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B: 89-80 points
C: 79-60 points
D: 59-50 points
E: 49-40 points
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Section A

1. Fundamental concepts [22p]

a) State Fermat’s principle for a geometric ray. Describe the more accurate form of Fermat’s
principle. Give examples of both cases. [4p]

b) The focal length on the image side of a spherical refractive surface is given by:

f_' __l__ (n'—mn)
n' [ n'R

, (A.1)

where the radius of curvature R is positive for a convex surface (see the appendix).

State the main approximations involved in deriving equation {A.1). State the most important
approximations involved in Cyaussian first order optics. [5p]

¢) Figure 2 shows the principal and focal points of a general optical system. State the
definition of the principal planes (H and H’), the foca! points (F and F*), and the Nodal points
(N and N°). Use these definitions, and perform Graphical imaging (draw at least 3 rays,
maximum 4) from an off axis object point (Pp) to an image point on the image side (P;). see
Figure A.] and attached answer sheet. [7p]
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Figure A.1. General optical system, with principal end focal points. The object-space is on the left side, and the
image space is on the right hand side.

d) Derive the Newtonian and Gaussian image equation from your figure in question (¢). (You

will need that % = ?) . Give also the transversal magnification. [6p)



A2. Analysis of optical systems — achromatic systems [25p]

a) Show (e.g. by using the paraxial system transfer matrices) that the lensmakers
equation for a thin lens is given by

=(,,_1)[l_L}, (A2.1)

where P is the refractive power and f'is the focal length of the thin lens. [6p]
b) Explain the main effect of dispersion on an imaging system. [4p]

¢} For a two lens system, separated by a distance L, see Figure A2a, find the paraxial
system transfer matrix from the first to the last refracting surface. Give the expression for the
refractive power for the combined system. [4p]

d) Let the lenses in (¢) be made of the same material, but have different refractive
power (different focal lengths). Find the distance L that makes the system achromatic in the

neighbourhood of a design wavelength, Ap. If we choose the calculated L in our design, what
kind of optical system do you get? [5p]

e) The general compound lens in Figure A2.3 (unknown curvatures of surfaces) is
achromatic under certain conditions. We require an overall positive lens (i.e. P>0) .Calculate
the general conditions required for such a compound lens to be achromatic, with respect to
P\(=1/f}), P2(=1/f2) and the dispersion. [6p]
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Figure A2, Figure {a) shows the two-lens system separated by a distance L. Figure (b) shows a sketch of a
compound lens to be made achromatic.




Section B:

Bl. General properties of waves —polarisation and Jones analysis. [20 p]

a) A plane s-polarized wave ( L to the incidence plane) is incident on a surface with an
angle of incidence 8y, with respect to the surface normal. The incident electric field is given
by

E(F1)=8E, exp[i(l?- F —wt)l

Let the incidence plane be the x-z plane, see Figure Bl. Derive the p-component of the

incident magnetic field (|| to the incidence plane). Write the magnetic field along its
Cartesian coordinates (x,y,z). [5p]

b) Describe at least three methods of producing linearly polarised light from an un-
polarised light source. [5p]

c) A (uniaxial) quartz plate has been cut such that its optic axis is in the surface plane (i.e.
a standard waveplate). The birefringence for quartz is given by An=(n,—#n,), with

n, =1.5462 andn, = 1.5553 . Find the thickness necessary to produce a quarter wave plate
and a half wave plate for A=546 nm. [4p]

d) Incoherent (unpolarised) monochromatic light propagating along the z-axis, is incident
on a polarizer, oriented with the transmission axis along the laboratory x-axis. The polarizer is
followed by a waveplate, oriented with the fast axis at 45 degrees with respect to the
transmission axis of the polarizer. Make a sketch of the system (including the laboratory

) .3 . : o
coordinates). Let the retardance of the waveplate be b=7“. Find the outgoing polarisation

state (Jones vector) defined by the laboratory coordinates (x,y). Sketch the polarisation ellipse
of this state. (See the appendix for the definition of the polarisation ellipse). {6p]
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Figure Bl. Standard geometry for question Bla. &, is out of the paper, while the y axis is
into the paper. The incidence plane is the x-z plane.



B3.  X-ray reflectivity of Si3N4/c-Si [14p].
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Figure B3. The reflectivity of a thin film of SisN, on c-Si. as measured with monochromatic light with
wavelength A=1.5406 A.

Figure B3 shows the measurement* of a thin Si3N4 film on c-Si, using x-ray reflectivity, i.e.
recording the specular beam as a function of grazing incidence angle (8x), see Figure B3. The

surfaces are assumed perfectly smooth. It is assumed that we may model the reflectivity with
the thin film Fresnel reflection model.

Let the wavelength of the monochromatic x-ray be A=1.5406 A. The refractive index
of air is unity (nx=1.0). The refractive index of SisNg is 7,y =1.0—1.13x10"* and the
refractive index of c-Siis n,_g, =1.0—7.67x107%.

a) Write the reflection coefficient for the thin film on a substrate as a sum of reflected
beams. You may assume known that the phase shift between reflected beams is
4 d"?fm

M, COS . (5p]

b) Make an estimate of the thickness of the film from the interference fringes, by reading
off Figure B3. [5p]

c) Why is the reflectivity unity for small €x angles. [4p]

* (Here simulated using the standard Fresnel formulas for a thin film on a substrate)



B4.  Diffraction Grating and Fourier Optics [19p]

a) Using the Fraunhofer approximation, find the electric field and the intensity in the

observation plane (X,Y,z), using the set-up in Figure B4.a, and the single rectangular aperture
in Figure B4.b. [5p]

b) If we let Lx=20 pm, Ly= 40 pin, A=633 nm, and z=2 m, verify the validity of the
Fraunhofer approximation in the set-up in Figure B4.a. [4p]

¢) We are about to use the set-up in Figure Bd.a, but now to study N+1 rectangular
apertures equally spaced by the distance a, as shown in Figure B4.c. Using the Fraunhofer

approximation, find the clectric field and the intensity, in terms of a, Lx, Ly, z and A, in the
1 (PR Y . T . |
QUSETvValiQn piaiic \A,Y,L). =P

e) Let a= %L_v. Sketch the intensity, from part (c), in the observation plane along the Y-
axis (i.e. for X—0). [5p]
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(b) apertures (c)

Figure B4. Figure (a) shows the set-up for Fraunhofer diffraction. A spatially coherent
monochromatic source is collimated by lens 1. A plane wave falls onto the aperture, Figure (b)
shows the rectangular aperture, dimensions Lx and Ly. Figure (c) shows the N+1 identical
rectangular apertures, spaced by a distance, a, along the y axis.



Appendix
The First Ray!eigh-SOmmerfeld solution:

U(XY,-)_._ fo(,, Sl os(8)clxdy

-'Xaﬂ.

The Fresnel Diffraction integral is given by :
’X:-M':] "

1 . ikt
UXY, )= = [ Jur, 0)exp| =

-t -5

ik ()= il + k)| iy

The 2D Fourier Transform of a general aperture transmission function is given by :

T(ky,ky)=F{t(x,n}= f f Hx, ) e,\'p[—i(k_\.x + k,,y)] dxdy

=X -5

The Fraunhofer diffraction integral is given by :

1 - ‘.k(.l':-r]':] R ;
U(X,Y,Z)=}E€’"€ # _fa;iU(A’7}’s0)CNP{—i(k_yx+kr."’)]dx‘i"
where
L Y
z z A

or alternatively (depending on how the approximations are performed)

1, . :
U(XsY:Z):'i_)\'Ee‘R.—J:;i.o(xﬁyao)explﬁl(k.\'x+kl’y)ldxaty
where
k, =ksinb, _—k}-e}{—~£X—, k,.zksine,.=%z£ , R=yX*+Y* 42
z Z

Some useful functions in optics, Fourier Transforms and its properties

The circ function is defined by:

1 forfp|<b

0 elsewise

A
c:rc(b) {

The rect function is defined by :

w
1 X| < —
rect(i) = for| l 2
w -
0 elsewise



The dirac delta function

5x) = {oo Jorx=0

0 elsewise

j‘ b(x)dx =1

The Fourier Transform of the circ function with radius d:

T(R) =5 {circ(%)} = q(a'z %2 ,

where p = x*+y* ,and k = k,> + &,

and Jy is the Bessel function of first Kind,

Table Appendix.1. Properties of the “Besinc” function [2 Ji(=B)
g

B 0 1.22 1.63 2.33 2.68 3.33

5 J,(nB)

1 0 0.017 0 0.004 0
v

The Fourier Transform of the rect function

sin (uw/2)

x
{S’{rect(—)} =w =T

w

Properties of the sinc function :
Define

sin(x)

sinc(x) =
Then sinc(x) =1 for x=0,

Isinc(x)l - maximum for x=2m+1)n/2, m=0,1.2,..

sinc(x) — 0 for x=mnx, m=123,..

The Fourier Transform of the Dirac delta function

F{ox)}=1

The Fourier transform of a comb function, (sum of 2N+1 delia functions):

n=N sin (QN 4+ l)k‘,a/?.)
8(x~ na)} = :
§ {2\ (x "a)} sin(kya/2)

sin (2N +1)kya/2)

Th tion
e functi sin? (kya/2)

-+ (2N +1)2 JJork al2=mm, wherem=0,+1+2,...



The shift property
F{/x—x)}=exp(ik,x,)) F{f(x)}

The convolution theorem :
The convolution is defined by : glx)y= j . FEA(x—E)dE = f(x)® h(x)
then by the convolution theorem 5 {g(x)} = 3§ { f (x)}%' {h(x)}

The sifting property of the Dirac delta function :
[ tx-arf (e = flx—a)

The Linearity + scaling property

Flog@D+8(0)} = oF {g(x)} +3F{/(x)}

Fresnel reflection and transmission coefficients:
n cosB —n, cosh,

n, cosb, +n,cos0,

_ 21 cosf
" ncosb +n cos

T =1

ro=r=

__ n,cos80, —n costl, 2n cos b,

=t =
' n,cosf, +n, cosf,

n,cosb, + i, cosb, ’

Boundary conditions for reflection/transmission at interface:

BZ: - Bl: = 0
DZ:—D1:=82E'.':_E!E1==0
E,-E,=0

Hz:_le = (BE:_BI:)!#!-= 0

Maxwell’s equations:

VXxE+—=0
ol
VxH—@—hO

ot

V:-B=0

V-D=0

Material equations

D=c¢cE

B=uH

The ray equation 1s given by :

n(x) =;—(m" ), where § :;—JF, o is the geometric path length and 7 ={x. y,z).
o o



Polarisation, Jones matrices, definition of polarisation ellipse

Linear Polarizer: General waveplate:
10 1 0
00 0 ¢
Rotation rmatrix : Jones Matrix T rotated by o
cos(x —Sino
Rlo)= R{—a)TR(«x
(<) sino. cos (ReZRE)

Jones vector for a polarisation ellipse along its principal axis (x’,y’} in the Figure Pol. ellipse :
COSE

— 0y

= C0s¢g

, where tane =

ty

ising itane

Oy’

The tilted polarisation ellipse Jones vector along the laboratory coordinates is given by :
‘TJ.)' = R (_Q)JJ'.J"
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Figure Polarisation ellipse.
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TABLE 18-1 SUMMARY OF SOME SIMPLE RAY TRANSFER MATRICES

Iranslation matrix: /
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TABLE 18-2 CARDINAL POINT LOCATIONS IN TERMS OF SYSTEM MATRIX ELEMENTS

n
= 2
P=c i W
ol

f =——= 1=
! ¢ :

Y = ny/n
r=— S H,

1 . & Located relative o input (1} and output (2) reference planes

= : 1A

3 C =

n-1 .
1= T .\r]

g — A
w= " ¢ M)

i,
h=p-r="_" h
1 Located relative 1o principal planes

(=g—-s= - F
L=1q ¢ %

© 2007 Paerson Prantica Hall, Inc.

Recall that in table 18-2, all distances are taken as positive to the right of the
plane it refers to, and negative to the left of the plane it refers to.
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TABLE 2-1  SUMMARY OF GAUSSIAN MIRROR AND LENS FORMULAS

Spherival surface Plane surlave
1 ) 11 7 e R .
s 5 I. - : L] L
Reflection oo - * me B

Ay
Concave: ! = U R <0

Convex :F - OLR: D

nypo N is —on . e
. = Yy = - 5
LI " fi|
v r n
Retinction Single sutface m= - m = +1
AR

Comene: B < 0

Conves =8 = 0

1 1 1
[} =
» !
n =1
Relraction Thin lens il = (L - )
f ", R, R
m = - '

Conenme. f < 1)

Comves @ > U

@ 2007 Pearsan Prenlice Hall, Inc

Newtonian imaging equation :
ﬂ‘ ’ —_ zz 1

where z,2’ refers to focal points.
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Answer sheet, question Alc.
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