NTNU Trondheim, Institutt for fysikk

Examination for FY3452 Gravitation and Cosmology

Contact: M. Kachelrieß, tel. 99890701
Allowed tools: all

1. Gravitational waves.

a.) How many independent components has a metric perturbation $h_{\mu \nu}$ described by the wave equation in the harmonic gauge:
■ 5

- 6
$\square \quad 10$
- 16
b.) Consider the gravitational wave produced by a binary system of two equal masses M on a circular orbit in the $x y$ plane which is seen by three observers at large distance on the x axis, the y axis and the z axis. Determine the observed polarisiation by expressing the wave as $h_{\mu \nu}=\sum_{a} h^{(a)} \varepsilon_{\mu \nu}^{(a)}$, where $\varepsilon_{\mu \nu}^{(a)}$ is an appropriate basis of the polarisation states. (12 pts)
a.) The harmonic gauge imposes 4 constraints, leaving 6 independent components in the metric perturbation $h_{\mu \nu}$.
b.) In exercise sheet 9 , we found

$$
\bar{h}_{i j}(t, \boldsymbol{x})=\frac{8 G M}{r}(\Omega R)^{2}\left(\begin{array}{ccc}
\cos 2 \Omega t_{r} & \sin 2 \Omega t_{r} & 0 \\
\sin 2 \Omega t_{r} & -\cos 2 \Omega t_{r} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

for the gravitational field of the binary. The general procedure to transform the amplitude into TT form is : Set the non-transverse components zo zero, and subtract half the resulting trace. In the TT gauge, we can use then $\bar{h}_{i j}^{\mathrm{TT}}=h_{i j}^{\mathrm{TT}}$.
For an observer along the z direction, the results is already in the TT gauge, which we can express as

$$
h_{\mu \nu}^{\mathrm{tt}} \propto \Re\left[\left(\varepsilon_{\mu \nu}^{(1)}-\mathrm{i} \varepsilon_{\mu \nu}^{(2)}\right) \exp \left(2 \mathrm{i} \Omega t_{r}\right)\right] .
$$

This corresponds to a right-handed circularly polarized wave, $\varepsilon_{\mu \nu}^{(-)}=\varepsilon_{\mu \nu}^{(1)}-\mathrm{i} \varepsilon_{\mu \nu}^{(2)}$.
Next we consider an observer on the x axis. Transforming to the TT form, we obtain

$$
\bar{h}_{i j}(t, \boldsymbol{x})=\frac{8 G M}{r}(\Omega R)^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\cos 2 \Omega t_{r} & 0 \\
0 & 0 & \cos 2 \Omega t_{r}
\end{array}\right) .
$$

This corresponds to a linearly polarized wave, $\propto \varepsilon_{\mu \nu}^{(1)}$ (with shifted diagonal elements).

2. Schwarzschild black hole.

The Riemann tensor in Schwarzschild coordinates is

$$
\begin{align*}
R_{0101} & =\frac{2 M}{r^{3}}, \quad R_{0202}=R_{0303}=-\frac{M}{r^{3}}, \tag{1}\\
R_{1212} & =R_{1313}=\frac{M}{r^{3}}, \tag{2}\\
R_{2323} & =-\frac{2 M}{r^{3}}, \tag{3}
\end{align*}
$$

all other elements which cannot be obtained by its (anti-) symmetry properties are zero. a.) Show that the Riemann tensor in the inertial system of a freely falling observer has the same form as given above.
b.) The distance n^{i} of two freely falling particles changes as

$$
\ddot{n}^{i}=R^{i}{ }_{00 j} n^{j} .
$$

Consider now a cube with mass m assumed to be a rigid body of length L. What are the forces and the stresses acting on the cube at the distance r ? [Hint: Consider in (a Newtonian picture) the force which has to counter-balance the gravitational acceleration of a mass element $\mathrm{d} m$ of the rigid body.]
c.) Evaluate numerically the stress for values appropriate for a human.

The freely-falling frame and the standard Schwarschild coordinates are connnected by a Lorentz transformation. For a boost η, it is

$$
R_{0101}^{\prime}=\Lambda_{0}^{\mu} \Lambda^{\nu}{ }_{1} \Lambda_{0}^{\sigma} \Lambda^{\rho}{ }_{1} R_{\mu \nu \sigma \rho}=(\underbrace{\cosh ^{4} \eta}_{0101}-\underbrace{2 \cosh ^{2} \eta \sinh ^{2} \eta}_{1001,0110}+\underbrace{\sinh ^{4} \eta}_{1010}) R_{0101}=R_{0101},
$$

and similarly for the other non-zero elements.
b.) Inserting the Riemann tensor, it is

$$
\begin{align*}
& \ddot{n}^{1}=\frac{2 M}{r^{3}} n^{1} \tag{4}\\
& \ddot{n}^{2}=-\frac{M}{r^{3}} n^{2} \tag{5}\\
& \ddot{n}^{3}=-\frac{M}{r^{3}} n^{3} \tag{6}
\end{align*}
$$

A volume element $\mathrm{d} m$ at the height h above the center-of-mass (in direction x^{1} would be acclerated by $a=2 M / r^{3} h$ relative to the center-of-mass, if it could move freely. To prevent this, the force

$$
\mathrm{d} F=a \mathrm{~d} m=\frac{2}{M} r^{3} h \mathrm{~d} m
$$

has to counter-act on the mass element. The total force along the plane is

$$
F=\int_{0}^{L / 2} \mathrm{~d} L L^{2} \frac{2}{M} r^{3} \frac{m}{L^{3}}=\frac{m M l}{4 r^{3}}
$$

with the volume element $\mathrm{d} L L^{2}$ and the density m / L^{3}. The resulting stress $\sigma=-F / L^{2}$, and thus

$$
\sigma_{\|}=-\frac{m M}{4 L r^{3}}, \quad \sigma_{\perp}=\frac{m M}{8 L r^{3}}
$$

c.) With $m=80 \mathrm{~kg}$ and $L=1 \mathrm{~m}$, the stresses are around

$$
\sigma \sim 10^{15} \frac{\mathrm{dyn}}{\mathrm{~cm}^{2}} \frac{M / M_{\odot}}{r / 1 \mathrm{~km}}
$$

(Compare with the normal pressure of Earth's atmosphere: $10^{6} \mathrm{dyn} / \mathrm{cm}^{2}$.)

3. Cosmology.

The static Einstein universe contains no radiation and has positive curvature.
a.) For a given value of Λ, there is a unique value of the matter density ρ_{0} such that $\ddot{R}=0$. Express ρ_{0} and the scale factor R_{0} through Λ.
b.) Consider a small perturbation, $\rho_{m}=\rho_{0}+\delta \rho$. Use the Friedmann equation to show that the resulting change δR satisfies

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \delta R}{\mathrm{~d} t^{2}}=B \delta R \tag{7}
\end{equation*}
$$

with B as constant. Is the Einstein universe stable or not?
a.) We use first the acceleration equation,

$$
\frac{\ddot{R}}{R}=\frac{\Lambda}{3}-\frac{4 \pi G}{3} \rho_{m}=0
$$

Thus $\rho_{m}=\Lambda /(4 \pi G)$. The Friedmann equation gives

$$
0=H^{2}=\frac{8 \pi}{3} G \rho_{m}-\frac{1}{R^{2}}+\frac{\Lambda}{3}=(2+1) \frac{\Lambda}{3}-\frac{1}{R^{2}}
$$

or $R=1 / \sqrt{\Lambda}$.
b.) The space-space part of the Einstein equation for a FLRW metric is given by

$$
\frac{2 R \ddot{R}+\dot{R}^{2}+k}{R^{2}}=-\kappa P+\Lambda
$$

Setting $P=0$ and $k=+1$, it follows

$$
2 R \ddot{R}+\dot{R}^{2}+1=\Lambda R^{2}
$$

From $R \propto 1 / \sqrt{\rho_{m}}$, perturbations in matter lead to perturbations in the scale factor. Inserting $R=R_{0}+\delta R$ and neglecting higher-order terms in δR, it follows

$$
2 R_{0} \frac{\mathrm{~d}^{2} \delta R}{\mathrm{~d} t^{2}}+1=\Lambda\left(R_{0}^{2}+2 R_{0} \delta R\right)
$$

Using next $\Lambda R_{0}^{2}=1$, it follows

$$
\frac{\mathrm{d}^{2} \delta R}{\mathrm{~d} t^{2}}=\Lambda \delta R
$$

Since $\Lambda>0$, the solution is $\delta R=a \exp (\sqrt{\Lambda} t)+b \exp (\sqrt{-\Lambda} t)$, i.e. contains an exponentially growing term. Thus the Einstein universe is unstable.

4. Symmetries.

a.) Consider in Minkowski space a complex scalar field ϕ with Lagrange density

$$
\mathscr{L}=s_{1} \frac{1}{2} \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi+s_{2} \frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2} .
$$

Name the symmetries of the Lagrangian and explain your choice for the signs s_{1} and s_{2}. (6 pts) b.) Consider in Minkowski space the following Lagrange density

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-j^{\mu} A_{\mu}
$$

where A_{μ} is the photon field, $F_{\mu \nu}$ the field-strength tensor, and j^{μ} an external current. Calculate the resulting change of the action under a gauge transformation $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \Lambda$. Show that the action is invariant, if the current is conserved.
c.) Generalise now the two Lagrangians to a general space-time. Explain the general rules you apply. Is the procedure unique?
a. Space-time symmetries: Invariance under translation (4), Lorentz (3 boost and 3 rotations), scale and special conforma transformations ($1+4$, the latter 4 are probably unknow for you), i.e. in total 15 generators.
Internal symmetries: global $\mathrm{U}(1)$ (or $\mathrm{SO}(2)$) invariance.
Choice of signs: The kinetic term $\left|\partial_{t} \phi\right|^{2}$ should be positive $\Rightarrow s_{1}=+1$ (for a moostly negative metric); the energy should be bounded from below, thus $V=-s_{2} \frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2}$ requires $s_{2}=-1$.
b.) The field-strength tensor is antisymmetric in $\partial_{\mu} A_{\nu}$ and thus gauge invariant. Hence the Lagrangian changes as

$$
\delta \mathscr{L}=-j^{\mu} \partial_{\mu} \Lambda,
$$

i.e. by a four-divergence. The change of the action follows as

$$
\delta S=-\int \mathrm{d}^{4} x j^{\mu} \partial_{\mu} \Lambda=\int \mathrm{d}^{4} x\left[\left(\partial_{\mu} j^{\mu}\right) \Lambda-\partial_{\mu}\left(j^{\mu} \Lambda\right)\right]=-\int \mathrm{d}^{4} x\left(\partial_{\mu} j^{\mu}\right) \Lambda .
$$

Here, we used first the product rule and neglected then a boundary term. Thus $\delta S=0$, if the photon couples to conserved current, $\partial_{\mu} j^{\mu}=0$.
c.) Physical laws involving only quantities transforming as tensors on Minkowski space are valid on a curved spacetime performing the replacement

$$
\left\{\partial_{\mu}, \eta_{\mu \nu}, \mathrm{d}^{4} x\right\} \rightarrow\left\{\nabla_{\mu}, g_{\mu \nu}, \mathrm{d}^{4} x \sqrt{|g|}\right\}
$$

For a scalar field, $\partial_{\mu} \phi=\nabla_{\mu} \phi$. Moreoverm the connection terms drop out in the field-strength tensor,

$$
F_{\alpha \beta}=\nabla_{\alpha} A_{\beta}-\nabla_{\beta} A_{\alpha}=\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}
$$

because it is antisymmetric. [More formally, we can identify completely antisymmetric tensors with differential-form for which differentiation without a connection is defined.] Thus the actions become simply

$$
S=\int d^{4} x \sqrt{|g|}\left[\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi^{\dagger} \partial_{\mu} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2}\right]
$$

and

$$
S=\int d^{4} x \sqrt{|g|}\left[-\frac{1}{4} g^{\alpha \rho} g^{\beta \sigma} F_{\alpha \beta} F_{\rho \sigma}-j^{\mu} A_{\mu}\right]
$$

The procedure is not unique: First, we can add term which vanish in Minkowski space (e.g. $R^{2} \phi^{2}$ in case of a scalar field). Second, it may matter at which step we perform the replacement.

