8 Exam Question V2021

version: January 10, 2022

- 1. Quantum mechanical model of electrons in solids: free electron gas
 - (a) Describe most important assumptions used to derive the quantum mechanical free electron gas model.
 - (b) What properties of materials can this model describe?
 - (c) Equation below contains parameter a which has units of length. What is described by this parameter? What is the meaning of n here? What are E and E_1 ?

$$E = (n_x^2 + n_y^2 + n_z^2)E_1$$
$$E_1 = \frac{\hbar^2 \pi^2}{2ma^2}$$

- (d) What is described by parameter E_F , the Fermi energy? How is it connected to the equations in the previous question (Q1.3)?
- (e) A gold crystal has an fcc lattice (unit cell has a cubic shape) a lattice constant of 4.08 Å and 4 gold atoms in the unit cell. Each gold atom donates one electron to the free electron gas. Calculate the electron number density, Fermi energy, Fermi velocity and electron wavelength in a gold crystal.
- (f) What aspects of electron behaviour in solid materials are not captured by the free electron gas model.

2. Standing waves

- (a) What are standing waves? Give some examples.
- (b) Design and describe an experiment in which you demonstrate the existence of standing waves. You can use couple of small speakers (size of 1cm) that generates sound with a frequency of 50Hz (connected to a single signal generator) and a small microphone (1mm) connected to a PC. Alternatively you can use a water tank with one or two wave-generating devices (Ripple tank) and a sensor that is able to measure water level height. Derive mathematical expression that describes the standing wave in your experiment and plot wave profile you expect to detect.

Hint: Two waves that are generated by sources that are in phase but are separated by a distance L can be described by:

$$y_1 = A\sin(kx - \omega t + \phi_0)$$
$$y_2 = A\sin(k(x - L) - \omega t + \phi_0)$$

- (c) Understanding of standing waves is important in the design of musical instruments. Give some examples. What are harmonics in this context? Would a guitar sound differently when played on the space station? Would a flute sound differently inside a air-filled diving bell in which the pressure p is 4 atmospheres. Support your answers by calculations.
- (d) Are standing wave phenomena important in quantum mechanics or atomic physics? Explain and if they are, give some examples.
- 3. Propagating waves.

version: January 10, 2022

(a) A propagating sinusoidal wave can be described by the following equation:

$$y(x,t) = A\cos(\omega t - kx + \phi)$$

where y(x,t) describes the amplitude at location and at time.

- The same wave can also be described using a complex notation. Introduce this notation.
- Use complex notation or the formula given above to derive a formula that can be used to calculate the distance between two points along the x-axis that oscillate in phase.
- (b) Consider a one-dimensional system with two independent and identical wave sources: S1 located at x=0 and S2 at $x=\Delta x$. Derive the expression for time-dependent amplitude at a observation point O located at the distance x_0 from S1. Consider only situations where $x_0 > \Delta x$. Plot amplitude at as the function of the separation distance between sources Δx
- 4. You have made a line pattern in a thin metal film deposited on a glass substrate (see figure, line spacing is d and line width is a). You need to verify that this periodic structure has been fabricated correctly. You look around the lab, but the only instrument you find is a laser pointer, that uses green light with a wavelength λ = 550nm. You also have your phone with you and can use the phone camera. Explain how you would investigate this.

Hint: What physical phenomena can you use to measure d and a? Can you estimate what range of sizes can be measured? Can both a and d be measured and can this be done in the same experiment? Support your answers by calculations.

5. Atomic Physics:

- (a) What steps and assumptions are necessary to use mater waves and time-independent Schrödinger equation to describe 1 electron atom like hydrogen? Why is the situation more complex for atoms that contain more than 1 electron?
- (b) What experimental observations can be used to verify prediction from the quantum mechanical model of the one-electron atom?
- (c) What aspects of the one-electron atom model can be used to describe multielectron atoms?