Solutions Exam FY3452 Gravitation and Cosmology Spring 2016

Lecturer: Professor Jens O. Andersen
Department of Physics, NTNU
Telefon: 73593131

Tuesday May 312016
09.00-13.00

Aid:
Approved calculator
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett \& Cronin: Mathematical Formulae
Angell og Lian: Fysiske størrelser og enheter: navn og symboler. In the problems, we use $c=G=1$.

Problem 1

a) The formulas are

$$
\begin{align*}
t^{\prime} & =\underline{\underline{\gamma(t-v x)}} \tag{1}\\
x^{\prime} & =\underline{\underline{\gamma(x-v t)}} \tag{2}\\
y^{\prime} & =\underline{\underline{y}} \tag{3}\\
z^{\prime} & =\underline{\underline{z}}, \tag{4}
\end{align*}
$$

where $\gamma=\frac{1}{\sqrt{1-v^{2}}}$.
b) In the frame S^{\prime}, the four-momentum of the photon is $k^{\prime \mu}=\hbar\left(\omega^{\prime}, 0, k_{y}^{\prime}, 0\right)$. These are now transformed to the frame S using the inverse transformations. These can be obtained by replacing v by $-v$. This yields

$$
\begin{align*}
\omega & =\gamma\left(\omega^{\prime}+v k_{x}^{\prime}\right) \\
& =\underline{\underline{\gamma \omega^{\prime}}} . \tag{5}\\
k_{x} & =\gamma\left(k_{x}^{\prime}+v \omega^{\prime}\right) \\
& =\underline{\underline{\gamma \omega^{\prime}}} . \tag{6}\\
k_{y} & =\underline{\underline{k_{y}^{\prime}}} . \tag{7}\\
k_{z} & =\underline{\underline{k_{z}^{\prime}}} \\
& =\underline{\underline{0}} . \tag{8}
\end{align*}
$$

c) The angle α is given by

$$
\begin{align*}
\tan \alpha & =\frac{k_{y}}{k_{x}} \\
& =\frac{k_{y}^{\prime}}{\omega^{\prime}} \frac{1}{\gamma v} \\
& =\frac{1}{\gamma v} \tag{9}
\end{align*}
$$

where we in the last line have used that $k^{\prime 2}=0$ or $\omega^{\prime}=k_{y}^{\prime}$. An angle of $\frac{\pi}{4}$ yields the condition

$$
\begin{equation*}
\frac{1}{\gamma v}=1 \tag{10}
\end{equation*}
$$

Solving this with respect to v, we find

$$
\begin{equation*}
v=\underline{\underline{\frac{1}{\sqrt{2}}}} . \tag{11}
\end{equation*}
$$

Problem 2

a) First consider $\Gamma_{\phi \phi}^{\delta}$. Since the only nonzero Christoffel symbol has $\delta=r$, this implies that $\alpha=r$ because the metric is diagonal. Thus one finds

$$
\begin{align*}
g_{r r} \Gamma_{\phi \phi}^{r} & =\frac{1}{2}\left[\frac{\partial g_{r \phi}}{\partial r}+\frac{\partial g_{r \phi}}{\partial r}-\frac{\partial g_{\phi \phi}}{\partial r}\right] \\
& =-\frac{1}{2} f^{\prime}(r) \tag{12}
\end{align*}
$$

This implies

$$
\begin{equation*}
\Gamma_{\phi \phi}^{r}=\underline{\underline{-\frac{1}{2}} f^{\prime}(r)} \tag{13}
\end{equation*}
$$

Next consider $\Gamma_{r \phi}^{\delta}$. Since the only nonzero Christoffel symbol has $\delta=\phi$, this implies that $\alpha=\phi$ since the metric is diagonal. This yields

$$
\begin{align*}
g_{\phi \phi} \Gamma_{r \phi}^{\phi} & =\frac{1}{2}\left[\frac{\partial g_{\phi r}}{\partial \phi}+\frac{\partial g_{\phi \phi}}{\partial r}-\frac{\partial g_{r \phi}}{\partial \phi}\right] \\
& =\frac{1}{2} f^{\prime}(r) . \tag{14}
\end{align*}
$$

This implies

$$
\begin{equation*}
\Gamma_{r \phi}^{\phi}=\underline{\underline{\frac{1}{2} \frac{f^{\prime}(r)}{f(r)}}} . \tag{15}
\end{equation*}
$$

By symmetry $\Gamma_{\phi r}^{\phi}=\Gamma_{r \phi}^{\phi}$.
b) The formula for the Ricci tensor is

$$
\begin{equation*}
R_{\alpha \beta}=\partial_{\gamma} \Gamma_{\alpha \beta}^{\gamma}-\partial_{\beta} \Gamma_{\alpha \gamma}^{\gamma}+\Gamma_{\alpha \beta}^{\gamma} \Gamma_{\gamma \delta}^{\delta}+-\Gamma_{\beta \gamma}^{\delta} \Gamma_{\alpha \delta}^{\gamma}, \tag{16}
\end{equation*}
$$

This yields

$$
\begin{align*}
R_{r r} & =\partial_{r} \Gamma_{r r}^{r}-\partial_{r} \Gamma_{r \gamma}^{\gamma}+\Gamma_{r}^{\gamma} \Gamma_{\gamma \delta}^{\delta}-\Gamma_{r \gamma}^{\delta} \Gamma_{r \delta}^{\gamma} \\
& =-\partial_{r} \frac{1}{2} \frac{f^{\prime}(r)}{f(r)}-\frac{1}{4} \frac{\left[f^{\prime}(r)\right]^{2}}{f^{2}(r)} \\
& =-\frac{1-\frac{f^{\prime \prime}(r)}{2(r)}+\frac{1}{4} \frac{\left[f^{\prime}(r)\right]^{2}}{f^{2}(r)}}{} . \tag{17}
\end{align*}
$$

and

$$
\begin{aligned}
R_{\phi \phi} & =\partial_{r} \Gamma_{\phi \phi}^{r}+\Gamma_{\phi \phi}^{r} \Gamma_{r \phi}^{\phi}-2 \Gamma_{\phi \phi}^{r} \Gamma_{\phi r}^{\phi} \\
& =-\underline{\underline{\frac{1}{2}} f^{\prime \prime}(r)+\frac{1}{4} \frac{\left[f^{\prime}(r)\right]^{2}}{f(r)}} .
\end{aligned}
$$

c) We need the inverse metric $g^{\alpha \beta}$ which is easily found by inversion of $\left.g_{\alpha \beta}\right)=\operatorname{diag}(1, f(r))$. We find $g^{\alpha \beta}=\operatorname{diag}(1,1 / f(r))$. This yields

$$
\begin{align*}
R & =g^{\alpha \beta} R_{\alpha \beta} \\
& =R_{r r}+\frac{1}{f(r)} R_{\phi \phi} \\
& =\underline{\underline{\frac{1}{2} \frac{\left.f^{\prime}(r)\right]^{2}}{f(r)}-\frac{f^{\prime \prime}(r)}{f(r)}}} . \tag{18}
\end{align*}
$$

d) Inserting $f(r)=r^{n}$, we find

$$
\begin{equation*}
R=\frac{1}{2} r^{2 n-2}\left[2 n-n^{2}\right] \tag{19}
\end{equation*}
$$

We have $R=0$ for either $n=\underline{\underline{0}}$ or $n=\underline{\underline{2}}$. The case $n=2$ corresponds to flat Euclidean space, where the metric is expressed in polar coordinates. The case $n=0$ corresponds to flat Euclidean space expressed in Cartesian coordinates. In the latter case, the coordinates are defined for the infinite $\operatorname{strip}(r, \phi) \in[0, \infty] \times[0,2 \pi]$. One can trivially extend the coordinates to the entire plane.

Problem 3

a) The other coordinate singularities are given by the zeros of $1-\frac{2 m}{r}+\frac{\varepsilon^{2}}{r^{2}}$. This yields the solutions

$$
\begin{equation*}
r_{ \pm}=\underline{\underline{m} \pm \sqrt{m^{2}-\varepsilon^{2}}} \tag{20}
\end{equation*}
$$

b) The null geodesics are given given by $d s^{2}=0$. Radial geodesics in addition has $d \theta=d \phi=0$ and so we find

$$
\begin{equation*}
-(1-f) d \bar{t}^{2}+2 f d \bar{t} d r+(1+f) d r^{2}=0 \tag{21}
\end{equation*}
$$

One solution is $d \bar{t}=-d r$, which upon integration yields

$$
\begin{equation*}
\bar{t}+r=\text { constant } \tag{22}
\end{equation*}
$$

This is an ingoing light ray since f decreases as \bar{t} increases.
c) By dividing Eq. (21) by $d r$ and completing the square, one finds

$$
\begin{equation*}
\left[\frac{d \bar{t}}{d r}-\frac{f}{1-f}\right]^{2}=\frac{1}{(1-f)^{2}} \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[\frac{d \bar{t}}{d r}-\frac{f}{1-f}\right]= \pm \frac{1}{(1-f)} \tag{24}
\end{equation*}
$$

Solving with respect to $\frac{d \bar{t}}{d r}$, we find $\frac{d \bar{t}}{d r}=-1$ (which corresponds to the solution above) and

$$
\begin{equation*}
\frac{d \bar{t}}{d r}=\underline{\underline{1+f}} . \tag{25}
\end{equation*}
$$

Using the plot of $1-f$ and $1+f$ as functions of r, we conclude that $(1+$ $f) /(1-f)>0$ in region I and the null geodesic is therefore outgoing. In region II, on the other hand, $(1+f) /(1-f)<0$ and so the null geodesic is incoming. In region III $(1+f) /(1-f)>0$ so it is outgoing again. See Fig. 1.
d) This follows directly from properties of the null geodesics in region II and the fact that a particle is always inside the light cone. see Fig. 1. In fact, it can be shown that one can never reach the singularity in $r=0$.
e) No, in region I, the one of the null geodesic is incoming and the other outgoing. Consequently the particles need not fall into the singularity at $r=0$, see Fig. 1 .
f) Inserting $\varepsilon^{2}=\frac{3}{4} m^{2}$ into Eq. (20), we find

$$
\begin{align*}
& r_{+}=\underline{\frac{3}{2} m} \tag{26}\\
& r_{-}=\underline{\underline{\frac{1}{2}} m} \tag{27}
\end{align*}
$$

The quantity is conserved

$$
\begin{equation*}
e=\left(1-\frac{2 M}{r}+\frac{\varepsilon^{2}}{r^{2}}\right) \frac{d t}{d \tau} \tag{28}
\end{equation*}
$$

Using that $\mathbf{u} \cdot \mathbf{u}=-1$

$$
\begin{equation*}
\left(1-\frac{2 m}{r}+\frac{\varepsilon^{2}}{r^{2}}\right)^{-1} e^{2}+\left(1-\frac{2 m}{r}+\frac{\varepsilon^{2}}{r^{2}}\right)^{-1}\left(\frac{d r}{d \tau}\right)^{2}=-1 \tag{29}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
\frac{e^{2}-1}{2}=\frac{1}{2}\left(\frac{d r}{d \tau}\right)^{2}+\frac{1}{2}\left(-\frac{2 m}{r}+\frac{\varepsilon^{2}}{r^{2}}\right) . \tag{30}
\end{equation*}
$$

Starting at rest at $r_{+}=\frac{3}{2} m$ corresponds to $e=0$. Thus the equation can be written as

$$
\begin{equation*}
\left(\frac{d r}{d \tau}\right)=\left(\frac{2 m}{r}-1-\frac{\varepsilon^{2}}{r^{2}}\right)^{\frac{1}{2}} \tag{31}
\end{equation*}
$$

This yields

$$
\Delta \tau=\int_{\frac{1}{2} m}^{\frac{3}{2} m} \frac{d r}{\left(\frac{2 m}{r}-1-\frac{\varepsilon^{2}}{r^{2}}\right)^{\frac{1}{2}}}
$$

$$
\begin{align*}
& =\int_{\frac{1}{2} m}^{\frac{3}{2} m} \frac{r d r}{\left(-(r-m)^{2}+\frac{1}{4} m^{2}\right)^{\frac{1}{2}}} \\
& =m \int_{-\frac{1}{2}}^{\frac{1}{2}} d y \frac{y+1}{\sqrt{-y^{2}+\frac{1}{4}}} . \tag{32}
\end{align*}
$$

where we in the penultimate line have inserted the value $\varepsilon^{2}=\frac{3}{2} m^{2}$ and where we in the last line have defined $y=(r-m) / m$. Finally, we change variable $y=\frac{1}{2} \cos x$ and we obtain

$$
\begin{align*}
\Delta \tau= & m \int_{0}^{\pi}\left[1+\frac{1}{2} \cos x\right] d x \\
& =\underline{\underline{\pi m}} \tag{33}
\end{align*}
$$

This is the same result as for a Schwarzschild black hole where the particle starts at rest at the horizon $r=2 m$ and ends up at the singularity $r=0$.

Figure 1: Null geodesics and light cones for a charged black hole.

