Formalities.

Solutions should be handed in Wednesday 28.10., latest 14.00, in my mailbox (D5-166), by email or in the lectures.

The Reissner-Nordström Solution for a Charged Black Hole.

In this home exam, you will derive step-by-step the solution of the coupled EinsteinMaxwell equations for a point-like particle with mass M and electric charge Q.
a.) Show that a static, isotropic metric can be written as

$$
\begin{equation*}
\mathrm{d} s^{2}=A(r) \mathrm{d} t^{2}-B(r) \mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \phi^{2}\right) \tag{1}
\end{equation*}
$$

b.) Show that the non-zero components of the Ricci tensor in this metric are given by

$$
\begin{align*}
& R_{00}=-\frac{A^{\prime \prime}}{2 B}+\frac{A^{\prime}}{4 B}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)-\frac{A^{\prime}}{r B}, \tag{2}\\
& R_{11}=\frac{A^{\prime \prime}}{2 A}-\frac{A^{\prime}}{4 A}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right)-\frac{B^{\prime}}{r B}, \tag{3}\\
& R_{22}=\frac{1}{B}-1+\frac{r}{2 B}\left(\frac{A^{\prime}}{A}-\frac{B^{\prime}}{B}\right), \tag{4}\\
& R_{33}=R_{22} \sin ^{2} \vartheta \tag{5}
\end{align*}
$$

where we order coordinates as $x^{\mu}=(t, r, \vartheta, \phi)$. You may use a program of your choice to do this calculation; if so, attach the code/output you used/produced. If you do the calculation "by hand", it is sufficient to calculate one of the 4 non-zero elements.
c.) Consider next the inhomogenous Maxwell equation for a point charge in the metric (1). Show that the inhomogeneous Maxwell equation,

$$
\nabla_{\mu} F^{\mu \nu}=\frac{1}{\sqrt{|g|}} \partial_{\mu}\left(\sqrt{|g|} F^{\mu \nu}\right)=j^{\nu}
$$

implies for the electric field

$$
E(r)=\frac{\sqrt{A B} Q}{4 \pi r^{2}}
$$

d.) Determine the non-zero contributions of the electric field to the stress tensor $T_{\mu \nu}$ and show that the Einstein equations simplify (using also $\Lambda=0$) to $R_{\mu \nu}=-\kappa T_{\mu \nu}$. Give the explicit form of the the Einstein equations.
e.) Combine the R_{00} and R_{11} equations, and use (2) and (3) to show that $A(r) B(r)=1$.
f.) Use the R_{22} component to determine $A(r)$ and $B(r)$.
g.) What are the physical and coordinate singularities, the horizons of the ReissnerNordström BH solution?

Sign convention.

The signs of the metric tensor, Riemann's curvature tensor and the Einstein tensor can be fixed arbitrarily,

$$
\begin{align*}
\eta^{\alpha \beta} & =S_{1} \times[-1,+1,+1,+1], \tag{6a}\\
R^{\alpha}{ }_{\beta \rho \sigma} & =S_{2} \times\left[\partial_{\rho} \Gamma^{\alpha}{ }_{\beta \sigma}-\partial_{\sigma} \Gamma^{\alpha}{ }_{\beta \rho}+\Gamma^{\alpha}{ }_{\kappa \rho} \Gamma^{\kappa}{ }_{\beta \sigma}-\Gamma^{\alpha}{ }_{\kappa \sigma} \Gamma^{\kappa}{ }_{\beta \rho}\right], \tag{6b}\\
S_{3} \times G_{\alpha \beta} & =8 \pi G T_{\alpha \beta}, \tag{6c}\\
R_{\alpha \beta} & =S_{2} S_{3} \times R_{\alpha \rho \beta}^{\rho} . \tag{6d}
\end{align*}
$$

Here we choose these three signs as $S_{i}=\{-,+,-\}$.

