
Exam FY3452 Gravitation and Cosmology
fall 2018

Lecturer: Professor Jens O. Andersen
Department of Physics, NTNU

Phone: 46478747 (mob)

Friday November 30 2018
09.00-13.00

Permitted examination support material:
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett & Cronin: Mathematical Formulae
Angell og Lian: Fysiske størrelser og enheter: navn og symboler

The problem set consists of five pages. Read carefully. Good luck! Bonne chance!
Viel Glück! Veel succes! Lykke til!

Problem 1

a) The spaceship NTNU2018 is moving along the x-axis in an inertial frame S. The
initial conditions are x(t = 0) = V (t = 0) = 0. The clocks in the inertial frame and
onboard the spaceship are such that τ = 0 when t = 0 . The acceleration in the

1



instantenous rest frame is constant and equals g. It can be shown that

dt

dτ
= cosh(g

c
τ) . (1)

Use this to find dx
dτ

, t(τ), and x(τ). Show that the motion is hyperbolic.

b) At time t = t0 > 0, a light signal is sent from the origin along the x-axis. Draw
a spacetime diagram and the world lines of the spaceship and the photon. Show that
a light signal sent later than t0 = c

g
from the origin can never reach the spaceship.

Explain why the straight line c(t− c
g
) = x defines a horizon.

Problem 2

The Lagrangian for a free electron-positron field is

L = ψ̄(iγµ∂µ −m)ψ , (2)

where ψ is four-component column vector, ψ̄ = ψ†γ0 is four-component row vector,
and γµ are 4× 4 matrices, called the γ-matrices. The γ-matrices satisfy

{γµ, γν} = −2ηµν , (3)

for example γ0γ0 = I and γ0γ1 = −γ1γ0. They also satisfy (γµ)† = γ0γµγ0.

a) We define a new matrix γ5 as

γ5 = iγ0γ1γ2γ3 . (4)

Show that

(γ5)† = γ5 , (5){
γ5, γµ

}
= 0 . (6)

b) Consider a socalled chiral transformation

ψ → e−iαγ
5

ψ , (7)

ψ† → ψ†eiα(γ
5)† , (8)

where α ∈ [0, 2π) is independent of the spacetime coordinates. How does ψ̄ transform?
For what values of m is the Lagrangian (2) invariant under a transformation (7)–(8)?
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c) Calculate the conserved current that follows when (8) is a symmetry of the La-
grangian (2).

Problem 3

In this problem we consider gravitational waves in the weak-field limit. We set c = 1.
The metric gµν is then written as

gµν = ηµν + hµν , (9)

where ηµν = diag(−1, 1, 1, 1) and hµν is a small metric perturbation. This means that
|hµν | � 1. The first and higher partial derivatives of hµν are also small. Calculate
all quantities below to first order. Hint: Calculating to first order implies that we
can raise and lower indices using ηµν and ηµν , respectively. Thus hαβ = ηαµηβνhµν . It
then follows that ∂αh

αβ = ∂αh β
α .

a) Calculate the Christoffel symbols Γαβγ.

b) Calculate the Riemann curvature tensor Rµ
βνγ.

c) Show that the Ricci curvature tensor can be written as

Rµν =
1

2

[
∂ν∂ρh

ρ
µ + ∂ρ∂µh

ρ
ν + hµν − ∂µ∂νh

]
, (10)

where h = hρρ and = −∂ρ∂ρ.

d) Show that the Ricci scalar can be written as

R = h+ ∂µ∂νh
µν . (11)

e) Consider a general infinitesimal coordinate transformation

x′µ = xµ + ξµ(x) . (12)

Show that the transformed metric perturbation h′µν is given by

h′µν = hµν − ∂µξν − ∂νξµ . (13)

It can be shown that Rµ
βνγ is invariant under the transformation (13). If one thinks

of hµν as a tensor field defined on the flat Minkowski background, Eq. (13) can be
considered a gauge transformation in analogy with electromagnetism.
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f) We next define

h̄µν = hµν −
1

2
ηµνh . (14)

It can be shown that Einstein’s field equation in the vacuum expressed in terms of
the derivatives of h̄µν and h̄ = h̄δδ is

1

2

[
∂µ∂δh̄

δ
ν + ∂ν∂δh̄

δ
ν + h̄µν

]
− 1

2
ηµν∂

δ∂γh̄δγ = 0 . (15)

We next consider a gauge transformation on the metric perturbation h̄µν , which is
given by

h̄′µν = h̄µν − ∂µξν − ∂νξµ + ηµν∂αξ
α . (16)

Explain why we can always impose the gauge condition

∂µh̄
′µν = 0 (17)

on the metric perturbation h̄′µν . This gauge is called the Lorentz gauge. Show that
with this condition, the field equation reduces to

h̄′µν = 0 . (18)

g) Show that Eq. (18) has plane-wave solutions of the form

h̄′µν = Aµνe
−ikαxα , (19)

where Aµν are the constant components of a symmetric tensor and kα are the compo-
nents of a four wavevector k. Show that the wave vector is transverse in the Lorentz
gauge. What is the condition on k?

h) Since Aµν is symmetric there are 10 independent components. The gauge con-
dition (17) is four equations leaving us with 6 independent components. The gauge
condition (17) is not unique so the Lorentz gauge is really a class of gauges. We can
use this residual freedom to impose further restrictions on Aµν . Choosing the socalled
transverse-traceless (TT ) gauge, one finds

A(TT )
µν ηµν = 0 , (20)

A(TT )
µν δν0 = 0 . (21)
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Let us consider a wave whose wavevector is of the form kµ = (−ω, 0, 0, ω). Show that
this choice of k in conjunction with transversality and Eq. (21) yields

A(TT )
zν = 0 . (22)

Finally, use Eqs. (20)–(22) to show that we can write the matrix A
(TT )
µν as

A(TT )
µν =


0 0 0 0

0 A
(TT )
xx A

(TT )
xy 0

0 A
(TT )
xy −A(TT )

xx 0
0 0 0 0

 , (23)

where A
(TT )
xx and A

(TT )
xy are two independent constant. They are of physical signifi-

cance.

Congratulations, you have just found a gravitational wave propagating with the
speed of light in the vacuum. Notice the similarity with electromagnetic waves. They
were proposed by Henri Poincaré in 1905 and subsequently predicted in 1916 by Albert
Einstein. Gravitational waves were first observed in 2015 by the LIGO collaboration
as a result of a merger of two black holes of 29 and 36 solar masses about 1.3 billion
light-years away. The 2017 Nobel prize in physics was awarded to Barry Barish, Kip
Thorne, and Rainer Weiss for their fundamental work on gravitational waves both
theoretically and observationally.

————————————————————————————————

Useful formulas

jµ =
∂L

∂(∂µφ)
∆φ , (24)

Γαβγ =
1

2
gαµ

[
∂gγµ
∂xβ

+
∂gβµ
∂xγ

− ∂gβγ
∂xµ

]
, (25)

Rα
µβν = ∂βΓαµν − ∂νΓαµβ + ΓαβδΓ

δ
µν − ΓανδΓ

δ
µβ , (26)

Rµν = ∂γΓ
γ
µν − ∂νΓγµγ + ΓγµνΓ

δ
γδ − ΓγµδΓ

δ
νγ , (27)

0 = Rµν −
1

2
gµνR , (28)

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ . (29)
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