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Aid:
Approved calculator
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Barnett & Cronin: Mathematical Formulae
Angell og Lian: Fysiske størrelser og enheter: navn og symboler. In the
problems, we use c = G = 1.

Problem 1

a) The formulas are

t′ = γ(t− vx) , (1)

x′ = γ(x− vt) , (2)

y′ = y , (3)

z′ = z , (4)

where γ = 1√
1−v2 .
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b) In the frame S ′, the four-momentum of the photon is k′µ = h̄(ω′, 0, k′y, 0).
These are now transformed to the frame S using the inverse transformations.
These can be obtained by replacing v by −v. This yields

ω = γ(ω′ + vk′x)

= γω′ . (5)

kx = γ(k′x + vω′)

= γvω′ . (6)

ky = k′y . (7)

kz = k′z
= 0 . (8)

c) The angle α is given by

tanα =
ky
kx

=
k′y
ω′

1

γv

=
1

γv
, (9)

where we in the last line have used that k′2 = 0 or ω′ = k′y. An angle of π
4

yields the condition

1

γv
= 1 . (10)

Solving this with respect to v, we find

v =
1√
2
. (11)

Problem 2

a) First consider Γδφφ. Since the only nonzero Christoffel symbol has δ = r,
this implies that α = r because the metric is diagonal. Thus one finds

grrΓ
r
φφ =

1

2

[
∂grφ
∂r

+
∂grφ
∂r
− ∂gφφ

∂r

]

= −1

2
f ′(r) . (12)
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This implies

Γrφφ = −1

2
f ′(r) . (13)

Next consider Γδrφ. Since the only nonzero Christoffel symbol has δ = φ, this
implies that α = φ since the metric is diagonal. This yields

gφφΓφrφ =
1

2

[
∂gφr
∂φ

+
∂gφφ
∂r
− ∂grφ

∂φ

]

=
1

2
f ′(r) . (14)

This implies

Γφrφ =
1

2

f ′(r)

f(r)
. (15)

By symmetry Γφφr = Γφrφ.

b) The formula for the Ricci tensor is

Rαβ = ∂γΓ
γ
αβ − ∂βΓγαγ + ΓγαβΓδγδ +−ΓδβγΓ

γ
αδ , (16)

This yields

Rrr = ∂rΓ
r
rr − ∂rΓγrγ + ΓγrrΓ

δ
γδ − ΓδrγΓ

γ
rδ

= −∂r
1

2

f ′(r)

f(r)
− 1

4

[f ′(r)]2

f 2(r)

= −1

2

f ′′(r)

f(r)
+

1

4

[f ′(r)]2

f 2(r)
. (17)

and

Rφφ = ∂rΓ
r
φφ + ΓrφφΓφrφ − 2ΓrφφΓφφr

= −1

2
f ′′(r) +

1

4

[f ′(r)]2

f(r)
.

c) We need the inverse metric gαβ which is easily found by inversion of
gαβ) = diag(1, f(r)). We find gαβ = diag(1, 1/f(r)). This yields

R = gαβRαβ

= Rrr +
1

f(r)
Rφφ

=
1

2

[f ′(r)]2

f (r)
− f ′′(r)

f(r)
. (18)
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d) Inserting f(r) = rn, we find

R =
1

2
r2n−2

[
2n− n2

]
. (19)

We have R = 0 for either n = 0 or n = 2. The case n = 2 corresponds
to flat Euclidean space, where the metric is expressed in polar coordinates.
The case n = 0 corresponds to flat Euclidean space expressed in Cartesian
coordinates. In the latter case, the coordinates are defined for the infinite
strip (r, φ) ∈ [0,∞]× [0, 2π]. One can trivially extend the coordinates to the
entire plane.

Problem 3

a) The other coordinate singularities are given by the zeros of 1− 2m
r

+ ε2

r2
.

This yields the solutions

r± = m±
√
m2 − ε2 . (20)

b) The null geodesics are given given by ds2 = 0. Radial geodesics in
addition has dθ = dφ = 0 and so we find

−(1− f)dt̄2 + 2fdt̄dr + (1 + f)dr2 = 0 . (21)

One solution is dt̄ = −dr, which upon integration yields

t̄+ r = constant . (22)

This is an ingoing light ray since f decreases as t̄ increases.

c) By dividing Eq. (21) by dr and completing the square, one finds[
dt̄

dr
− f

1− f

]2

=
1

(1− f)2
(23)

or [
dt̄

dr
− f

1− f

]
= ± 1

(1− f)
(24)

Solving with respect to dt̄
dr

, we find dt̄
dr

= −1 (which corresponds to the solution
above) and

dt̄

dr
=

1 + f

1− f
. (25)
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Using the plot of 1 − f and 1 + f as functions of r, we conclude that (1 +
f)/(1 − f) > 0 in region I and the null geodesic is therefore outgoing. In
region II, on the other hand, (1 + f)/(1− f) < 0 and so the null geodesic is
incoming. In region III (1 + f)/(1− f) > 0 so it is outgoing again. See Fig.
1.

d) This follows directly from properties of the null geodesics in region II
and the fact that a particle is always inside the light cone. see Fig. 1. In
fact, it can be shown that one can never reach the singularity in r = 0.

e) No, in region I, the one of the null geodesic is incoming and the other
outgoing. Consequently the particles need not fall into the singularity at
r = 0, see Fig. 1.

f) Inserting ε2 = 3
4
m2 into Eq. (20), we find

r+ =
3

2
m . (26)

r− =
1

2
m . (27)

The quantity is conserved

e =

(
1− 2M

r
+
ε2

r2

)
dt

dτ
. (28)

Using that u · u = −1(
1− 2m

r
+
ε2

r2

)−1

e2 +

(
1− 2m

r
+
ε2

r2

)−1 (
dr

dτ

)2

= −1 . (29)

This can be rewritten as

e2 − 1

2
=

1

2

(
dr

dτ

)2

+
1

2

(
−2m

r
+
ε2

r2

)
. (30)

Starting at rest at r+ = 3
2
m corresponds to e = 0. Thus the equation can be

written as (
dr

dτ

)
=

(
2m

r
− 1− ε2

r2

) 1
2

(31)

This yields

∆τ =
∫ 3

2
m

1
2
m

dr(
2m
r
− 1− ε2

r2

) 1
2
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=
∫ 3

2
m

1
2
m

rdr(
−(r −m)2 + 1

4
m2
) 1

2

= m
∫ 1

2

− 1
2

dy
y + 1√
−y2 + 1

4

. (32)

where we in the penultimate line have inserted the value ε2 = 3
2
m2 and where

we in the last line have defined y = (r −m)/m. Finally, we change variable
y = 1

2
cosx and we obtain

∆τ = m
∫ π

0

[
1 +

1

2
cosx

]
dx

= πm . (33)

This is the same result as for a Schwarzschild black hole where the particle
starts at rest at the horizon r = 2m and ends up at the singularity r = 0.

Figure 1: Null geodesics and light cones for a charged black hole.
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