

Norwegian University of Science and Technology

Department of Physics

Examination paper for TFY4195 Optics

Academic contact during examination:	Prof. Emil J. Samuelsen
Phone:	4824 4832
Examination date:	Dec 20, 2016
Examination time (from-to):	09.00 - 13.00
Permitted examination support material:	Level C, Specified printed and hand-
written support material is allowed: K. Rottmann, 'Matematisk formelsamling'; S. Barnett	
& T. M. Cronin, 'Mathematical Formulae'; O. Øgrim & B. E. Lian, 'Størrelser og enheter I	
fysikk og teknikk'. English dictionary. A specific basic calculator is allowed (empty	
memory).	
Other information: The exam was prepared by Prof Mikael Lindgren in collaboration with Prof Emil J. Samuelsen.	
Language:	English (answer in Norwegian allowed)
Number of pages (front page excluded):	2
Number of pages enclosed:	3 pages (formulas)
Informasjon om trykking av eksamensoppgave	
Originalen er:	Checked by:
1-sidig X 2-sidig □	
sort/hvit X farger □	Date Signature
	Date Signature
skal ha flervalgskjema 🗆	

Problem 1: Light as an electromagnetic wave. The electric field component of an electromagnetic light-wave propagating in vacuum can be described by the following expression:

$$\overline{E}(x, y, z, t) = \frac{1}{\sqrt{10}} (\hat{x} - 3\hat{y}) \cos(1, 26 \cdot 10^7 z - 3, 77 \cdot 10^{15} t) \left[\frac{V}{m} \right]$$

The position coordinate has unit [m], the time unit [s].

- a) Determine the: propagation direction, wavelength and frequency.
- b) Give an expression for the associated magnetic field.
- c) Write an expression for the corresponding Jones vector describing the polarization state.
- d) Assume that the light passes a so-called 'quarter-wave plate' with the slow axis horizontal (\hat{x}). Determine the resulting Jones vector and sketch the corresponding polarization ellipse.

Problem 2: Thin lenses and imaging. Monica found two lenses with no labels and she needs to determine their focal lengths. She has access to a rail with two lens holders, a movable screen and a fixed object 15 cm in front of the first lens holder. She first inserts lens 1 in the closest holder and obtains an inverted magnified (x2) image 30 cm behind the lens. Secondly she inserts the 2nd lens in holder #2, placed 20 cm behind the first lens. Now she obtains again a magnified (x4) inverted image, this time 20 cm behind the 2nd lens.

- a) What are the focal lengths of the lenses?
- b) Verify by drawing the ray-tracing of the set-up with both lenses.

Problem 3: Snell's law and reflections. Cleo wants to introduce a thin beam of linearly polarized laserlight into a multimode fiber. The fiber is of step-index type, and has core refractive index 1,70 and the index of the cladding is 1,50.

- a) At the start of the fiber, what is the range of incident angles possible to excite wave guiding modes in the fiber?
- b) What angle of incidence should be used in order to maximize the optical power launched into the fiber?

Problem 4: Optical systems and ray tracing.

a) By using the ray-transfer matrix, determine the cardinal points $(F_1; F_2; H_1; H_2; N_1; N_2)$ for a hemispherical glass lens as shown below. The thickness of the lens is 2,0 cm.

- b) You want to use it as a magnifying glass. Determine where (on the left side) to place an object in order to obtain a magnified (virtual) image approximately 25 cm from the lens? What will be the magnification?
- c) Ray-trace the position of the image, indicate where the viewer shall be placed.

Problem 5: Coherence and diffraction. A mercury lamp gives out a broad wide spectrum with several distinct narrow lines. The green line (λ = 546,1 nm) is separated out using a filter, resulting in a spectral line-width of $\delta\lambda$ = 0,050 nm, according to the technical specifications.

a) Ole wants to check the corresponding coherence length using the Michelson spectrometer in the optics lab. How shall he set-up and carry out the experiment, and what should he expect? (Hint: For longitudinal coherence the following formula applies: $l_c = c \cdot \tau_c$, coherence time is related to the spectral width $\tau_c = 1/\Delta f$.)

Ole wants to carry out a diffraction experiment and focusses the filtered green light of the mercury lamp onto a thin pinhole. At an appropriate distance behind the pinhole he places a construction with two slits of width 10 μ m and separation 40 μ m. He intends to record the diffraction pattern at a distance 1,0 m behind the aperture.

- b) Is the distance 1,0 m 'safe' in order to observe the far field diffraction pattern (Fraunhofer diffraction)? Motivate your answer.
- c) Sketch the diffraction pattern and specifically the positions and magnitude of maxima in the central diffraction lobe.