Exam FY3452 Gravitation and Cosmology Spring 2016

Lecturer: Professor Jens O. Andersen
Department of Physics, NTNU
Telefon: 73593131

Tuesday May 312016
09.00-13.00

Permitted examination support material:
Approved calculator
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett \& Cronin: Mathematical Formulae
Angell og Lian: Fysiske størrelser og enheter: navn og symboler
The problem set consists of four pages. Read carefully. Good luck! Bonne chance! Viel Glück! Lykke til! In the problems, we use $c=G=1$.

Problem 1

a) Consider two inertial frames S and S^{\prime}, where S^{\prime} moves along the x-axis with velocity v. Write down the transformation that expresses $t^{\prime} x^{\prime}, y^{\prime}$, and z^{\prime} as functions of t, x, y, and z.

A disc of radius r is rotating counterclockwise with angular speed β. Its center is located at the origin in the $x y$-plane. A light source on the edge of the disc is emitting radiation at a frequency ω^{\prime} in the rest frame of the source. When the source crosses the y-axis in the lower half-plane, it emits radiation in the y^{\prime} direction, where S^{\prime} denotes the instantaneous rest frame.
b) Find the frequency ω and the components of the wavevector \mathbf{k} in the lab frame S in terms of the corresponding quantities ω^{\prime} and \mathbf{k}^{\prime} in S^{\prime}.
c) Find the speed $v=\beta r$ such that the angle between the radiation and x-axis in S is $\frac{1}{4} \pi$.

Problem 2

Consider a two-dimensional space with the line element

$$
\begin{equation*}
d s^{2}=d r^{2}+f(r) d \phi^{2} \tag{1}
\end{equation*}
$$

where r and ϕ are coordinates with range $0 \leq r<\infty$ and $0 \leq \phi \leq 2 \pi$, and $f(r)$ is a smooth real function.
a) The only nonzero Christoffel symbols are $\Gamma_{\phi \phi}^{r}$ and $\Gamma_{r \phi}^{\phi}=\Gamma_{\phi r}^{\phi}$. Calculate the nonzero Christoffel symbols.
b) The only nonzero components of the Ricci tensor are $R_{r r}$ and $R_{\phi \phi}$. Calculate the nonzero components of the Ricci tensor.
c) Use this to show that the Ricci scalar R can be written as

$$
\begin{equation*}
R=\frac{1}{2} \frac{\left[f^{\prime}(r)\right]^{2}}{f^{2}(r)}-\frac{f^{\prime \prime}(r)}{f(r)} \tag{2}
\end{equation*}
$$

d) Finally assume that $f(r)$ is of the form

$$
\begin{equation*}
f(r)=r^{n} \tag{3}
\end{equation*}
$$

where n is nonnegative integer. For which values of n is the space flat? For which values is the space Euclidean?

Problem 3

In this problem, we are going to study some of the properties of an electrically charge and spherically symmetric black hole. The metric was found by Reissner and Nordstrom and reads

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 m}{r}+\frac{\varepsilon^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{2 m}{r}+\frac{\varepsilon^{2}}{r^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega^{2} \tag{4}
\end{equation*}
$$

where m is the mass and $Q=\varepsilon^{2}$ is the electric charge of the black hole.
a) $r=0$ is a coordinate singularity (and a physical one as well). Show that the other coordinate singularities are given by

$$
\begin{equation*}
r_{ \pm}=m \pm \sqrt{m^{2}-\varepsilon^{2}} \tag{5}
\end{equation*}
$$

We can use $r_{ \pm}$to divide r into the three different regions according to

$$
\begin{array}{ll}
\text { I : } & 0<r<r_{-}, \\
\text {II : } & r_{-}<r<r_{+}, \tag{6}\\
\text {III : } & r_{+}<r .
\end{array}
$$

b) Using a clever coordinate transformation, the line element can be written in the form

$$
\begin{equation*}
d s^{2}=-(1-f) d \bar{t}^{2}+2 f d \bar{t} d r+(1+f) d r^{2}+r^{2} d \Omega^{2} \tag{7}
\end{equation*}
$$

where $f=\frac{2 m}{r}-\frac{\varepsilon^{2}}{r^{2}}$. Show that a family of radial null geodesics are given by

$$
\begin{equation*}
\bar{t}+r=\text { constant } . \tag{8}
\end{equation*}
$$

Is this family of geodesics incoming or outgoing? Draw the geodesics in an (\bar{t}, r)-diagram.
c) Show that there is another family of radial null geodesics given by

$$
\begin{equation*}
\frac{d \bar{t}}{d r}=\frac{1+f}{1-f} \tag{9}
\end{equation*}
$$

Fig. 1 shows $1-f$ and $1+f$ as functions of r. Use this to sketch the geodesics that are the solutions to Eq. (9) in a (\bar{t}, r)-diagram.

Figure 1: Plot of $1+f$ and $1-f$ as functions of r. The zeros of $1-f$ are at $r_{ \pm}$.
d) Show or explain that $r=r_{+}$is an event horizon.
e) Once the particle is in region I , is it bound to fall into the singularity at $r=0$?
f) We finally specialize to the case where $\varepsilon^{2}=\frac{3}{4} m^{2}$. What are the corresponding values of r_{+}and r_{-}? Calculate the proper time $\Delta \tau$ it takes for a particle to travel from r_{+}to r_{-}starting at rest.

Useful formulas

$$
\begin{align*}
g_{\alpha \delta} \Gamma_{\beta \gamma}^{\delta} & =\frac{1}{2}\left[\frac{\partial g_{\alpha \beta}}{\partial x^{\gamma}}+\frac{\partial g_{\alpha \gamma}}{\partial x^{\beta}}-\frac{\partial g_{\beta \gamma}}{\partial x^{\alpha}}\right] \tag{10}\\
R_{\alpha \beta} & =\partial_{\gamma} \Gamma_{\alpha \beta}^{\gamma}-\partial_{\beta} \Gamma_{\alpha \gamma}^{\gamma}+\Gamma_{\alpha \beta}^{\gamma} \Gamma_{\gamma \delta}^{\delta}-\Gamma_{\beta \gamma}^{\delta} \Gamma_{\alpha \delta}^{\gamma}, \tag{11}\\
R & =g^{\alpha \beta} R_{\alpha \beta} . \tag{12}
\end{align*}
$$

