
 1 

NTNU 

Norwegian University of Science and Technology 

Department of Physics 

 

Professor Morten Kildemo, Mobile: 93287744 

Faglig kontakt under eksamen: Lars M. Sandvik Aas, Mobile: 99013637 

 
TFY4195 Optikk (Optics – basic course) 

 

Examination, May 25th, 2012, Time: 09.00 – 13.00 

 

Allowed aid  

 

Level C:  

Typegodkjent kalkulator, med tomt minne, i samsvar med NTNUs regler. Trykte hjelpemidler: 

“Matematisk Formelsamling” (Rottmann), ”Størrelser og Enheter i Fysikk og Teknikk,” (O. 

Øgrim og B. E. Lian) eller ”Fysiske Størrelser og Enheter,” (C. Angell og B. E. Lian).  

 

Simple electronic calculator (scientific) with an empty memory, in accordance with the 

NTNU rules. No lap-top computer, electronic notebook, or similar, is allowed. Mathematical 

reference books are allowed, such as “BETA Mathematics Handbook” (Råde; Westergren) or 

“Matematisk Formelsamling” (Rottmann), ”Størrelser og Enheter i Fysikk og Teknikk,” (O. 

Øgrim og B. E. Lian) or ”Fysiske Størrelser og Enheter,” (C. Angell og B. E. Lian).  

 

Evaluation/grades 

Total number of points of the written examination is 100. These will constitute the basis for 

evaluation. The following table recommended by NTNU will be used for converting to A, B, 

C, …-scale. 

 

A: 100-90 points 

B: 89-80 points 

C: 79-60 points 

D: 59-50 points 

E: 49-40 points 

F: 39-0 points 
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Section A: Geometric Optics [50p] 
A.1. [Total 7p] 

n( )rA

B  
Figure A.1. Geometric ray in inhomogeneous medium given by refractive index n(r). 

 

Imagine that a geometric ray curves in an isotropic inhomogeneous transparent medium, as 

shown in Figure A.1. i) By inspecting the curvature of the ray, what may you qualitatively 

state about the refractive index profile n(r) and briefly discuss which path the ray would take 

between points A and B (no calculation required). ii) Present a short description of an 

observable phenomenon in nature where such ray curving takes place. 

 

You are given the following equations as reference: 
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A.2. [Total 19 points] 

 
Figure A.2. A general imaging system represented by its cardinal points. 

 

The figure shows a general optical system represented by its cardinal points. The paraxial 

transfer matrix between the principal planes (hovedplan) H and H’ are given by: 

 

'
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a) [7p] i) What is the transverse magnification between the planes H and H’, and what is the 

angular magnification for rays into H and out of H’. ii) Show that 1
'

C
f

 (where 'f  is 

the back-focal length), by considering am incoming ray to H that is parallel to the optic axis. 

 

b) [4p] For the general imaging system in Figure A.2, perform graphical imaging from an 

object point P1 to an image point P1’. 

 

c) [8p] Find the total paraxial transfer matrix from the object plane to the image plane,with 

respect to the principal points (i.e. using s and s’), see Figure A.2. From this matrix, derive the 

Gaussian imaging equation with respect to cardinal points: 

' '
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' '
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A.3. [Total 23 points]. 

 

f f 
2f 

object imagen=1.0 (air)
L1 L2

 
Figure A.3.1. Standard 4f imaging system with object and image in air. L1 and L2 are two identical lenses with 

focal length f. 

 

a)[6p] Using paraxial transfer matrices, show that a 4f imaging system, see Figure A.3.1, 

(with both object and image in air), has transverse magnification Mt=-1, angular 

magnification M=-1, and is an afocal imaging system. 

 

A rectangular glass bowl is filled with index matching liquid. Hence the glass and the liquid 

has refractive index n’=1.5. Air-bubbles are flowing into the bowl from the bottom of the 

container, and we want to make and image and estimate the size of the bubbles, using a CCD 

camera with a 1x1 cm
2
 CCD chip (A3=1 cm). Illumination is assured by a separate system. 

The lenses have focal lengths f=175 mm, and are effectively limited by circular apertures of 

diameter 6 cm. The distance from the bubbles to the container wall is f=175 mm, while the 

distances between the lenses L1 and L2 is 2f=350 mm, and from L2 to the CCD chip the 

distance is also f=175 mm. 
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Figure A.3.2 Air bubbles are floating up through a rectangular glass container filled with a liquid index-matched 

to the glass. The bubbles are to be imaged onto the CCD chip, using basically the 4f imaging system. The focal 

lengths are f=175 mm, the container is 2f=350 mm wide and the bubbles are assumed to float midway through 

the container. The AS, and the EnP and the ExP of the system is shown in the drawing. Note that the figure is not 

drawn to scale. 

 

b) [6p] Find the distance d, in order to form a paraxial image of the bubbles onto the CCD 

chip, using the standard 4f system from part (a). Find the transverse magnification (relative 

size of image compared to the object).  

 

The Aperture Stop (AS), is a circular aperture, that is inserted immediately after the lens L1, 

with diameter AS=4 cm. The Entrance Pupil (EnP) is located 87.5[ ]
2

f
a mm  from the 

container, and the Exit pupil (ExP) of the imaging system is located a distance f from the 

CCD aperture, as shown in the drawing in Figure A3.2. The diameter of the EnP is DEnP=4 cm, 

and the diameter of the ExP is DExP=4 cm. 

 

c) [5p] Find the Field Stop (FS), the Exit Window (ExW), the Entrance Window (EnW) and 

the angular field of view of the system in Figure A3.2. Give both the size and the position of 

the EnW.  

 

d) [4p] Assuming two ideal lenses L1 and L2 and assuming that the current AS in Figure A.3.2 

is removed, explain what aberrations you would expect from the plane interface from liquid to 

air. Make a sketch to demonstrate how such aberrations affect the final image? 

 

e) [4p] If an aperture of small opening-diameter is located midway between the two lenses (L1 

and L2), where will the EnP and the ExP be located. Discuss the advantages and 

disadvantages of the new system, where a descriptive sketch should be included.  
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Section B Wave-Optics [50p]: 

 

B.1 Polarisation [Total 15p] 

 

a) [6p] The Jones vector for a general polarization state can be represented by:  

1
J  

Sketch (without proof) the polarisation ellipse for the following Jones vectors: 1, ,1i i . 

For 1 and i , write the corresponding electric field propagating in the z-direction 

( ˆ ˆk z ) in the form: 

ˆ ˆ( , , , ) ( , ) ,x yE x y z t E z t x E z t y . 

b) [9p] We hereby analyze the rotating analyzer ellipsometer: Light is incident with angle of 

incidence, ( ) (  is here typically between 50-75
o
) on a plane isotropic surface, with Jones 

matrix  

0

0

p

s

r

r
,  

where rp and rs are the Fresnel reflection coefficients A polarizer is inserted in the beam 

before reflection, with transmission axis oriented 45 degrees counter-clockwise rotated from 

the incidence plane of the sample (looking into the beam). After reflection, a polarizer (so-

called analyzer) is rotated an angle ( ), with respect to the incidence plane (still looking into 

the beam), and is finally followed by a detector. You may assume monochromatic light.  

 

i)[6p]-Make a sketch of the system to be analyzed, particularly describing the incidence 

plane.(Hint. Either a 3D drawing or several projections are needed). 

-Find an expression for the Jones vector after the analyzer (as a function of , rp and rs). The 

Jones vector must be reported with respect to the incidence plane. 

 

ii) [3p] Find the intensity ( )DI on the detector for the analyzer rotated to 45o . 

 

B.2 Interference [Total 16p] 

 

A sample consists of a double side polished silicon wafer with air on both sides. The sample 

is illuminated with collimated light (plane waves), at an angle of incidence , and we record 

the specular transmitted light.  

medium 0

medium 0

medium 1



1

c-Si-wafer

d1

 
Figure B.2.1. A plane wave is transmitted through a low doped c-Si wafer in air. Only one internal reflection is 

included in the analysis. 0, 1 are the angle of incidence and the refracted angle, respectively. 
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a) [6p] Let us only consider two internal reflections, see Figure B2.1. Write down an 

expression for the transmission coefficients tp and ts, and calculate the transmittance for s-

polarized light (Ts), as a function of the Fresnel coefficients r10, t01 and t10. You may presume 

the phase shift from the layer (c-Si wafer) to be given by:  

 

1 1 1

2
cosn d  

 

b) [6p] Make an estimate of the thickness of the wafer by analyzing the interference fringes 

from the recorded transmittance using s-polarized light as a function of wavelength, with 

angle of incidence 0=30
o
, see Ts() in Figure B2.2. You may assume the refractive index for 

silicon in this wavelength range is approximately 3.42n .  
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Figure B2.2. The transmittance as a function of wavelength (simulated using data for typical un-doped 

crystalline silicon). The angle of incidence is 0=30
o
. 

 

c)[4p] Show from your results in part (a) why the transmittance in Figure B2.2 oscillates to 

approximately 1 (You may alternatively explain it qualitatively). Determine from the figure 

the maximum and minimum reflectivity. 
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B3.1.  Diffraction, coherence and Fourier optics [Total. 19p] 
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Figure B.3.1. A source with diameter (DS) illuminates the EnP of the image system consisting here of a single 

lens. We assume that light from the source is filtered and thus monochromatic. 

 

A source, (such as a distant star) is illuminating the Entrance Pupil (EnP) of an imaging 

system consisting of a single lens, as seen in Figure B.3.1. 

 

a) [8p] Assuming first that the source as a monochromatic distant point source (i.e. you may 

assume spatially coherent monochromatic plane wave illumination), and given a circular EnP 

of diameter DA, find an expression for the electric field (complex notation) and the intensity 

observed on the observation screen (or a CCD camera). Justify the validity of the method you 

use. The transmission function for a lens is given by  
2 2

0

22

2( , )

x y
ii n

f

lenst x y e e .  

 

b) [5p] If the source is extended and has a diameter DS, it has been shown that the transverse 

coherence length is given by 

 

01.22
t

s

z
l

D
 

 

Briefly discuss how this result can be obtained, and estimate how far away the source must be 

in order to observe diffraction effects from the EnP?  

 

c) [6p] To characterize our system, we use monochromatic (=632 nm) collimated laser light 

(plane wave), and a high resolution CCD camera. Figure B.3.2 shows the recorded diffraction 

pattern, corresponding to the circular aperture, similar to Figure B.3.1. You are given that the 

focal length of the lens is f=20 cm. By reading off the Figure B.3.2, estimate the diameter of 

the aperture. 
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10 m
 

 

Figure B.3.2. The intensity recorded on the CCD camera. A grid has been added which shows 1m per grid box. 

 

 

END OF EXAM  
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Appendix 

The First Rayleigh-Sommerfeld solution: 

 
exp1

( , , ) ( , ,0) cos( )
ikr

U X Y z U x y dxdy
i r

 

 

The Fresnel Diffraction integral is given by : 

 

2 2

2 22
1

( , , ) ( , ,0)exp
2

               

X Y
ik

ikz z
X Y

ik
U X Y z e e U x y x y i k x k y dxdy

i z z  

The 2D Fourier Transform of a general aperture transmission function is given by : 

 

 

 

 

The Fraunhofer diffraction integral is given by : 

  

 

2 2

2
1

( , , ) ( , ,0)exp

               

X Y
ik

ikz z
X YU X Y z e e U x y i k x k y dxdy

i z  

where   

  
2

,   ,  =            X Y

kX kY
k k k

z z
 

 

 or alternatively (depending on how the approximations are performed) 

 

 

1
( , , ) ( , ,0)exp

               

ikR

X YU X Y z e U x y i k x k y dxdy
i R  

where  

 

 sin ,  sin    X X Y Y

kX kX kY kY
k k k k

R z R z
, 2 2 2          R X Y z   

 

Some useful functions in optics, Fourier Transforms and its properties 

 

The circ function is defined by:  

 

 
1

( )
0

for b
circ

b elsewise
 

 

The rect function is defined by : 

1 x
( ) 2

0

w
forx

rect
w

elsewise

 

( , ) ( , ) ( , )exp

               

X Y X YT k k t x y t x y i k x k y dxdyF
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The dirac delta function  

( )
0

for x
x

elsewise
 (heuristic definition) 

( ) 1x dx    (rigorous definition) 

 

The Fourier Transform of the circ function with radius d: 

 2 1( )
( ) ( ) 2

J d
T circ d

d d
F ,  

where  2 2x y , and 2 2

Xk ,Yk  

and J1 is the Bessel function of first Kind.  
 

Table Appendix.1. Properties of the “Besinc” function 1( )
2

J B

B
. 

B 0 1.22 1.63 2.33 2.68 3.33 

1( )
2

J B

B
 1 0 0.017 0 0.004 0 

 

The Fourier Transform of the rect function  

 

 
sin / 2

( )
/ 2

X

X

k wx
rect w

w k w
F ,  

 

Properties of the sinc function : 

Define  

 
sin

sinc( )
x

x
x

,  

Then  sinc( ) 1x  for x=0,  

 sinc( )x  - maximum for x=(2m+1)m1

 sinc( )x 0 for x=mm1

 

The Fourier Transform of the Dirac delta function 

 ( ) 1xF  

 

The Fourier transform of a comb function, (sum of 2N+1 delta functions):  

 
sin 2 1) / 2

sin / 2

n N
X

n N X

N k a
x na

k a
F  

 

The function 

2
2

2

sin 2 1 / 2
2 1 , / 2 , 0, 1, 2,....

sin / 2

X

X

X

N k a
N for k a m where m

k a
 

 

The shift property 

 0 0( ) exp( ) ( )Xf x x ik x f xF F  
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The convolution theorem : 

 The convolution is defined by : ( ) ( ) ( ) ( ) ( )g x f h x d f x h x  

 then by the convolution theorem ( ) ( ) ( )g x f x h xF F F  

 

The sifting property of the Dirac delta function : 

 ( ) ( ) ( )x a f x dx f a  

The Linearity + scaling property  

 ( ) ( ) ( ) ( )g x f x g x f xF F + F  

 

Fresnel reflection and transmission coefficients: 

 
cos cos

cos cos

i i t t
s

i i t t

n n
r r

n n
;    

2 cos

cos cos

i i
s

i i t t

n
t t

n n
 

 

 ||

cos cos

cos cos

t i i t
p

i t t i

n n
r r

n n
;    ||

2 cos

cos cos

i i
p

i t t i

n
t t

n n
 

 

Boundary conditions for reflection/transmission at interface: 

 B Bz z2 1 0    

 0112212  zzzz EEDD    

 E E2 1 0t t    

 H H (B B ) /2 1 2 1 0 0t t t t      

Maxwell’s equations: 

    E
B

 t
0   

 0    
t

D
H  

 0     B  

   D 0 

Material equations 

 D E   

 B H   
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Polarisation, Jones matrices, definition of polarisation ellipse 

Linear Polarizer:     General waveplate: 

 
1 0

0 0
       

1 0

0 ie
 

 

Rotation matrix :      Jones Matrix T rotated by : 

cos sin

sin cos
R     R TR  

 

Jones vector for a polarisation ellipse along its principal axis (x’,y’) in the Figure Pol. ellipse : 

', '

cos 1
cos

sin tan
x yJ

i i
, where 

0 '

0 '

tan
y

x

E

E
 

 

The tilted polarisation ellipse Jones vector along the laboratory coordinates is given by: 

 , ', 'x y x yJ R J  

E
0
x’

E 0y’

y’

x’

 
Figure Polarisation ellipse. 
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Recall that in table 18-2, all distances are taken as positive to the right of the 

plane it refers to, and negative to the left of the plane it refers to.
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Newtonian imaging equation : 

 

 ' 'ff zz  

 

where z,z’ refers to focal points. 

 

The ray equation is given by: 

 ˆ
d

n n
d

s , where ˆ
dr

d
s ,  is the geometric path length and , ,r x y z . 

 

Useful differential geometry: 

The derivative of the unit tangent vector ( ŝ ) to a curve at a point, can be described by the 

principal normal to the curve ( ˆ
ne ) at that point, and its radius of curvature (R) of the curve at 

that point: 

ˆ 1
ˆ

n

d

d R

s
e  

 

Useful constants: 

Planck constant h=6.62617x10
-34

 [J-s]. 

Speed of light in vacuum c=2.99792x10
8
 [m/s]. 

Elementary charge e=1.60218x10
-19

 [C]. 


