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Problem 1

a) The singularities are r = 0 and r = M . In analogy with the Schwarzschild we expect
r = 0 to be a physical singularity and R = M to be a coordinate singularity. No proof is
required, but the latter is shown in e).

b) Since the metric is indenpendent of t and φ, there are (at least) two Killing vectors.
These are

ξ = (1, 0, 0, 0) , η = (0, 0, 0, 1) . (1)
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The associated conserved quantities are u · ξ and u · η

e = −u · ξ =

(
1− M

r

)2 dt

dτ
, l = u · η = r2 sin2 θ

dφ

dτ
. (2)

Time independence implies energy conservation, while independence of φ implies conserva-
tion of the z-component of the angular momentum. Hence, e and l are energy and angular
momentum per unit mass, respectively.

c) The motion is confined to a plane and the coordinate system is chosen such that θ = π
2 .

We first write use the normalization of the four-velocity of the particle as

−1 = u · u

= −
(

1− M

r

)2( dt
dτ

)2

+

(
1− M

r

)−2(dr
dτ

)2

+ r2

(
dφ

dτ

)2

. (3)

Eliminating dt
dτ and dφ

dτ in favor of e and l, we can write

−
(

1− M

r

)−2

e2 +

(
1− M

r

)−2(dr
dτ

)2

+
r2

l2
= −1 . (4)

This can be rewritten as

e2 − 1

2
=

1

2

(
dr

dτ

)2

+ Veff(r) , (5)

where

Veff(r) =
1

2

[(
1− M

r

)2( l2
r2

+ 1

)
− 1

]
. (6)

d) A particle starting at rest at r = ∞ has e = 1. Since it is falling radially inwards, it
has l = 0. The minimum radius is obtained when dr

dτ = 0 and so rmin satisfies the equation
Veff(rmin) = 0. This yields [(

1− M

rmin

)2

− 1

]
= 0 , (7)

whose solution is

rmin =
1

2
M . (8)

For a particle with e = 1, we find

dr

dτ
= −

√
1−

(
1− M

r

)2

, (9)
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where we chosen the minus sign since the particle is moving inwards. This yields

∆τ = −
∫ 1

2
M

M

dr√
1−

(
1− M

r

)2
=

2

3
m . (10)

e) The line element can be written as

ds2 = −
(

1− M

r

)2
[
dt2 − dr2(

1− M
r

)4
]

+ r2dΩ2

= −
(

1− M

r

)2
[
dt+

dr(
1− M

r

)2
][

dt− dr(
1− M

r

)2
]

+ r2dΩ2

= −
(

1− M

r

)2 [
dt̃+ dr

] [
dt̃+ dr − 2dr(

1− M
r

)2
]

+ r2dΩ2 . (11)

The radial light rays satisfy ds2 = 0, which yields

dt̃+ dr = 0 , (12)

dt̃+ dr − 2dr(
1− M

r

)2 = 0 , (13)

The first equation gives t̃+ r = constant, which corresponds to incoming light. The second
equation gives

dt̃

dr
=

2(
1− M

r

)2 − 1 . (14)

This is an outgoing curve for r > M . It also an outgoing curve for M > r > M√
2+1

, but

it never crosses r = M since dt̃
dr diverges as r → M−1. Light can therefore cross from the

region r > M to the region r < M but not from r < M to r > M . The line element
therefore describes the geometry of a black hole. These curves are sketched in Fig. 1.

f) Substituting dt̃ = dv − dr, the line element now becomes

ds2 = −
(

1− M

r

)2

dt2 + 2dvdr + r2dΩ2 . (15)
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Figure 1: (t̃, r) diagram.

g) We need to calculate

Ω =
dφ

dt

= =
dφ

dτ

dτ

dt

=
l

r2

(1− M
r )2

e
. (16)

A stable circular orbit with radius r has dr
dτ = 0 where r is a minimum of the effective

potential. It therefore satisfies

e2 − 1

2
= Veff(r) , (17)

V ′eff(r) = 0 . (18)

This yields

l2

e2
=

Mr(
1− M

r

)3 . (19)

Inserting Eq. (19) into Eq. (16), we find

Ω2 =
M

r3

(
1− M

r

)
. (20)

In contrast to the Schwarzschild spacetime, this result is not of the same form as Kepler’s
third law.

h) The four-velocity of the stationary observer is

uobs =

(
1

1− M
r

, 0, 0, 0

)
=

1

1− M
r

ξ . (21)
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The energy of the photon is E = ~ω = −p · uobs, where p is the four-momentum of the
photon. Since ξ · p is constant along the photon’s trajectory, we find

~ω
(

1− M

r

)
= ξ · p

= constant . (22)

This yields

ω∞ = ωA

(
1− M

r

)
. (23)

In the limit rA →M , the redshift is infinite.

Problem 2

a) The Lagrangian for the geodesic is given by

L =

√
−X2

(
dT

dσ

)2

+

(
dX

dσ

)2

. (24)

Using the Euler-Lagrange equations and the fact that L = dτ
dσ , we get the geodesic equations

d

dτ

(
X2dT

dτ

)
= 0 , (25)

d2X

dτ2
+X

(
dT

dτ

)2

= 0 . (26)

We can then read off the nonzero Christoffel symbols

ΓTTX = ΓTXT =
1

X
, (27)

ΓXTT = X . (28)

b) We first consider RTT , which equals

RTT = ∂γΓγTT − ∂TΓγTγ + ΓγTTΓδγδ − ΓδTγΓγTδ

= ∂XΓXTT + ΓXTTΓδXδ − ΓδTTΓTTδ − ΓδTXΓXTδ

= ∂XX +X
1

X
−X 1

X
−X 1

X
= 0 . (29)

We can calculate the RXX in the same way and find RXX = 0. This trivially yields R = 0.
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c) Yes, the line element describes Minkowski space. By introducing the coordinates x and
t via

t = X sinhT , (30)

x = X coshT , (31)

the line element becomes

ds2 = −dt2 + dx2 . (32)

Problem 3

a) The vector field Aα satisfies the equation

dAα

dσ
+ ΓαβγA

β dx
γ

dσ
= 0 , (33)

where Γαβγ is the Christoffel symbol and dxγ

dσ is the γ-component of the tangent vector to

the curve parametrized by the parameter σ. Set Aβ = dxβ

dσ and we find

d2xα

dσ2
+ Γαβγ

dxβ

dσ

dxγ

dσ
= 0 , (34)

Thus a geodesic is a curve, whose tangent vector is being parallel transported along the
curve.

b) The second term in the covariant derivative is

Γδαγgβδ =
1

2
gδρ
[
∂gαρ
∂xγ

+
∂gγρ
∂xα

− ∂gαγ
∂xρ

]
gβδ

=
1

2
δρβ

[
∂gαρ
∂xγ

+
∂gγρ
∂xα

− ∂gαγ
∂xρ

]
=

1

2

[
∂gαβ
∂xγ

+
∂gγβ
∂xα

− ∂gαγ
∂xβ

]
. (35)

The third term can be found by swapping α and β,

Γδβγgαδ =
1

2

[
∂gαβ
∂xγ

+
∂gγα
∂xβ

−
∂gβγ
∂xα

]
. (36)

Adding the first term ∂γgαβ to Eqs. (35)–(36), we find

∇γgαβ = 0 . (37)

The metric tensor is covariant constant.
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Problem 4

a) Isotropic means that the universe looks the same in all directions from a given point
in space, while homogeneous means that the the universe looks the same from every point
in the universe. If the universe is globally isotropic, it is isotropic around every point. These
concepts are not equivalent. A constant magnetic field breaks isotropy, but the universe
can never the be homogeneous.

k = 0 corresponds to flat three-dimensional Euclidean space. k = 1 corresponds to the
geometry of a 3-sphere embedded in a four-dimensional Euclidean space. k = −1 corre-
sponds to a three-dimensional hyperboloid embedded in flat four-dimensional Minkowski
space.

b) a(t) is the socalled scale factor. Once a(t) is determined, the dynamics of the homo-
geneous and isotropic universe models are completely determined. The scale factor in a

universe wiht only constant positve vacuum energy is an exponential, a(t) ∼ e
√

Λt. The
universe is expanding exponentially, which is referred to as inflation.

7


