + p_2^\nu p_1^\mu] \tag{10}
$$

We average next over the polarisations of the W ,

$$
\frac{1}{3}\sum_{r} |\mathcal{M}|^2 = \frac{g^2}{3}(-\eta_{\mu\nu} + k_{\mu}k_{\nu}/M^2)[p_2^{\mu}p_1^{\nu} - (p_2 \cdot p_1)\eta^{\mu\nu} + p_2^{\nu}p_1^{\mu}]
$$
\n(11)

$$
= \frac{g^2}{3} [(p_2 \cdot p_1) + 2(k \cdot p_1)(k \cdot p_2)/M^2]
$$
\n(12)

5. Neutrino s
attering.

Let us assume that at the Galactic Center a source of high-energy neutrons exist. These neutrons escape from the source and produce neutrinos via beta-decay which we aim to

page 3 of 5 pages

measure.

a.) Neglect neutrio masses and oscillations. Draw the lowest order Feynman diagrams for the interaction of these neutrinos with matter (assumed to consist of e^+ , u - and u -quarks). (6 pts)

b.) In which of the diagrams can the virtual particle be on mass-shell? Find the required neutrino energy. (6 pts)

c.) Estimate the maximal cross section (in SI or cgs units) using the Breit-Wigner formula. (6 pts)

d.) Describe qualitatively, how neutrino mixing and oscillations would change this picture (maximal 100 words). (6 pts)

a.) s-channel Glashow resonance $\nu_e e^+ \to v \bar v^+ \to$ an, t-channel UU $\nu_e u \to e^+ u$ and t-channel NU $\nu_e \Lambda \rightarrow \nu_e \Lambda$ with $\Lambda = \{e^-, u, a\}$ interactions.

b.) The Mandelstam variables t and u are always negative, while s is positive. Thus only the denominator in the propagator of the first diagram, \propto 1/(s $-$ M $-$) can become zero. In the lab frame

$$
s = M^2 = (p_1 + p_2)^2 = 0 + 2E_{\nu}m_e + m_e^2
$$

or

$$
E_{\nu} = \frac{M^2 - m_e^2}{2m_e} \simeq \frac{M^2}{2m_e} \simeq 6 \times 10^{15} \text{ eV}
$$

.) The prefa
tor of Breit-Wigner formula (13) be
omes

$$
\frac{4\pi s}{p_{\text{cms}}^2} \frac{(2s_r + 1)}{(2s_1 + 1)(2s_2 + 1)} = 16\pi \frac{3}{2} = 24\pi
$$
\n(13)

where we use that only left-chiral neutrinos are produced. Thus

$$
\sigma(\bar{\nu}_e e^- \to W \to \bar{f}f) = 24\pi \frac{\Gamma(W \to \bar{\nu}_e e^-)\Gamma(W \to \text{all})}{(s - M_W^2)^2 + (M_W \Gamma_W)^2}
$$
(14)

$$
=\frac{24\pi}{M_W^2}\text{BR}(W \to \bar{\nu}_e e^-)\text{BR}(\text{all})\tag{15}
$$

where BR denotes the branching ratio into the considered channel. We include all final states, and thus $\text{DR}(W \rightarrow \text{all}) = 1$. With $\text{DR}(W \rightarrow \nu_e e^-) = 10.5\%$ it follows

$$
\sigma(\bar{\nu}_e e^- \to W \to \bar{f}f) \simeq 24\pi \left(\frac{1}{80.4} \frac{\text{cm}}{5.06 \times 10^{13}}\right)^2 0.105 \simeq 5 \times 10^{-31} \text{cm}^2 \tag{16}
$$

For comparison, Fig. 1 shows the cross sections for neutrino interactions on electron targets as fun
tion of neutrino energy.

Figure 1: At low energies, from largest to smallest cross section, the processes are (i) $\bar{\nu}_e e \rightarrow$ hadrons, (ii) $\nu_{\mu}e \rightarrow \mu \nu_{e}$, (iii) $\nu_{e}e \rightarrow \nu_{e}e$, (iv) $\bar{\nu}_{e}e \rightarrow \bar{\nu}_{\mu}\mu$, (v) $\bar{\nu}_{e}e \rightarrow \bar{\nu}_{e}e$, (vi) $\nu_{\mu}e \rightarrow \nu_{\mu}e$, (vii) $\bar{\nu}_{\mu}e \rightarrow \bar{\nu}_{\mu}e.$

d.) The neutrino state ν_e created in beta-decay is a superposition of mass eigenstates ν_i ,

$$
\nu_e(0) = U_{ei}\nu_i = U_{e1}\nu_1(0) + U_{e2}\nu_2(0) + U_{e3}\nu_3(0)
$$

The phase of the mass eigenstates will evolve as

$$
\nu_i(x) = \nu_i(0) \exp(ip_i x) \simeq \nu_i(0) e^{i\phi} \exp[-iEx/(2m_i^2)]
$$

The last term implies that the states devlop an oscillating phase difference as they propagate. At detection, we have to spin $\nu_i(L)$ into havor states, $\nu_i(L) = U_{i\alpha} \nu_\alpha$. Then $|\langle \nu_\alpha | \nu_i(L) \rangle|$ gives the probability to observe flavour alpha. As a result, the originally 100% pure ν_e becomes a superposition of all three flavors. In this case, the importance of the Glashow resonance would be thereby redu
ed.

Feynman rules and useful formulas

The gamma matrices form a Clifford algebra,

$$
\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu} \,. \tag{17}
$$

The matrix

$$
\gamma^5 \equiv \gamma_5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3 \,. \tag{18}
$$

satisfies $(\gamma^*)^+ = \gamma^-, (\gamma^*)^- = 1$, and $\{\gamma^*,\gamma^*\} = 0$.

$$
\overline{\Gamma} \equiv \gamma^0 \Gamma^{\dagger} \gamma^0 \,. \tag{19}
$$

The trace of an odd number of γ^{μ} matrices vanishes, as well as

$$
\text{tr}[\gamma^5] = \text{tr}[\gamma^\mu \gamma^5] = \text{tr}[\gamma^\mu \gamma^\nu \gamma^5] = 0.
$$
 (20)

Non-zero tra
es are

$$
\text{tr}[\gamma^{\mu}\gamma^{\nu}] = 4\eta^{\mu\nu} \quad \text{and} \quad \text{tr}[\phi\rlap{/}\psi] = 4a \cdot b \tag{21}
$$

$$
\text{tr}[\phi\phi\phi] = 4[(a \cdot b)(c \cdot d) - 4(a \cdot c)(b \cdot d) + 4(a \cdot d)(b \cdot c)] \tag{22}
$$

$$
\text{tr}\left[\gamma^5 \gamma_\mu \gamma_\nu \gamma_\alpha \gamma_\beta\right] = 4i\varepsilon_{\mu\nu\alpha\beta} \tag{23}
$$

Useful are also $\psi \psi + \psi \psi = 2a \cdot b$, $\psi \psi = a$ and the following contractions,

^s

$$
\gamma^{\mu}\gamma_{\mu} = 4 , \qquad \gamma^{\mu}\phi\gamma_{\mu} = -2\phi , \qquad \gamma^{\mu}\phi\phi\gamma_{\mu} = 4a \cdot b , \qquad \gamma^{\mu}\phi\phi\phi\gamma_{\mu} = -2\phi\phi\phi . \tag{24}
$$

Completeness relations

$$
\sum_{s} u_a(p,s)\bar{u}_b(p,s) = (p + m)_{ab} , \qquad (25)
$$

$$
\sum_{s} v_a(p,s)\bar{v}_b(p,s) = (p - m)_{ab} . \qquad (26)
$$

Decay rate

$$
d\Gamma_{fi} = \frac{1}{2E_i} |\mathcal{M}_{fi}|^2 d\Phi^{(n)}.
$$
 (27)

The two particle phase space $d\Phi^{(2)}$ in the rest frame of the decaying particle is

$$
\mathrm{d}\Phi^{(2)} = \frac{1}{16\pi^2} \frac{|\mathbf{p}_{\text{cms}}'|}{M} \,\mathrm{d}\Omega \,,\tag{28}
$$

page 6 of 5 pages

Breit-Wigner formula

$$
\sigma(12 \to R \to 34) = \frac{4\pi s}{p_{\rm cms}^2} \frac{(2s_r + 1)}{(2s_1 + 1)(2s_2 + 1)} \frac{\Gamma(R \to 12)\Gamma(R \to 34)}{(s - M_R^2)^2 + (M_R\Gamma_R)^2}
$$
(29)

where Γ_R is the total decay width of the resonance with mass m_R and spin s_R , while s_1 and s_2 are the spins of the particles in the initial state.

$$
\mathscr{L} = \frac{1}{2} (\partial_{\mu} \phi)(\partial^{\mu} \phi) - \frac{1}{2} m_{\phi}^{2} \phi^{2} + \bar{\psi} (i \partial \phi - m_{\psi}) \psi
$$

