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The total angular momentum is zero in the initial state. It is conserved and must be
zero in the final state, where the only contribution to the total angular momentum is the
orbital angular momentum of the two pions.

Addition of two isospins 1 can give isospin either 0, 1, or 2.
There are 3 x 3 = 9 states, from which we can make six symmetric states:
[++), 100}, [==), [FO+[0+), [+)+[-F), [0)+]|-0),
and three antisymmetric:
[+0)—=[04+), [+ ==+, [0=)—[-0).
When we add two isospins 1, each of the isospins 0, 1, 2 occurs once. There are 21 + 1

states of isospin I, hence the number of states are 1, 3, 5, with 1 +34+5=09.

It is then easy to guess that the three antisymmetric states are the isospin 1 states, and
that the isospin 0 and 2 states are symmetric. The table of Clebsch-Gordan coefficients
confirms this.

They can not have isospin 1 because they are bosons and must have a symmetric wave
function. The spatial part of the wave function is symmetric because £ = (0. Hence the
isospin part of the wave function must be symmetric, excluding isospin 1.

The isospin of the neutral K meson is I = 1/2. Hence if the isospin change is AT = £1/2,
the isospin in the final state of two # mesons must be eiter 0 or 1. Since I = 1 is excluded,
the only remaining possibility is I = 0.

From the table of Clebsch—Gordan coefficients we see that the isospin zero state is
1

V3

If we have two detectors, there are then three possibilities having equal probabilities:

[1=0,I3=0) = —=(l+-) —[00) +] = +)) .

1) 7™ in detector 1, 7~ in detector 2;
2) 7% in detector 1, 7° in detector 2;
3) 7~ in detector 1, 7" in detector 2.
Hence, in total over (for example) 3000 decays there are in total 6000 m mesons, about

2000 each of 7+, 7%, and 7.

The neutral K mesons are pseudoscalars, transforming as follows under charge conjugation
C and parity P (this is the P transformation of particles at rest, P reverses the momentum
of a moving particle):

CK) =K%, CK)=|K%, PK%=-K%, PK)=-|K).
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Hence o o
CPIK’) =—-|K"), CP|IK)=-|K",

and the states |K) and |K2) are eigenstates of the C'P operator with eigenvalues £1:

CP|K)) =|K)), CP|Ks) =—|K,).

If CP is conserved, then K; and Ks have to decay into states with CP = +1 and
CP = —1, respectively. Note that C' alone and P alone are very far from conserved in
weak interactions.

A final state with two m mesons must have C'P = 41, and the reasoning behind this
conclusion is as follows.

— Charge conservation allows the two possibilities 7t7~ and 7%,

— The intrinsic parity is —1 for one 7 meson, (—1)? = +1 for two 7 mesons, (—1)% = —1
for three 7 mesons, and so on.

— Because the K mesons and the 7 mesons all have spin zero, and the total angular
momentum is conserved. the w7 final states must have orbital angular momentum ¢ = 0
in the centre of mass. The parity of a spatial wave function with orbital angular momentum
¢ =0is (—1)¢ = +1. Hence, the parity of the mr final state is P = (—1)?(—=1)¢ = +1.
Note that we must have (—1)¢ = 41 for 7%7° for a second good reason: they are identical
bosons so that their wave function must be symmetric. For 777~ the last argument does
not apply.

— Charge conjugation transforms a state with one 7 meson as follows:
Clat)y=|x"),  Cl)=[z%, Cl7)=x").

Note in particular that the intrinsic charge conjugation symmetry of 7 is +1. Hence,
C |70 = |7%7%) and C |nt7~) = |7~ = ).

— Every wave function can be written as a sum of wave functions that are products of
a spatial wave function and an isospin wave function. The operation P affects only the
spatial part of a product wave function, whereas C' affects only the isospin part.

— Thus, in the state 777~ the operation C interchanges the two particles in the isospin
part of a product wave function, whereas P interchanges them in the spatial part. Since
the m mesons are bosons, the total wave function must be symmetric, and we must have
CP = +1 for the 7~ state. As we have seen, the spatial part has the symmetry
(=1) = 1 because £ = 0. To make the total wave function symmetric we have to make
also the isospin wave function symmetric.

— In conclusion, both 77 final states have P = +1 and C' = +1, and hence CP = +1.

A final state with three m mesons must have CP = —1, because of the intrinsic parity
P = (-1)3 = —1. We reason as follows.

0.0

T 7% and 797070,

— Charge conservation allows the two possibilities 7

— Assuming that all orbital angular momenta are zero, the spatial wave function is sym-
metric under the interchange of any two particles. Since the particles are bosons, the
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total wave function must be symmetric, hence the isospin wave function must also be
symmetric. Charge conjugation interchanges the 77 and 7~ in the isospin wave function,
for example C' |7t 7 7% = |7 7t 70), but the isospin wave function is symmetric and
does not change.

— In conclusion, both 777 final states have P = —1, C = +1, and CP = —1. There is one
(small) loophole in this argument: there could be a nonzero orbital angular momentum
between the 71 and the 7~ in the 77~ 7 state, but this is unlikely because the kinetic
energy (my — 3mg,)c? is low.

Assuming that C'P is conserved we conclude that K; may decay to two = mesons, whereas
K5 has to decay to three m mesons. The mass of the neutral K meson is 497 MeV/c2,
whereas the sum of the three m masses is 405 or 414 MeV/c?. Thus there is little phase
space available for the decay to three m mesons, implying that this decay is much slower
than the decay to two m mesons.

Define f = f(t) = e_(imSJrF‘TS)t and g = g(t) = e_(imL+F‘TL)t

1
2

, so that

(1)) = ¢1§ (F 1K) + g |K2)) =

The unnormalized probability for K is

((F+9) 1KY = (f - 9)[E")) .

=1 +9> =+ )W +9) =[P+l + g +9°f
=e st pe et L 9ge Tlcos(Ami)
= 2¢ Tt (cosh(vyt) + cos(Amt)) ,
when we define

I's+Tg _Ts—T7p

- L)
2 ? ’7 2 7

Am =my — mg .

The unnormalized probability for K is
@ =1f=g> =" =W —9) = |fP+1g]" - f'g—g"f
= e lst pe7tet _9e M cos(Amt)
= 2e It (cosh(yt) — cos(Amt)) .
The normalized probability for K is then

_ o _ L cos(Ami))
qi4+q 2 2cosh(yt) ’

Y4l

whereas the normalized probability for K is

@ 1 cos(Amt))

T nte 2 2 cosh(yt)

b2

We see that pi(t) — 1/2 and po(t) — 1/2 when t — oo. We could predict these limits
without computing them, since the state, if it survives for a long time, will become more
and more like the long lived Ko, which is 50 % K° and 50 % i
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The Feynman diagram shown here is the lowest order diagram for the decay K° — 7~ et v,.
An 5 quark emits a W™ and is turned into an u quark, thereby changing its strangeness
by AS = —1 (from +1 to 0) and its electric charge by AQ = —1 (from +1/3 to —2/3).
In the charge conjugated decay process K - nte U, all signs (and fermion arrows) are
reversed. In both cases, AS = AQ.
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The semileptonic decays K° — 7~ etv, and FO — m e 7, can be transformed into each
other by a C'P transformation. Hence, if C'P invariance is exact the decay rates for these
two decay modes have to be equal.

It follows that if we detect equal numbers of the decays K — 7~ eTv, and K = mte U,
in a given time interval, we may conclude that we started out with equal numbers of K°
and K* particles.

With the assumptions we have made we have

cos(Amt))

o) =mt) = palt) = = 50

This implies in particular that (¢ = 0) = 1, and that §(f) — 0 when ¢ — o0, as we
concluded in part 2c).

Maybe we should write ¢ — #y instead of ¢, since we may not know very precisely, in an
experiment, the time ¢y when the particle is produced.

Our theoretical formula for §(¢) is independent of the sign of Am. It has been shown
experimentally, in other ways, that Am > 0. Here we only get information about |Am)|.

The most accurate estimate of Am, at least by eye from the figure, is probably from the
zeros of the asymmetry 6(¢). According to our theoretical formula we have () = 0 first
for Am (t — t9) = m/2 and next for Am (¢ —t9) = 37/2. It seems a reasonable precaution
not to trust too much the zero point of the time axis. Therefore we use the two visible
zeros of 0(t), which we estimate to lie at ¢; = 0.27 ns and at t2 = 0.94 ns, taking into
account the fact which is obvious from the figure that the limiting value of §(#) when
t — oo is not 0. Thus we should have that
3ty —ty

3(t1—t0):t2—t0, t():T— 0.065HS,
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and
Am(tg —t1) = Am x 0.67 ns =7 .

Remembering that we have set A =1 and ¢ = 1, we find that
- T _ 9/¢ _ 9 2
Am = 067 o5 =4.7Tx 107 /s = 4.7 x 10° (h/s)/c

= 4.7 x 107 x 6.58 x 10722 MeV/c? = 3.1 x 1072 MeV/c? ,

and hence

Am 3.1 x10 2 MeV/c?
mgo  497.61 MeV /c?

The official numbers from the Particle Data Group are Am = 3.483 x 1072 MeV/c? and
Am/my = 7.000 x 10715 .

One way (there may be others?) to estimate the rate 7 is to look at the negative minimum
value of 6(¢), which is around —0.076 at time ¢35 = 0.43 ns, or perhaps rather —0.080, since
the limiting value for 6(¢) as ¢ — oo is not zero but around 0.004. Hence, for 3 = 0.43 ns
we should have

=6.2x 1071,

ts —tp _  0.43 4 0.065

_r —0.7397 = 2.32 .
t—to 202710065 T

Am (tg - t()) =Am (tl - t())

This gives the minimum value

_cos(Am (t3 — tp))
o) = = oshr(ts — 1))

And it gives

~ 2c0s(0.7397) e VB30 = 13645 704918 — _ 080 .

_ In1.3645 — In 0.080
7= 0.495 113

=5.73/ns = 1.22 Am .

To determine a more precise value of 7y giving a minimum value of —0.080, if we have Maple
available, we may simply plot 0(t), with Am = 4.7/ns, in the interval 0.4 ns < t < 0.5 ns
and try different values of . With v = 5.73/ns we get the wanted minimum value of
—0.080 at t = 0.42 ns.

Since we happen to know that I'p << I'g we may take
1
8.7x 10 1lg"
According to these measurements and calculations the mean lifetime of Kg should be
8.7 x 1071 s (the Particle Data Group says 8.96 x 10! s ).

The fact that Am and  are very nearly equal (and not ten orders of magnitude different
as they might have been) calls for an explanation. T will not try to explain this remarkable
coincidence.

Pg=2y+4+T; ~2y=1.146 x 10'°/s =

The figure shows that the limiting value of §(¢) for ¢ large is around 0.004 (the official
experimental result is 0.00332 £0.00006). Since we calculated a limiting value 0 under the
assumption of C'P invariance, we have here an experimental proof that the C'P invariance
is broken. And the size of the breaking is about 0.4 %.



