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Question 1: Interactions with barriers

In this question, we will investigate how waves and particles behave at barriers.

Consider a particle (for example, a football) with kinetic energy Ek, travelling towards a very large, 
tall and hard wall (i.e. an infinite barrier) at an arbitrary angle. 
a) What will happen to the football? What is the velocity (magnitude and direction) of the ball 
just before and just after the collision?
[note: you may assume ideal conditions, i.e. no energy losses, no wind, etc]

Consider a plane wave (wavelength λ, frequency f) approaching the same wall at the same angle.
b) What will happen to the wave? What is the velocity (magnitude and direction) of the 
incoming and reflected waves?

We will now investigate the same situation using quantum mechanics. As a simplification, we will 
only consider the x dimension.

Look at the figure. Assume that the barrier is of infinite height and thickness.
c) Solve the Schrødinger equation for x < 0 (i.e. the left side of the barrier).
d) Describe the wavefunction at x > 0.
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We will now repeat this question for the case that the barrier is large, but not infinite height. i.e. 
U(x) > E

e) Solve the Schrødinger equation for both x < 0 and x > 0. 
[hint remember that the wave function must be smooth and continuous at x = 0]
f) Describe how is your solution is different to the previous case with an infinite barrier?

Imagine that the incoming wavefunction is an electron.
g) what is the probability of the electron penetrating into the barrier by a distance x > a? 

h) If the incoming number of particles is increased (i.e. an electron beam corresponding to a 
current of I = 1 A), estimate how thick the barrier needs to be such that 1 electron per second 
is able to pass through (Assume that E-U = 1 eV).

i) In Q1a-h, you have described how particles and waves interact with barriers using both 
classical and quantum approaches. Briefly describe (or give examples) of  situations where 
each of these approaches is valid or invalid.

Question 2: The Scanning Tunnelling Microscope (STM)
In Q1g,h you have described the principle behind the STM: A type of microscope which is 
commonly used to measure the atomic scale structure of materials. In the case of an STM, the gap 
between a conductive “tip” and a conductive sample creates a barrier through which electrons can 
only penetrate by quantum mechanical “tunnelling”.
a) Make a sketch to show how an STM works, and how it generates an image.



b) Take a look at the STM image of graphene (above). Using your answers from Q1g,h  can 
you comment on what may be causing the variations in intensity? [hint, there are two different 
variables in your equation which are both visible in the image]

Question 3: Understanding atoms
Consider an electron in orbit around a proton. This is known as the 
“planetary model” of an atom (in this case, the atom is hydrogen). A 
planet is able to form a stable orbits around the sun because the 
gravitational attraction is equal to the centripetal force, i.e. 

a)  Which force is responsible for the orbit of the electron in an 
atom? Write an equation for the electron orbit in a hydrogen 
atom (i.e. the equivalent to the gravitational force equation, above)

b) Do you expect this orbit to be stable? i.e. describe any relevant energy-loss mechanisms, 
and the implications of energy loss from the electron-proton orbit

Niels Bohr postulated that “special orbits exist” and that these special orbits have “orbital angular 
momentum L as an integer multiple of h/2π”.
c) What is special about these orbits?  What implication does L = nh/2π have for the wave 
properties of an electron in an orbit?        

The quantisation of angular momentum creates a  corresponding quantisation of radius and energy;
d) Use the quantisation of angular momentum (L), together with your answer to Q2a to derive 
an expression for the allowed energy levels in the atom.

Look at the attached photo of the 
aurora borealis (nordlys). Notice 
that it is a particular shade of green 
(i.e. there is no variation in the 
colour). Aurora borealis is caused 
when energetic particles from the sun 
excite electrons in the atoms of our 
atmosphere, which then relax and 
emit a photon.
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e) Is this consistent with your answer from Q2d? Assume that the relevant atomic relaxation is 
from n=15 to n=14 in an oxygen atom (Z=8).

f) Other atomic transitions are also possible — for example n=16 to n=15 in an oxygen atom. 
How would this look?

If we wish to understand the atomic orbitals of an electron, we need to solve the 3D Schrødinger 
equation (given in the “additional information” in radial coordinates). This is difficult because the 
wavefunction (ψ) is a function of r, θ and φ.
g) If you should need to solve the the Schrødinger equation for an atom, we would use 
“separation of variables”: What does this mean? What assumption are you introducing, and 
is it reasonable?

In the Schrødinger equation, U is the potential energy. Generally, we assume that U is the Coulomb 
potential of the positively charge nucleus, and that it is purely radial. 
h) Under which circumstances is this a good assumption, and under which circumstances does 
it fail?

After solving the Schrødinger equation, we find that each electron can be described by a unique set 
of quantum numbers (so far in Q2, we have been considering only involves the principal quantum 
number “n”). 
i) What are the other quantum numbers? What physical property are they describing?

Question 4: Nanoscience and Material Science.
During the lectures and exercises, we have solved the “1D square well”, describing a particle 
trapped in a box. We have shown that the Schrødinger equation reduces to the wave equation:

With solutions in the form:

The energy of the solutions is given by:

where a is the size of the box

E =
n2~2⇡2

2ma



Consider a solid sample of the alkali metal lithium (Li). Li has atomic number Z=3 and atomic 
radius = 0.15 nm.  Imagine that all of the electrons are localised to their parent Li atom (i.e. 3 
electrons per atom, all of which are trapped by the potential of the nearest nucleus). 
a) What is the minimum energy required to promote an electron from the lowest energy 
configuration to the next available empty state? Do you think that this is also consistent with 
Li being a metal?

Being an alkali metal, it is more reasonable to assume that one electron per atom is “free” to travel 
within the sample (i.e. one electron per atom is delocalised and contributes to the metallic bonding 
and the electrical conductivity).
b) Imagine that we have a chain of Li atoms of length 1 cm. How many atoms (and how many 
delocalised electrons) does it contain? 

c) Assuming that T = 0 K, what is the energy of the highest occupied state (i.e. the Fermi 
energy)?

d) What is the energy separation of the states at the Fermi energy?  Is this consistent with it 
being a metal?

One of the most powerful applications of nanoscience is to be able to make structures such that the 
material properties are exactly what we want for a certain application. 

e) Imagine that I want to make an object which is metallic at 100°C, but poorly conducting at 
room temperature, if I should make it from lithium, what size should it be?

Electrons have spin +1/2 or -1/2. This means that electrons are Fermions. It also means that 
electrons which share the same space must have a unique set of quantum numbers.
Imagine that we can force electrons to always travel together in pairs. We could consider each 
electron pair to be a new “particle”.  Instead of solving Q4a-c for electrons, we could solve it again 
for our new electron pair “particles”. Now, the situation would be different: the spin of the new 
quasiparticle would be -1, 0 or +1 (i.e. all of the combinations of +1/2 and -1/2 electrons).
f) Briefly discuss this scenario: Are these new “particles” Fermions? Does the Pauli exclusion 
principle still apply? What is the value of n for the highest occupied level? Is the electrical 
conductivity going to change because of this pairing?

Note: What you have described in this scenario is superconductivity: The electrons pairs are called 
“cooper pairs”, and their behaviour is completely different from that of unpaired electrons. Cooper 
pair formation in lithium is possible, but only at high pressure and low temperature P > 48 
gigapascals and T < 20 K. 



Additional information 

Schrødinger equation in 1D:

Schrødinger equation in 3D (radial coordinates):

Quantum mechanical probability:

The Coulomb force:

The electromagnetic spectrum: 

Question 4: Electrons in a box.

Consider an electron trapped inside a box of length L.
To solve the `particle in a box’, we use the Schrödinger equation:

Example: Particle in a box
We have already discussed the free particle: Complex plane-wave

The simplest case of a bound particle is the “particle in a box”
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Outside the box, U(x) = ∞.  This means that the wavefunction
Inside the box, U(x) = 0. 

 (x) = 0

a) Show that the trial solution                                                        satisfies the Schrödinger equation 
inside the box.

 (x) = A cos(kx) +B sin(kx)

b) By considering the boundary conditions:                          and                           find expressions for 
A and B. 

 (x = 0) = 0  (x = L) = 0

Look at the figure. We will now use the 1D infinite well approximation to investigate the long axis of this wire 
(i.e. L= 120 nm).

The Fermi energy for a metal wire is typically around 7 eV.

d) What is the meaning of the term “Fermi energy”?

e) Approximately how many of the electronic states are occupied? 

f) What is the typical energy separation of states at the Fermi level?

At room temperature, the thermal energy KBT is around 25 meV.
g) compare your answer above with the thermal energy. Do you think that this wire will behave as a 
metallic conductor at room temperature?

h) Is it reasonable to use the 1D infinite well approximation for this wire? Do you think it is useful for 
understanding the real behaviour of the wire?

50 nm

The figure shows “the world’s smallest wire”. 
According to the people who made it, it is the 
smallest ohmic wire ever made.  It is approximately 
1.5 nm wide and 120 nm long.

c) Using your answers from above, find an expression for the possible energy states of the trapped 
electron.

Each part of the question gives 2 points. The maximum for this question is 16

Question 2: Electromagnetic waves
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Recall from last week, the general wave equation:
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...and compare with our new result:

This means that H (or B) varies as a wave, and has velocity:

but, since electromagnetic waves travel at 
the speed of light!

Electromagnetic waves:
r2E = µ✏
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@t2

r2H = µ✏
@2H
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E = E0 exp i(!t� kx+ �)

Electromagnetic fields:
The electric and magnetic fields are both described by the wave 
equation:

For a wave propagating in the +x direction, the electric field is:

It is possible to use Maxwell’s equations to derive the following relationship for the electric field:  

We also know that a general form of the wave equation is:

a)  Show that                                                         satisfies both of the above equations.

B(x, t) = B0ẑ exp i(!t� kx)

E(x, t) = E0ŷ exp i(!t� kx)

The electric and magnetic 
waves:

Let’s look at a wave travelling in the positive x-direction:

One solution to the wave equation is:

The magnetic and electric fields are connected via the relationship:

Which means H and D are orthogonal
(=> E and B are orthogonal)

r⇥H =
@D

@t

b) Derive an expression for the wave velocity in terms of ω and k. 

c) Derive an expression for the wave velocity in terms of µ and ε. 

Consider that                                                         describes an electromagnetic wave propagating 
in vacuum.

d) What is the velocity? In which direction is the wave propagating?

B(x, t) = B0ẑ exp i(!t� kx)

E(x, t) = E0ŷ exp i(!t� kx)

The electric and magnetic 
waves:

Let’s look at a wave travelling in the positive x-direction:

One solution to the wave equation is:

The magnetic and electric fields are connected via the relationship:

Which means H and D are orthogonal
(=> E and B are orthogonal)

r⇥H =
@D

@t

If this is an electromagnetic wave, then there must also be a magnetic oscillation. 
e) Describe the magnetic field (i.e. direction of oscillation, direction of propagation, velocity)

Each part of the question gives 2 points. The maximum for this question is 10

The electromagnetic spectrum: This will be useful in question 3.

Ett-elektronatomet 
Merk: 

1. To-partikkelproblem: Elektron og kjerne. Kan reduseres til et 
    en-partikkelproblem ved å bruke en redusert masse 

2. Det fysiske systemet er tre-dimensjonalt. 

Kulekoordinater: 
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Løsning: Separasjon av variable r, θ, ϕ  
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Physics data booklet 

Fundamental constants 

Quantity Symbol Approximate value 

Acceleration of free fall 
(Earth’s surface) g 29.81ms�  

Gravitational constant G 11 2 26.67 10 N m kg� �u  

Avogadro’s constant NA 23 16.02 10 mol�u  

Gas constant R 1 18.31J K mol� �  

Boltzmann’s constant k 23 11.38 10 J K� �u  

Stefan–Boltzmann constant V  8 2 45.67 10 W m K� � �u  

Coulomb constant k 9 2 28.99 10 N m C�u  

Permittivity of free space 0H  12 2 1 28.85 10 C N m� � �u  

Permeability of free space 0P  7 14ʌ 10 T m A� �u  

Speed of light in vacuum c 8 13.00 10 ms�u  

Planck’s constant h 346.63 10 J s�u  

Elementary charge  e 191.60 10 C�u  

Electron rest mass me 31 29.110 10 kg 0.000549 u 0.511MeV c� �u    

Proton rest mass mp 27 21.673 10 kg 1.007276 u 938MeV c� �u    

Neutron rest mass mn 27 21.675 10 kg 1.008665u 940 MeV c� �u    

Unified atomic mass unit u 27 21.661 10 kg 931.5MeV c� �u   


