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Allowed aid

Level C: “Specified printed and handwritten references allowed. Simple electronic calculator
(scientific).” Mathematical reference books are allowed, such as “BETA Mathematics
Handbook” (Rade; Westergren) or “Matematisk Formelsamling” (Rottmann) or “Fysikaliske
Stgrrelser” (Pgrim). No lap-top computer, electronic notebook, or similar, is allowed.

Evaluation/grades

Total number of points of the written examination is 100. These will constitute the basis for
evaluation. The following table recommended by NTNU will be used for converting to A, B,
C, ...-scale.

A: 100-90 points
B: 89-80 points
C: 79-60 points
D: 59-50 points
E: 49-40 points
F: 39-0 points



Section A: Geometric Optics

Al. Geometric Optics -fundamental concepts
a) State Fermat’s original principle. [3p]

b) How may perfect imaging of a point source be accomplished using lenses or mirrors in line
with Fermat’s principle (no detailed calculations required). [3p]

c¢) What are the main approximations in Gaussian, first order optics [3p]. —I?[é_p’]

d) Given a slab of transparent material (in air) with a gradient refractive index n(x). A typical
ray path is shown in Figure A1.3.

Figure A1.3. The gradient index slab. A ray is incident from the left at (x=0,2z=0) and is
incident in the x-z plane, (x and z are in arbitrary units).

1.3— Ix[ for lxl <0.3
1 for|x>03
Given the ray equation (or eikonal equation)

d
Vn(x)= T —(n¥)

Hlx)=

where § :j—r, o is the geometric path length and 7 = (x,y,z).
o

e I nS / JS
Write the ray equation in comgonent form. Find an expressiondgor 6.(x) (see Figure A1.3) as
a generalization of Snell’s la_w, for a given 6, (x=10). [3p]

e "

Why does the ray turn at sufﬁmentli small 6,/ Find the x-value (x,) for the turning point (see

. ._,.._._-._‘_._-ﬂ-\ -

e e
Figure A1.3), given 6 =:30" . [3p]
'Op 2p
At what angle of incidence, 6, (see Figure A1.3), will the ray cease to be bound fi.e. exit
from the side of slab). [3p]

[Total of 18 p]
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A2. Geometric Optics —analysis of optical systems

A simple telescope is given by two lenses (objective and eyepiece(ocular)) separated by a
distance L=f+f., where f, and f, are the focal lengths of the objective and the eyepiece
(ocular), respectively.

a) Calculate the system transfer matrix for two thin lenses separated by the distance L=f.+f,,
and hence find the total refractive power. [5p]

A large astronomical telescope is investigated having f,=16m and f,=4 cm. The diameter of
the objective is D=80 cm. The objective is known to be the aperture stop in the system, while
the eyepiece (or ocular) is known to be the field stop of the system (diameter Drg unknown).

b) What is the angular magnification of the system. (relative to you looking at a distant star
with only your eye). [3p] 2

° £ 3 20 ap 2
c) What is ?/ definition of /tﬁe Aperture stop, the Entrance and Exit pupils, and the Fieﬁ stop.
Find the location and the size of the exit pupil (ExP). Where should your eye be located in
order to maximize the luminosity, and how does it here fit well to your eye. [12p] ™2 piel

In order to reduce chromatic and spherical aberrations the objective and the eyepiece consists
both of compound lenses. The Figure A2.1 shows the objective and the eyepiece (ocular) for
such a system. The focal points and the principal points are indicated in the Figure A2.1.

d) Sketch the rays through the system, coming from a distant star (you may use the attached
answer sheet). In particular, sketch two parallel rays of which one is passing trough the nodal
point. Sketch also a ray coming in parallel to the optic axis. [5p]

objective eyepiece,

ocular
7

e

H, W, - Ko,

Figure A2.1. A typical telescope, with compound (multielement) objective and eyepiece.

Ho, -first principal plane of objective. H’(, -second principal plane of objective. H, -first principal plane
of eyepiece. H’. -second principal plane of eyepiece. F’ ,-back focal point of objective. F,-front focal
point of the eyepiece (ocular).

[Total of 25 points]

Qg&OO‘nE + 5a71~.5



Section B: Wave Optics

B1. Polarization

A plane electromagnetic wave, with a given polarization can be written as:

E=(E,ée" + B8, )™ (BLI)

where é,€, are othogonal unit vectors.
20
a) Write the electric field in equétion (B1.1) as a Jones vector. Describe the polarization state
(polarisation ellipse) of the following normalized Jones vectors (located at specific point in
space): [5p]
1w e lp

I 1 {1 1 (1

0 V2|i] 2 |—i
| /OF

b) What are the limitations of the Jones formalism and what are the advantages of the Stokes

vector formalism. [3p]

¢) You are analyzing a system with unpolarized light which is sent trough a polarizer with the

transmission axis oriented at 45 degrees with the x;-axis, followed by a quarterwave plate

with the fast axis along the x;-axis, What is the polarization state (polarisation ellipse) after

/the retarder, with respect to the cartesian laboratory coordinates (x 1X2)!

If you now add at the end a polarizer rotating around the optic axis, what is the resulting
intensity recorded on a detector as a function of orientation of this polarizer. [5p]

[Total number of 13 points]
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B2 Interference from thin film

Figure B2 shows the recorded Reflectivity (Rs) of SiO»/c-Si, as a function of angle of
incidence, at a fixed wavelength (A=600 nm). (recorded with a polarizer, a filter and a
photodiode and a reference sample). The dispersive refractive index is given by

n(\,Si0,)=1.448 + 3)6;12 , where Ais in nm.

In order to avoid the effect of dispersion, the reflectivity (R) was recorded as a function of
the angle of incidence. Two consecutive maxima are estimated at @, =38.3°and @, =47.25°,

The thin film reflection formula is given as:

o+ ’izgié

it ?
14 1,15e
where the subscripts for polarisation have been omitted.

4,

_ i 126 _ _ By @ r 8
7= Ty Flalole FlgMafohte T .. = where & = 2 \/n[ ~n," sin” @,

a) Calculate the thickness of this layer, using the refractive index given above (you may here
neglect the slow angular dependence of ry; and ry5). [5p]

b) From considerations of the thin film reflection formulae, deduce and sketch the reflectivity
for the bare c-Si substrate with no film as a function of angle of incidence. [4p]

0.9+

>

Rerllectivity (Rs)

=
w

0.0

angle of incidence (¢) [degrees]

Figure B2. Reflectivity R as a function of angle of incidence, (A=600 nm)

¢) Describe and make a sketch of an experiment in order to visualize the fringes (similar to the
ones in Figure B2, but now on a screen. (e.g. similar to the the Haidinger fringes, hint: use an
incoherent extended source and a lens). [Sp]

[Total of 14 points]




B3.  Diffraction and Fourier Optics

Figure B3.1. Typical example of geometry for the analysis of diffraction from an aperture.

The Huygens Fresnel Principle is here given by the first Rayleigh Sommerfeld solution:

URY 2 =%_fizU(x, y,O)ﬂl(f;chos(e)dxdy (B3.1)
where

r=J(X =2V + (¥ — )+ (B3.2)
and

cosf== (B3.3)

"
You may find useful formulas in the appendix.
a) Derive the Fresnel diffraction formulae from the above diffraction formulae. [5p]

b) The phase function of a lens may in the paraxial approximation be derived to be :

Fps (X, Y) = €XP (B3.4)

ko
2f(x +y)

where f is the focal length of the lens.

-show that the lens with the transmission function tie, in equation (B3.4) may be used
to obtain the Fourier transform (i.e. the Fraunhofer diffraction condition) of an aperture. You
should neglect the aperture of the lens and assume plane wave incident on the aperture from
the left. [3p]




-sketch an optical system using a point source (from the left) and two lenses, that will give the
Fourier Transform of the aperture transmission function in the observation plane (to the right).
Give the “positions” of the lenses with respect to their focal lengths. [3p]

X X

Figure B3.2. The left hand side is the aperture, where the grey represents the holes, with diameter D.
Plane waves are incoming from the left onto the aperture. We want to observe the Fraunhofer
diffraction pattern in the observation plane (right hand side). You should insert the lenses at
appropriate positions in order to obtain the Fraunhofer condition.

Your system (or equivalently the Fraunhofer diffraction pattern) of the aperture in Figure
B3.3 is to be calculated and analyzed:;

Figure B3.3. Aperture of the problem to be analyzed. The aperture is opaque and considered as
infinitely large, while each hole has a diameter D.

c) Define the amplitude transmission function, and show that the transmission function of the
aperture in Figure B3.3 may be written in the form: [4p]
p

(D/ 2
where the common circ function is defined in the appendix.

1(x,y)=8(x—a,y+b)®circ

vy




=T 2p

d) Calculate analytically the
-scalar electric field
-observable intensity
in the observation plane in the Fraunhofer condition assuming a plane incident wave. [6p]

e) A real diffraction pattern is shown in Figure B3.4. Find from your calculations an
expression for the observatipn plane coordinates (X,Y) at which one should observe maxima
in the intensity. [5p]

- what happens if the circular holes become infinitely small. [2p]
- what happens if the wavelength X\ — 0. [2p]

Figure B3.4. The real recorded diffraction pattern from the aperture being studied. The figure does not
show all diffraction orders predicted by the basic theory.

[Total of 30 points]




Appendix

The 2D Fourier Transform of a general aperture transmission function is given by :

Tk =F {1} = [ [ 1(x, y)exp[~i(kyx+k, y)]dvdy

—0C —oG

The Fraunhofer diffraction integral is given by :

1 L) oo )
U()Gj,z):gekze 2 ffU(x,y,O)exp[—t(kXx—i—kYy)]dxdy

=00 -0

where

kX kY 2%
ky =",

or alternatively (depending on how the approximations are performed)
' 1 . oC oo .
UEY, )= P "£ fm U (x,y,0)exp|~i (kyx +k, y)] dxdy

where

ky =ksin, :%%E—X— klzksiney :%%k—y : R:,b—(2 +3Q+z2
z

Z
Some useful functions in optics, Fourier Transformns and its properties

The circ function is defined by:

1 for|p|<b
0 elsewise

The rect function is defined by : M&

rect(%) _ 1 ﬁsnrlxl<-1/2K s.“'n c( \:3)

0 elsewise

o,
czrc(b) {

The dirac delta function

oo forx=0

() = {

0 elsewise

T O(x)dx =1




The Fourier Transform of the circ function with radius d-

T(k) =F {circ(%)} =7d? 2 L—:;;d) .

where p = \[x’+y*  and k=k,? +k,?,

and J; is the Bessel function of first Kind.

Table B3.1. Properties of the J; function.

B 0 1.22 1.63 2.33 2.68 3.33
J,(vB)
21— 1 0 0.017 0 0.004 0
B

The Fourier Transform of the rect function

. {recr(i)} W sinc (xw/2)
w xw/2

Properties of the sinc function :
Define
sin (x)

sinc(x) = 2
X

Then sinc(x)=1 for x=0,
Isinc(x)| - maximum for x=2m+1)w/2, m=0,1,2,...,

sinc(x) — 0 for x=mm, m=0,12,...,

The Fourier Transform of the Dirac delta function

{80} =1

The Fourier transform of a comb function

=X ] sin(2N-Dkea/2)
g{ngé(x na)}— sin(anIZ)

The shift property
S{f(xﬁ xu)} = exp(ik, x,) %{f(x)}

The convolution theorem :

The convolution is defined by :

then by the convolution theorem

The sifting property of the Dirac delta function :
[8:—a)f @dx = fx—a)

10

@ = [ fOM-0 = fF@h(x)
e} = F{r®}5 k)




The Linearity + scaling property
S{ag@+B (0} = oF {e®}+BF{/ 0}

Fresnel reflection and transmission coefficients:
n, cos8, —n cos, 2n, cos 6,

]‘;:

T

» =L =
n, cos6, +n, cos, © mcosb, +n cos,

1, cos 6, —n, cosf, 2n, cosH,
> L= = ——
n, cosb, +n cosH,

Il
Il

"o

Ti

P

n, cos6, +n, coso,

Boundary conditions for reflection/transmission at interface:

B,,-B,=0
D, ,-D,,=¢,E, —¢ E, =0
E,-E,=0

Hzr -H, = (B, _Blz)/ﬂo =0
Maxwell’s equations:

JB
VxE+§=O
D
VxH—E-—-O
V-B=0
V-D=0
Material equations
D=¢E
B =uH

(1.3.2)
(1.58)
(1.5.4)
(1.5.5)

Jones matrices for common components
Linear Polarizer:

1 0
00
General waveplate:
1 0
0 "
Rotation matrix :

cos: —sSina

R(oa):

sinac cosa
Jones Matrix T rotated by o
R(—o)TR ()

11




TABLE 18-1 SUMMARY OF SOME SIMPLE RAY-TRANSFER MATRICES

Iranslation malrix; /

Refraction matrix,
spherical interface:

~
1 0 antn
M=|p-n 4
Rn'  a'

(+R):convex
{ R):concave

Lo |

Refraction matrix,
plane interface:

M=
0 n’
n nln
‘Thin-lens malrix: R, R,
1 0
M= g i " U n
b
1 nm-nf1 1
= = I 1) :conve
7 % (R1 R:) { 1f):convex

{—f):concave

Spherical mirror
matrix:
0

4

(+R): convex
(- R) : concave

2ot =

© 2007 Pearson Prentice Hall, Inc.
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TABLE 18-2 CARDINAL POINT LOCATIONS IN TERMS OF SYSTEM MATRIX ELEMENTS

|
© 2007 Pearson Prentice Hall, Inc.

0

P—g A
q*—“—g £
- D - C::zo/ni ",
6‘=1;AL -
v=221 N
w=ﬂ’%?——‘i N )
fi=p-r="2" F
.fs“—‘q—5=-% F

Located relative to input (1) and output (2) reference planes

Located relative to principal planes

® 2007 Pearson Prentice Hall, Inc.
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TABLE 2-1 SUMMARY OF GAUSSIAN MIRROR AND LENS FORMULAS

Spherical surface Plane surface
1 1 R
+ = =l [
s 5 f ! 2 ’ s
. s
Reflection m = = m=+1

Concave: f > 0, R < 0

Convex : f <0, R >0

o Ny My — 1y

T A 5 ==y
s 5! R m

; : s’
Refraction Single surface ==

sy
Concave: R < ()
Convex : R > 0

Refraction Thin lens »1; = ;_(_ - _ﬁ)

Concave: f < 0

Convex : f > 0

© 2007 Pearson Prentice Hall, Inc.
Newtonian imaging equation :
ﬁ [} — Zzi

where z,z’ refers to focal points.

14




Suggested answer sheet, problem A2.2
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Rerflectivity (Rs)

Suggested answer sheet, problem B2.b

0.9 4

0.6

0.0

0 30 60 ' 90
angle of incidence (¢) [degrees]
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