Solutions Exam FY3452 Gravitation and Cosmology Fall 2016

Lecturer: Professor Jens O. Andersen
Department of Physics, NTNU
Phone: 73593131

Monday December 122016
09.00-13.00

Permitted examination support material:
Approved calculator
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett \& Cronin: Mathematical Formulae
Angell og Lian: Fysiske størrelser og enheter: navn og symboler.

Problem 1

a) Taking the differentials, we obtain

$$
\begin{align*}
d t^{\prime} & =\gamma\left(d t-\frac{v}{c^{2}} d x\right) \\
& =\gamma d t\left(1-\frac{v V_{x}}{c^{2}}\right) \tag{1}\\
d V_{x}^{\prime} & =\frac{d V_{x}}{1-\frac{v V_{x}}{c^{2}}}+\frac{V_{x}-v}{\left(1-\frac{v V_{x}}{c^{2}}\right)^{2}} \frac{v}{c^{2}} d V_{x} . \tag{2}
\end{align*}
$$

Dividing Eq. (2) by Eq. (1), we obtain

$$
\begin{equation*}
a_{x}^{\prime}=\frac{\frac{1}{\gamma} \frac{a_{x}}{\left(1-\frac{v V_{x}}{c^{2}}\right)^{2}}+\frac{1}{\gamma} \frac{V_{x}-v}{\left(1-\frac{v V_{x}}{c^{2}}\right)^{3}} \frac{v}{c^{2}} a_{x}}{\underline{~}} \tag{3}
\end{equation*}
$$

If S^{\prime} is the instantaneous rest frame, we have $v=V_{x}$ and Eq. (3) reduces to

$$
\begin{equation*}
a_{x}^{\prime}=\underline{\underline{\gamma^{3} a_{x}}} \tag{4}
\end{equation*}
$$

where we have used that $1-\frac{v V_{x}}{c^{2}}=1-\frac{V_{x}^{2}}{c^{2}}=\frac{1}{\gamma^{2}}$.
b) Since $a_{x}^{\prime}=g$, Eq. (4) can be written as

$$
\begin{equation*}
\frac{d V_{x}}{d t}=g\left(1-\frac{V_{x}^{2}}{c^{2}}\right)^{\frac{3}{2}} . \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d V_{x}}{\left(1-\frac{V_{x}^{2}}{c^{2}}\right)^{\frac{3}{2}}}=g d t . \tag{6}
\end{equation*}
$$

Changing variables, $V_{x}=c \sin u$, we obtain

$$
\begin{equation*}
\frac{c d u}{\cos ^{2} u}=g d t \tag{7}
\end{equation*}
$$

Integrating yields

$$
\begin{equation*}
c \tan u=g t+C, \tag{8}
\end{equation*}
$$

where C is an integration constant.

$$
\begin{equation*}
\frac{V_{x}}{\sqrt{1-\frac{V_{x}^{2}}{c^{2}}}}=g t+C . \tag{9}
\end{equation*}
$$

Solving with respect to V_{x}, this finally yields

$$
\begin{equation*}
V_{x}(t)=\frac{g t+C}{\sqrt{\frac{1+(g t+C)^{2}}{c^{2}}}} . \tag{10}
\end{equation*}
$$

$C=0$ since $V_{x}(0)=0$. Thus

$$
\begin{equation*}
V_{x}(t)=\underline{\underline{\underline{\sqrt{1+\frac{g^{2} t^{2}}{c^{2}}}}}} . \tag{11}
\end{equation*}
$$

The limiting velocity is $V_{\lim }=\underline{\underline{c}}$ as seen from Eq. (11).
c) We have

$$
\begin{align*}
\frac{d \tau}{d t} & =\frac{1}{\gamma} \\
& =\frac{1}{\sqrt{1-\frac{V_{x}^{2}}{c^{2}}}} \\
& =\frac{1}{\sqrt{1+\frac{g^{2} t^{2}}{c^{2}}}} \tag{12}
\end{align*}
$$

Changing variables $t=\frac{c}{g} \sinh u$, we can write

$$
\begin{equation*}
d \tau=\frac{c}{g} d u \tag{13}
\end{equation*}
$$

Integration yields

$$
\begin{align*}
\tau & =\frac{c}{g} \int_{0}^{u} d u+C \\
& =\frac{c}{g} u+C \\
& =\frac{c}{g} \sinh ^{-1}\left(\frac{g}{c} t\right)+K \tag{14}
\end{align*}
$$

where K is an integration constant. $K=0$ since $\tau(0)=0$. This yields

$$
\begin{equation*}
t(\tau)=\underline{\underline{\frac{c}{g} \sinh \left(\frac{g}{c} \tau\right)}} . \tag{15}
\end{equation*}
$$

d) Integrating Eq. (11), we find

$$
\begin{equation*}
x(t)=\frac{c^{2}}{g}\left[\sqrt{1+\frac{g^{2} t^{2}}{c^{2}}}-1\right] \tag{16}
\end{equation*}
$$

where we have used that $x(\tau=0)=x(t=0)=0$. Substituting Eq. into Eq. (16), we finally obtain

$$
\begin{equation*}
x(\tau)=\frac{c^{2}}{g}\left[\cosh \left(\frac{g}{c} \tau\right)-1\right] \tag{17}
\end{equation*}
$$

e) Taking the differentials of t and x yields

$$
\begin{align*}
& d t=\frac{1}{c} \sinh \left(\frac{g t^{\prime}}{c}\right) d x^{\prime}+\left(\frac{c}{g}+\frac{x^{\prime}}{c}\right) \cosh \left(\frac{g t^{\prime}}{c}\right) \frac{g}{c} d t^{\prime} \tag{18}\\
& d x=\cosh \left(\frac{g t^{\prime}}{c}\right) d x^{\prime}+c\left(\frac{c}{g}+\frac{x^{\prime}}{c}\right) \sinh \left(\frac{g t^{\prime}}{c}\right) \frac{g}{c} d t^{\prime} \tag{19}
\end{align*}
$$

Inserting these expressions into the line element and using $d y=d y^{\prime}$ and $d z=d z^{\prime}$, we find

$$
\begin{align*}
d s^{2} & =-c^{2} d t^{2}+d x^{2}+d y^{2}+d z^{2} \\
& =-c^{2} d t^{\prime 2}\left(1+\frac{g x^{\prime}}{c^{2}}\right)^{2}+d x^{\prime 2}+d y^{\prime 2}+d z^{\prime 2} \tag{20}
\end{align*}
$$

f) Since the line element is independent of time, the vector $\xi=(1,0,0,0)$ is a Killing vector. The quantity $\boldsymbol{\xi} \cdot \boldsymbol{p}$ is a conserved quantity along a geodesic.
g) A stationary observer with spatial coordinates $(h, 0,0)$ has four-velocity vector

$$
\begin{align*}
\boldsymbol{u} & =\left(\left(1+\frac{g x^{\prime}}{c^{2}}\right)^{-1}, 0,0,0\right) \\
& =\left(1+\frac{g x^{\prime}}{c^{2}}\right)^{-1} \boldsymbol{\xi} \tag{21}
\end{align*}
$$

The energy of a photon with four-momentum \boldsymbol{p} and frequency ω is $\hbar \omega=$ $-\boldsymbol{p} \cdot \boldsymbol{u}_{\text {obs }}$. This yields

$$
\begin{equation*}
\hbar \omega=-\left(1+\frac{g x^{\prime}}{c^{2}}\right)^{-1} \boldsymbol{\xi} \cdot \boldsymbol{p} \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
\hbar \omega\left(1+\frac{g x^{\prime}}{c^{2}}\right)=-\boldsymbol{\xi} \cdot \boldsymbol{p} \tag{23}
\end{equation*}
$$

The energy of a photon emitted at $x^{\prime}=h$ is denoted by $\hbar \omega_{h}$ and the energy of the same photon absorbed at $x^{\prime}=h$ is denoted by $\hbar \omega_{0}$. Eq. (23) then gives

$$
\begin{equation*}
\omega_{0}=\underline{\underline{\omega_{h}\left(1+\frac{g h}{c^{2}}\right)}}, \tag{24}
\end{equation*}
$$

since $\boldsymbol{\xi} \cdot \boldsymbol{p}$ is constant along the photon's geodesic.
According to the equivalence principle acceleration is equivalent to a gravitional field. The blueshift of the photon is an example of this principle.

Problem 2

a) Subtracting one-third of the first Friedman equation from the second Friedman equation gives

$$
\begin{equation*}
\ddot{a}=\underline{\underline{-\frac{4 \pi}{3} a \rho_{m}+\frac{1}{3} a \Lambda}} . \tag{25}
\end{equation*}
$$

where we have used that the pressure p vanishes.
b) For a time-independent solution, we have $\dot{a}=\ddot{a}=0$. Equation (25), then yields

$$
\begin{equation*}
\rho_{m}^{c}=\underline{\underline{\frac{\Lambda}{4 \pi}}} . \tag{26}
\end{equation*}
$$

For a static solution the first Friedman equation reduces to

$$
\begin{equation*}
3 \frac{1}{a_{c}^{2}}=8 \pi \rho_{m}^{c}+\Lambda \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{c}=\underline{\underline{\frac{1}{\sqrt{\Lambda}}}} . \tag{28}
\end{equation*}
$$

c) We write $a=a_{c}+\delta a$. Note that $\dot{a}=\frac{d}{d t} \delta a$ and $\ddot{a}=\frac{d^{2}}{d t^{2}} \delta a$ since a_{c} is constant in time. For $p=0$, the second Friedman equation can be rewritten as

$$
\begin{equation*}
2 \ddot{a} a+\dot{a}^{2}+1=\Lambda a^{2} . \tag{29}
\end{equation*}
$$

To first order in the perturbation, Eq. (29) reads

$$
\begin{equation*}
2 a \frac{d^{2}}{d t^{2}} \delta a+1=\Lambda\left(a_{c}^{2}+2 a_{c} \delta a\right) \tag{30}
\end{equation*}
$$

Using the result for a_{c}, we find

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \delta a=\underline{\underline{\Lambda \delta a}} \tag{31}
\end{equation*}
$$

which corresponds to $B=\Lambda$. This is a second-order differential equation for δa, whose solution is

$$
\begin{equation*}
\delta a=A_{1} e^{\sqrt{\Lambda} t}+A_{2} e^{-\sqrt{\Lambda} t} \tag{32}
\end{equation*}
$$

where A_{1} and A_{2} are constants. The perturbation is growing and so the static Einstein universe is unstable. It is the sign of B that determines the stability of the solution. For $B<0$, the solution for δa would involve trigonometric functions and so the universe would oscillate around the equilibrium solution.

