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Problem 1. Lorentz transformations

r

 = (x, 0, 0)R θ

(t) = (0, 0, Vt)

x

z

An object is moving with constant velocity V along the z-axis, i.e. along the curve

r(t) = V t êz . (1)

It is observed by detectors at rest at the position R = x êx. You may assume x to be non-negative. You may also
choose to use units where the speed of light c = 1.

First assume the object is emitting light (photons) in all directions. Seen from a coordinate system where the object

is a rest this light is monochromatic, i.e. all photons have the same energy ~ω0.

a) A photon emitted from the object is observed at position R at time t. At which time t0 was it emitted?

Verify your solution by checking the special cases (i) x = 0, and (ii) t0 = 0.

At time t0 the object was at position V t0 êz, at a distance ` =
√
V 2t20 + x2 from R. I.e., the

photon needs a time t− t0 = `/c to travel from emission to detection,

c2(t− t0)2 = V 2t20 + x2. (2)

Solving for t0 gives

t0 =
1

1− (V/c)2

{
t− 1

c

√
(V t)2 + [1− (V/c)2]x2

}
. (3)

(i) For x = 0 the photon needs the time t− t0 to travel a distance V t0. It follows that we
must have t0 = t/ [1 + (V/c)], which agrees with (3) since [1− (V/c)] /

[
1− (V/c)2

]
=

1/ [1 + (V/c)].

(ii) For t0 = 0 the photon was emitted from the origin (z = 0). I.e., the detection must
occur at time t = x/c. Inserting this value for t into (3) indeed gives t0 = 0.
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b) From which position on the z-axis was the photon emitted? In which direction n̂ = cos θ êz + sin θ êx is the

photon observed to move? Express this by finding the quantity cot θ, with θ as given in the figure above.

The emission occured from position z = V t0, with t0 given by (3). The photon is travelling
from (0, 0, z) to (x, 0, 0), i.e. at an angle θ such that

cot θ = − z
x

= −V t0
x

=
(V/x)

1− (V/c)2

{
1

c

√
(V t)2 + [ 1− (V/c)2 ]x2 − t

}
. (4)

c) What is the egenvelocity u′ν of the object in a coordinate system where it is at rest? What is the eigenvelocity

uµ of the object in our coordinate system (where the detectors are at rest)?

The egenvelocity is defined by uµ = d
dτ x

µ = dt
dτ

d
dt (ct, x(t), y(t), z(t)), with the eigentime τ

choosen so that uµuµ = c2. Hence we find

u′ν = (c, 0, 0, 0) , (5)

and

uµ =
1√

1− (V/c)2
(c, 0, 0, V ) . (6)

d) Which energy ~ω is the photon observed to have? Express your answer by ~ω0, the angle θ, and V .

In the rest system of the object the photon is specified by the four-momentum

p′ν =
ω0

c
(1, sin θ′ cosφ′, sin θ′ sinφ′, cos θ′) , (7)

with ω0 independent of direction. In our system it is specified by the four-momentum

pµ =
ω

c
(1, sin θ cosφ, sin θ sinφ, cos θ) , (8)

with ω = ω(θ, φ) depending on the direction of the photon.

One simple method to find the connection is to use the invariance of scalar products, implying
that u′νp

′ν = uµp
µ,

u′νp
′ν = ω0 = uµp

µ =
1− (V/c) cos θ√

1− (V/c)2
ω.

I.e.,

~ω =

√
1− (V/c)2

1− (V/c) cos θ
~ω0. (9)

By writing V = c tanh η we find that the photon is blueshifted by a factor eη for θ = 0 (early
detection times), redshifted by a factor e−η for θ = π (late detection times), and unshifted
when cos θ = tanh η/2.

A seemingly different method is to use the transformation formula between four-vectors in
the two frames (with V = c tanh η),

p′0

p′x

p′y

p′z

 =


cosh η 0 0 − sinh η

0 1 0 0
0 0 1 0

− sinh η 0 0 cosh η




p0

px

py

pz

 . (10)

This gives
p′0 = cosh η p0 − sinh η pz = cosh η (1− tanh η cos θ) p0,

which is equivalent to (9).
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Now assume instead that the object is a point charge Q, so that it is surrounded by a rotation symmetric electric
field in the coordinate system where it is at rest (at the origin)

E′(t′,x′) =
Qx′

4πε0 |x′|3
, B′(t′,x′) = 0. (11)

This may also be expessed by the four-potential

A′µ(t′,x′) =
Q

4πε0|x′|
(1,0) . (12)

e) Express the quantity |x′| in our coordinates (t,x) (where the detectors are at rest).

Hint: Some general transformation formulae is included at the end of the problemset.

The two coordinate systems are related by the Lorentz transformation (with tanh η = V/c),
ct′

x′

y′

z′




cosh η 0 0 − sinh η
0 1 0 0
0 0 1 0

− sinh η 0 0 cosh η




ct
x
y
z

 ,

so that

|x′| =
√
x′2 + y′2 + z′2 =

√
x2 + y2 + (cosh η x− sinh η ct)2

=

√
x2 + y2 + cosh2 η(z − V t)2, (13)

where cosh η = 1/
√

1− (V/c)2 (this quantity is commonly called γ).

f) Calculate the field E(t, x, 0, 0) observed by the detectors at position R.

You may choose to use the transformation formula for the electromagnetic field tensor, or assume that the

four-potential transform as a vector, and next compute the E-field from the transformed potential Aν(t,x).

The transformation formula for the electromagnetic field tensor reads

Fµν(x) = Λµα Λνβ F
′αβ(x′), (14)

here with Λµν the inverse of the transformation matrix used in (10). We find

Ex(t,x) = F 0x(x) = Λ0
0 Λxx F

′0x(x′) = cosh η F ′0x(x′) =
Q cosh η x

4πε0 |x′|3
,

since Λxx = 1 is the only matrix element with an upper index x, and x′ = x. For the same
reasons,

Ey(t,x) = F 0y(x) = Λ0
0 Λyy F

′0y(x′) = cosh η F ′0y(x′) =
Q cosh η y

4πε0 |x′|3
.

Finally

Ez(t,x) = F 0z(x) =
(
Λ0

0 Λzz − Λ0
zΛ

z
0

)
F ′0z(x′) = F ′0z(x′) =

Q cosh η (z − V t)
4πε0 |x′|3

.

Here we have used that F ′x0 = −F ′0x, that
(
Λ0

0 Λzz − Λ0
zΛ

z
0

)
= cosh2 η − sinh2 η = 1, and

finally that z′ = cosh ηz − sinh η ct = cosh η (z − V t).
Alternatively we could first transform the four-potential according to the formula

Aµ(x) = Λµν A
′ν(x′), (15)

with Λµν the inverse of the transformation matrix used in (10). This gives

Aµ(x) =
Q (cosh η, 0, 0, sinh η)

4πε0 |x′|
, (16)
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from which we find, using |x′| =
√
x2 + y2 + cosh2 η (z − V t)2,

Ex = −
(
∂Ax

c ∂t
+
∂A0

∂x

)
=
Q cosh η x

4πε0 |x′|3
,

Ey = −
(
∂Ay

c ∂t
+
∂A0

∂y

)
=
Q cosh η y

4πε0 |x′|3
,

Ez = −
(
∂Az

c ∂t
+
∂A0

∂z

)
=
Q cosh η (z − V t)

4πε0 |x′|3
.

The computation of Ex and Ey is very simple since Ax = Ay = 0. For Ez the numerator
combine as(

− sinh η cosh2 η tanh η + cosh η cosh2 η
)

(z − V t) = cosh η (z − V t),

where we have used that V/c = tanh η.

By either method we find

Ex(t, x, 0, 0) =
Qx cosh η

4πε0

[
x2 + (cosh η V t)

2
]3/2 ,

Ey(t, x, 0, 0) = 0, (17)

Ez(t, x, , 0, 0) =
−QV t cosh η

4πε0

[
x2 + (cosh η V t)

2
]3/2 .

g) Compare the observed direction of the field, cotϑ ≡ Ez/Ex, with the observed direction cot θ of the photons

in point b).

We find cotϑ = −V t/x compared to cot θ = −V t0/x. I.e., the electric field points away from
the current (in our coordinates) position of the object, while the photon momentum points
away from the position of the object at the time of emission.

Problem 2. The Friedmann-Lemâıtre-Robertson-Walker universe

The Friedmann-Lemâıtre-Robertson-Walker metric is defined by the line element

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

))
, (18)

where we units where the speed of light c = 1, and where k ∈ {−1, 0, 1}.
a) Write down (i) the metric tensor gµν , and (ii) the inverse metric tensor gµν for the universe defined by the

line element (18). Assume that the metric tensor has signature (−,+,+,+).

We compare equation (18) with the general expression

ds2 = gµν dxµ dxν

to find

gµν =


−1 0 0 0

0 a(t)2

1−kr2 0 0

0 0 a(t)2 r2 0
0 0 0 a(t)2 r2 sin2 θ

 . (19)

The inverse metric becomes

gµν =


−1 0 0 0

0 1−kr2
a(t)2 0 0

0 0 1
a(t)2r2 0

0 0 0 1
a(t)2r2 sin2 θ

 . (20)
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b) Calculate the integration measure
√
−g for the universe defined by the line element (18).

Computing the determinant of (19) gives

√
−g =

a(t)3 r2√
1− kr2

sin θ. (21)

c) Explain in qualitative terms what is meant by (i) covariant derivative, (ii) connection coefficients, (iii)

Riemann tensor, (iv) Ricci tensor, (v) Einstein tensor, and (vi) scalar curvature. Explain briefly how you

would compute these quantities from the line element (18). You need not perform any explicit computations

here, but you should indicate the index structure of the quantities and relations involved.

(i) The covariant derivative Dµ = ∂µ + Γµ is the correct differentiation operator on vectors
(and tensors), taking into account that components of such quantities are with respect
to a basis which may be changing with position.

(ii) The components of the matrices Γµ makes up the connection coeffiients Γαβµ. For a
metric connection they can f.i. be found from the geodesic equations following from the
metric gµν , by applying Hamiltons principle to the action S = − 1

2

∫
dτ gµν ẋ

µ ẋν and
comparing with the general form

ẍα + Γαβµ ẋ
β ẋµ = 0. (22)

Or they may be computed from the general expression

Γαβµ =
1

2
gαγ (gγβ,µ + gγµ,β − gβµ,γ) . (23)

(iii) The Riemann tensor con be defined as the commutator [Dµ, Dν ] ≡ Rµν . For each
µν-combination this is a matrix with components Rαβµν . In four space-time dimensions

there are alltogether 44 = 256 components, out of which 20 are algebraically independent.

(iv) The Ricci tensor is obtained contraction of the Riemann tensor. Usually

Rβν = Rαβαν , (24)

but sometimes with the opposite sign.

(v) The Einstein tensor is defined by

Gµν = Rµν −
1

2
gµν g

αβRαβ . (25)

It is distinguished by automatically being covariantly conserved,

Tµν;ν = 0. (26)

(vi) The scalar curvature is defined as the trace of the Ricci tensor,

R = gαβRαβ . (27)

As a scalar it is a natural candidate for a Lagrangian for the gravity field.

d) Assume that the matter content of this universe can be modelled by a scalar field ϕ and the associated action

Smatter = −
∫

d4x
√
−g

(
1

2
gµν ∂µϕ∂νϕ+ V (ϕ)

)
, (28)

where V is some differentiable function of its argument. Assume that the field ϕ only depends on time,
ϕ = ϕ(t).

Simplify the action Smatter for this case, and find the Euler-Lagrange equation for the field ϕ.
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The action can be written as,

Smatter =

∫
dt a3

[
1

2
ϕ̇2 − V (ϕ)

] ∫
V

r2dr sin θdθ dφ√
1− kr2

, (29)

where the intergral over spatial coordinates may be treated as a constant V.

The Euler-Lagrange equations becomes

d

dt

(
a3 ϕ̇

)
= −a3 V ′(ϕ),

which simplifies to

ϕ̈+
3ȧ

a
ϕ̇+ V ′(ϕ) = 0. (30)

I.e., the expansion of the universe induces a “friction force” in the equations of motion.

e) The Hilbert-Einstein action for the gravity part of the action is

SHE =
1

16πGN

∫
d4x
√
−g R, (31)

where GN is Newtons constant of gravity, and R is the scalar curvature. For the length element (18) the
scalar curvature is

R =
6

a2

(
aä+ ȧ2 + k

)
. (32)

Simplify the action SHE to the case that all dynamic quantities only depend on t (like you did for Smatter in

the previous point), and use Hamiltons principle for the total action, Stotal = SHE + Smatter, to find the

equation of motion for ϕ.

We can write

SHE =
3

8πGN

∫
dt
(
a2ä+ aȧ2 + ka

) ∫
V

r2dr sin θdθ dφ√
1− kr2

. (33)

We may perform a partial integration in the first term to bring this into a more familiar form
involving at most first order derivatives,

S̄HE =
3

8πGN

∫
dt
(
−aȧ2 + ka

) ∫
V

r2dr sin θdθ dφ√
1− kr2

,

but it is also possible to apply Hamiltons principle to the original action. We obtain a total
action

S̄total =

∫
dt

{(
−aȧ2 + ka

)
+

8πGN
3

a3
(

1

2
ϕ̇2 − V (ϕ)

)}(
3V

8πGN

)
, (34)

form which we find the Euler-Lagrange equation for a,

d

dt
(−2aȧ) =

{(
−ȧ2 + k

)
+ 8πGN

(
1

2
ϕ̇2 − V (ϕ)

)}
,

or simplified as (
2ä

a
+
ȧ2

a2
+

k

a2

)
= −8πGN

(
1

2
ϕ̇2 − V (ϕ)

)
. (35)

f) The action Stotal is invariant under time translations, ϕ(t) → ϕ(t + ε) and a(t) → a(t + ε). Use Nöthers

theorem to find the corresponding conserved quantity.

In this case Nöthers theorem says that the conserved quantity is

E =
∂L

∂ȧ
δa+

∂L

∂ϕ̇
δϕ− L,
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with δa = ȧ, δϕ = ϕ̇, and L given by the integrand in (34), except that we will ignore the
constant 3V/(8πGN ). With ∂L/∂ȧ = −2aȧ and ∂L/∂ϕ̇ = a3ϕ̇ we find

E = −
(
aȧ2 + ka

)
+

8πGN
3

a3
(

1

2
ϕ̇2 + V (ϕ)

)
. (36)

Remark: The analysis above do not lead to the complete set of Einstein equations. A full analysis gives the
additional constraint that E = 0, equivalent to the condition

ȧ2

a2
+

k

a2
=

8π

3
GN

(
1

2
ϕ̇2 + V (φ)

)
, (37)

which is known as the first Friedmann equation.


