Solutions Exam FY3452 Gravitation and Cosmology fall 2018

Lecturer: Professor Jens O. Andersen
Department of Physics, NTNU
Phone: 46478747 (mob)
Wednesday November 302010
09.00-13.00

Permitted examination support material:
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett \& Cronin: Mathematical Formulae
Angell og Lian: Fysiske størrelser og enheter: navn og symboler

Problem 1

a) Since the four-velocity vector $\mathbf{u}=\left(\frac{d t}{d \tau}, \frac{d x}{d \tau}, 0,0\right)$ is normalized $\mathbf{u} \cdot \mathbf{u}=-c^{2}$, we find

$$
\begin{align*}
\frac{d x}{d \tau} & =\sqrt{c^{2}\left(\frac{d t}{d \tau}\right)^{2}-c^{2}} \\
& =\underline{\underline{c \sinh \left(\frac{g}{c} \tau\right)}} . \tag{1}
\end{align*}
$$

Integration of $\frac{d t}{d \tau}$ gives

$$
\begin{equation*}
t(\tau)=\frac{c}{g} \sinh \left(\frac{g}{c} \tau\right)+t_{0} \tag{2}
\end{equation*}
$$

where t_{0} is an integration constant. Using $t(0)=0$, we find $t_{0}=0$ and

$$
\begin{equation*}
t(\tau)=\underline{\frac{c}{g} \sinh \left(\frac{g}{c} \tau\right)} . \tag{3}
\end{equation*}
$$

Integrating Eq. (1)

$$
\begin{equation*}
x(\tau)=\frac{c^{2}}{g} \cosh \left(\frac{g}{c} \tau\right)+x_{0} \tag{4}
\end{equation*}
$$

where x_{0} is an integration constant. Using that $x(0)=0$, we find $x_{0}=-\frac{c^{2}}{g}$, which finally gives

$$
\begin{equation*}
x(\tau)=\underline{\underline{\frac{c^{2}}{g}\left[\cosh \left(\frac{g}{c} \tau\right)-1\right]}} . \tag{5}
\end{equation*}
$$

From Eqs. (3) and (5), we obtain

$$
\begin{equation*}
\left[x(\tau)+\frac{c^{2}}{g}\right]^{2}-c^{2} t^{2}(\tau)=\frac{c^{4}}{g^{2}} \tag{6}
\end{equation*}
$$

which is the equation for a hyperbola.
b) The equation for the light ray is $x(t)=c\left(t-t_{0}\right)$. The position of the spaceship NTNU2018 is obtained from Eq. (6) and reads $x=\left(\sqrt{c^{2} t^{2}+\frac{c^{4}}{g^{2}}}-\frac{c^{2}}{g}\right)$. Equating the two expressions, we find the time t when the signal is received. This yields

$$
\begin{equation*}
c\left(t-t_{0}\right)=\sqrt{c^{2} t^{2}+\frac{c^{4}}{g^{2}}}-\frac{c^{2}}{g} . \tag{7}
\end{equation*}
$$

Solving for t, we find

$$
\begin{equation*}
t=\underline{\underline{\frac{1}{2} \frac{t_{0}^{2}-2 \frac{c}{g} t_{0}}{t_{0}-\frac{c}{g}}}} . \tag{8}
\end{equation*}
$$

This is a positive function in the interval $t_{0} \in\left(0, \frac{c}{g}\right)$. The time t diverges as $t_{0} \rightarrow \frac{c}{g}$ from below showing that for $t_{0} \geq \frac{c}{g}$ the light signal will never reach the spaceship. In Fig. 1, we have plotted the time t of the spaceship in units of $\frac{c}{g}$ (orange line) as a function of x in units of $\frac{c^{2}}{g}$. The red line is the worldline of a photon for $t_{0}=\frac{1}{2} \frac{c}{g}$. The intercept of these curves gives the position and time of reception of a light signal. The yellow area shows the part of spacetime where no light signal can reach the spaceship. This area is bounded by the straight line $x=c\left(t-\frac{c}{g}\right)$ and therefore acts as a horizon.

Figure 1: Hyperbolic motion and light signal.

Problem 2

a) The Hermitian cunjugate of γ^{5} is

$$
\left(\gamma^{5}\right)^{\dagger}=-i\left(\gamma^{3}\right)^{\dagger}\left(\gamma^{2}\right)^{\dagger}\left(\gamma^{1}\right)^{\dagger}\left(\gamma^{0}\right)^{\dagger}
$$

Using $\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$ and that $\gamma^{\mu} \gamma^{\nu}=-\gamma^{\nu} \gamma^{\mu}$, we can write

$$
\begin{align*}
\left(\gamma^{5}\right)^{\dagger} & =-i\left(\gamma^{0} \gamma^{3} \gamma^{0}\right)\left(\gamma^{0} \gamma^{2} \gamma^{0}\right)\left(\gamma^{0} \gamma^{1} \gamma^{0}\right)\left(\gamma^{0} \gamma^{0} \gamma^{0}\right)=-i \gamma^{0} \gamma^{3} \gamma^{2} \gamma^{1} \\
& =-i \gamma^{0} \gamma^{1} \gamma^{3} \gamma^{2}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \\
& =\underline{\underline{\gamma^{5}}} . \tag{9}
\end{align*}
$$

Thus γ^{5} is Hermitean.
Since $\mu=0,1,2$ or $3, \gamma^{\mu}$ commute with one of the matrices in γ^{5} and anticommute with the remaining three. We therefore get an overall minus sign as we pull γ^{μ} to the left and we find

$$
\begin{align*}
\gamma^{5} \gamma^{\mu} & =\left(i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}\right) \gamma^{\mu} \\
& =-\gamma^{\mu}\left(i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}\right) \\
& =-\gamma^{\mu} \gamma^{5} . \tag{10}
\end{align*}
$$

In other words, γ^{5} anticommutes with γ^{μ} :

$$
\begin{equation*}
\left\{\gamma^{5}, \gamma^{\mu}\right\}=\underline{\underline{0}} . \tag{11}
\end{equation*}
$$

b) Since $\bar{\psi}=\psi^{\dagger} \gamma^{0}$, it transforms as

$$
\begin{equation*}
\bar{\psi} \rightarrow \psi^{\dagger} e^{i \alpha \gamma^{5}} \gamma^{0}=\psi^{\dagger} \gamma^{0} e^{-i \alpha \gamma^{5}}=\underline{\underline{\bar{\psi} e^{-i \alpha \gamma^{5}}}} \tag{12}
\end{equation*}
$$

where we have used that γ^{5} anticommutes with γ^{0}. The kinetic term then transforms as

$$
\begin{aligned}
i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi & \rightarrow i \bar{\psi} e^{-i \alpha \gamma^{5}} \gamma^{\mu} \partial_{\mu} \psi e^{-i \alpha \gamma^{5}} \\
& =i \bar{\psi} e^{-i \alpha \gamma^{5}} e^{i \alpha \gamma^{5}} \gamma^{\mu} \partial_{\mu} \psi \\
& =i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi,
\end{aligned}
$$

where we have used that γ^{5} anticommutes with γ^{μ}. Hence the kinetic term is invariant under chiral transformations. The mass term transforms as

$$
\begin{equation*}
m \bar{\psi} \psi \rightarrow m \bar{\psi} e^{-2 i \alpha \gamma^{5}} \psi \tag{13}
\end{equation*}
$$

which is not invariant. The Lagrangian is therefore invariant for $m=0$.
c) Under infinitesimal chiral transformations we can write

$$
\begin{align*}
\delta \psi & =-i \alpha \gamma^{5} \psi \tag{14}\\
\delta \bar{\psi} & =-i \alpha \gamma^{5} \bar{\psi} \tag{15}
\end{align*}
$$

which yields the deformations $\Delta \psi=\Delta \bar{\psi}=-i \gamma^{5} \psi$. Furthermore, the partial derivatives are

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)}=i \bar{\psi} \gamma^{\mu} \tag{16}\\
& \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \bar{\psi}\right)}=0 \tag{17}
\end{align*}
$$

Using Eq. (24) in Useful formulas, the conserved current becomes

$$
\begin{equation*}
j^{\mu}=\underline{\underline{\psi} \gamma^{\mu} \gamma^{5} \psi} . \tag{18}
\end{equation*}
$$

This current is called the axial current since it is a pseuduvector under parity.

Problem 3

a) The Christoffel symbols are

$$
\begin{align*}
\Gamma_{\beta \gamma}^{\alpha} & =\frac{1}{2} g^{\alpha \mu}\left[\partial_{\beta} g_{\mu \gamma}+\partial_{\gamma} g_{\mu \beta}-\partial_{\mu} g_{\beta \gamma}\right] \\
& =\frac{1}{2} \eta^{\alpha \mu}\left[\partial_{\beta} h_{\mu \gamma}+\partial_{\gamma} h_{\mu \beta}-\partial_{\mu} h_{\beta \gamma}\right] \\
& =\underline{\underline{\frac{1}{2}\left[\partial_{\beta} h_{\gamma}^{\alpha}+\partial_{\gamma} h_{\beta}^{\alpha}-\partial^{\alpha} h_{\beta \gamma}\right]}} \tag{19}
\end{align*}
$$

where we in the penultimate line have made the approximation $g^{\alpha \mu}=\eta^{\alpha \mu}$ since the derivative terms $\partial_{\alpha} g_{\beta \gamma}=\partial_{\alpha} h_{\beta \gamma}$ are of first order. This approximation is used in the remainder.
b) The Riemann curvature tensor is defined as

$$
\begin{equation*}
R_{\mu \beta \nu}^{\alpha}=\partial_{\beta} \Gamma^{\alpha}{ }_{\mu \nu}-\partial_{\nu} \Gamma^{\alpha}{ }_{\mu \beta}+\Gamma_{\beta \delta}^{\alpha} \Gamma^{\delta}{ }_{\mu \nu}-\Gamma_{\nu \delta}^{\alpha} \Gamma^{\delta}{ }_{\mu \beta} . \tag{20}
\end{equation*}
$$

The products of the Christoffel symbols will be second order in $h_{\alpha \beta}$ and therefore we can write

$$
\begin{align*}
R_{\mu \beta \nu}^{\alpha} & =\frac{1}{2} \partial_{\beta}\left[\partial_{\nu} h_{\mu}^{\alpha}+\partial_{\mu} h_{\nu}^{\alpha}-\partial^{\alpha} h_{\mu \nu}\right]-\frac{1}{2} \partial_{\nu}\left[\partial_{\beta} h_{\mu}^{\alpha}+\partial_{\mu} h_{\beta}^{\alpha}-\partial^{\alpha} h_{\mu \beta}\right] \\
& =\underline{\underline{\frac{1}{2}\left[\partial_{\beta} \partial_{\mu} h_{\nu}^{\alpha}+\partial_{\nu} \partial^{\alpha} h_{\beta \mu}-\partial_{\beta} \partial^{\alpha} h_{\mu \nu}-\partial_{\nu} \partial_{\mu} h_{\beta}^{\alpha}\right]}} . \tag{21}
\end{align*}
$$

c) Contracting α and β, we find the Ricci curvature tensor

$$
\begin{equation*}
R_{\mu \nu}=\underline{\underline{\frac{1}{2}}\left[\partial_{\mu} \partial_{\rho} h_{\nu}^{\rho}+\partial_{\nu} \partial_{\rho} h_{\mu}^{\rho}-\partial_{\mu} \partial_{\nu} h+\square h_{\mu \nu}\right]}, \tag{22}
\end{equation*}
$$

where $h=h^{\rho}{ }_{\rho}$ and $\square=-\partial_{\rho} \partial^{\rho}$.
d) The Ricci scalar is

$$
\begin{align*}
R & =\eta^{\mu \nu} R_{\mu \nu} \\
& =\underline{\underline{\square h+\partial_{\mu} \partial_{\nu} h^{\mu \nu}}} . \tag{23}
\end{align*}
$$

e) The coordinate transformation implies

$$
\begin{equation*}
\frac{\partial x^{\prime \mu}}{\partial x^{\alpha}}=\delta_{\alpha}^{\mu}+\partial_{\alpha} \xi^{\mu} \tag{24}
\end{equation*}
$$

This can be inverted

$$
\begin{equation*}
\frac{\partial x^{\mu}}{\partial x^{\prime \alpha}}=\delta_{\alpha}^{\mu}-\partial_{\alpha} \xi^{\mu} \tag{25}
\end{equation*}
$$

which yields

$$
\begin{align*}
g_{\mu \nu}^{\prime} & =\eta_{\mu \nu}+h_{\mu \nu}^{\prime} \\
& =\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} g_{\alpha \beta} \\
& =\left(\delta_{\mu}^{\alpha}-\partial^{\alpha} \xi_{\mu}\right)\left(\delta_{\nu}^{\beta}-\partial^{\beta} \xi_{\nu}\right)\left(\eta_{\alpha \beta}+h_{\alpha \beta}\right) \\
& =\eta_{\mu \nu}+h_{\mu \nu}-\partial_{\mu} \xi_{\nu}-\partial_{\nu} \xi_{\mu} \tag{26}
\end{align*}
$$

and therefore

$$
\begin{equation*}
h_{\mu \nu}^{\prime}=\underline{\underline{h_{\mu \nu}-\partial_{\mu} \xi_{\nu}-\partial_{\nu} \xi_{\mu}}} \tag{27}
\end{equation*}
$$

f) The transformed field is now

$$
\begin{equation*}
\bar{h}^{\prime \mu \nu}=\bar{h}^{\mu \nu}-\partial^{\mu} \xi^{\nu}-\partial^{\nu} \xi^{\mu}+\eta^{\mu \nu} \partial_{\alpha} \xi^{\alpha} . \tag{28}
\end{equation*}
$$

Consider the equation

$$
\begin{equation*}
\partial_{\mu} \bar{h}^{\prime \mu \nu}=0 \tag{29}
\end{equation*}
$$

From Eq. (28), this is equivalent to the equation

$$
\begin{equation*}
\partial_{\mu} \bar{h}^{\mu \nu}-\partial_{\mu} \partial^{\mu} \xi^{\nu}=0 \tag{30}
\end{equation*}
$$

This equation always has a solution for any reasonably behaved $\bar{h}^{\mu \nu}$ and so we can always use the Lorentz gauge. The field equation is

$$
\begin{equation*}
\frac{1}{2}\left[\partial_{\mu} \partial_{\delta} \bar{h}_{\nu}^{\delta}+\partial_{\nu} \partial_{\delta} \bar{h}_{\nu}^{\delta}+\square \bar{h}_{\mu \nu}\right]-\frac{1}{2} \eta_{\mu \nu} \partial^{\delta} \partial^{\gamma} \bar{h}_{\delta \gamma}=0 . \tag{31}
\end{equation*}
$$

Imposing the Lorentz gauge, trivially gives

$$
\begin{equation*}
\square \bar{h}^{\prime \mu \nu}=0 . \tag{32}
\end{equation*}
$$

g) Inserting the plane wave into Eq. (32), we find

$$
\begin{equation*}
\square A^{\mu \nu} e^{-i k_{\alpha} x^{\alpha}}=A^{\mu \nu} e^{-i k_{\alpha} x^{\alpha}} k^{2}, \tag{33}
\end{equation*}
$$

and is a solution for $k^{2}=0$, i.e. the wavevector is a null vector. The gauge condition yields

$$
\begin{equation*}
\partial_{\mu} A^{\mu \nu} e^{-i k_{\alpha} x^{\alpha}}=i k_{\mu} A^{\mu \nu} e^{-i k_{\alpha} x^{\alpha}} . \tag{34}
\end{equation*}
$$

or $k_{\mu} A^{\mu \nu}=0$, implying that the wave vector is transverse.
h) The gauge condition $A_{\alpha \beta}^{(T T)} \delta_{0}^{\beta}=A_{\alpha 0}^{(T T)}=0$ implies that the entries of first row and column of the matrix $A^{(T T)}$ vanish. Furthermore, transversality yields

$$
\begin{align*}
k^{\alpha} A_{\alpha \beta}^{(T T)} & =k^{0} A_{0 \beta}^{(T T)}+k^{z} A_{z \beta}^{(T T)}=\omega\left(A_{0 \beta}^{(T T)}+A_{z \beta}^{(T T)}\right) \\
& =\omega A_{z \beta}^{(T T)}=0, \tag{35}
\end{align*}
$$

This implies that the entries of last row and column of the matrix A vanish. We are now left with four entries. Symmetry of A leaves us with $A_{x y}^{(T T)}=A_{y x}^{(T T)}$ and three independent entries. Finally, the traceless condition implies that $A_{x x}^{(T T)}+A_{y y}^{(T T)}=0$. We can therefore write

$$
A_{\mu \nu}^{T T}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{36}\\
0 & A_{x x}^{(T T)} & A_{x y}^{(T T)} & 0 \\
0 & A_{x y}^{(T T)} & -A_{x x}^{(T T)} & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

where $A_{x x}^{(T T)}$ and $A_{x y}^{(T T)}$ are two independent constant.

