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Suggested solution - Exam, May 27, 2003 

Problem 1
a) System matrix:
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Power: P = −C = 1/48 cm-1 = 2.08 m-1(diopter)

b) From a) and n = n' = 1: f  = f ' = −n/C =  48 cm . h = (1−D)n/C = 48 cm, i.e., H is 48 cm to

the left of L1. h' = (1−A)n'/C = −32 cm, i.e., H ' is 32 cm to the left of L2. The front focal

point F is a distance f +h = 96 cm to the left of L1. The back focal point F' is a distance 

f +h' = 16 cm to the right of L2

c) The object is a distance s = 144 cm − 48 cm = 2f  to the left of H.  From the lens formula

we then see that the image is the same distance s' = 2f  to the right of H' . The image is

located the distance h' +2f = 64 cm to the right of L2. The magnification is β  = −s'/s = −1.

d) The aperture stop is the physical stop that limits the ray-bundle contributing to the image

point on-axis.  

The field stop is the physical stop that limits the bundle of chief-rays through the center of

the aperture stop.

The entrance pupil is the aperture stop seen from or imaged into object space.

The exit pupil is the aperture stop seen from or imaged into image space.

The entrance window is the field stop seen from or imaged into object space.

The exit window is the field stop seen from or imaged into image space.

We image all stops to the object space (might as well have chosen the image space): 

L1 is in object space (it is imaged onto itself). At the object point on-axis its aperture

subtends the angle 2/144 rad = 1/72 rad. The image of L2 (formed by imaging through L1)

is a distance s to the left of L1, where the lens formula: 1/s + 1/(16 cm) = 1/f1 yields s

= −48 cm. The image is therefore located 48 cm to the right of L1 and the magnification is

48/16 = 4. The image of the aperture of L2 therefore has a diameter of 16 cm and it
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subtends the angle 8/(144+48) rad = 1/21 rad at the object point on axis. The smallest

angle is subtended by L1, which is therefore the aperture stop. 

(This can also be seen directly: the object distance is larger than f1 and then L1 will serve

to converge the ray-bundle from the object point on-axis so that it can never be limited by

L2).

The exit pupil is the aperture stop L1 imaged into image space. Then L1 is imaged by L2 to

a virtual image at a distance 8 cm to the left of L2 and with the magnification 8/16=1/2.

The exit pupil is therefore 8 cm to the left of L2 and has a diameter of 2 cm.

F-number in image space: F' = (64+8)/2 = 36.

Problem 2
a) With a 50/50 beam-splitter each of the two waves has the same intensity I1=I2= I0, and

from the interference equation we then have

[ ] [ ])/cos(12)cos(12)cos(2)( 002121 csIksIksIIIIsI ω+=−=++= .

where we have used that k= c/ω .  

For a polychromatic source the corresponding contribution to the intensity from the

frequency range ωd  is: [ ] ωωω dcsWsdI )/cos(1)(2)( += . Integrating over all

frequencies we obtain:
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From the given formulas we have
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[ ])/(Re)0(2)( cssI Γ+Γ= .  QED

b) The visibility is defined as 
min
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= , where Imax is the maximum intensity

(at constructive interference) and Imin is the minimum intensity (at destructive

interference) of the interference signal. 

With the given interference signal, we have [ ])/exp(12 0 LsIImax −+=  and

[ ])/exp(12 0min LsII −−= , which yield: )/exp()( LssV −= .

By direct substitution, we see that the given interference signal is obtained from
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( )[ ]00 /2/exp)/( λπsiLsIcs +−=Γ , i.e., ( )[ ]00 /2/exp)( λπτττ ciLcI +−=Γ ,

which equals the given expression for 
111066666.1/ −⋅== cLT sec = 16.6666 ps

and 
15

00 1077.3/2 ⋅== λπω c rad/s.

(c) We have )()()0()( τγτγτ I=Γ=Γ , where )0(Γ=I is the total intensity (a constant).
The given formulas then yield
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where the first term in the last line follows by a simple change of the integration
variable ( ττ −→ ). Direct integration yields
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(d) The maximum is πω /)( 00 TIW = at the center frequency 

15
0 1077.3 ⋅== ωω rad/s, 

and the half-width around this maximum is 

2/T = 11102.1 ⋅  rad/s.

(the value is reduced by a factor 1/2 relative to the maximum value at the

frequencies T/10 ±= ωω ).
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Problem 3

a) The rays are marked with arrows.  The path-length difference between the two rays (1

and 2) reflected from two neighboring grooves at A and B is AD-BC, where the dotted

lines AC and BD are normal to, respectively, the ray incident at B and the ray reflected

at A.  For the angles we therefore have: ∠BAC = θ 0 and  ∠ABD = θ .  With the

grating constant a = AB, we therefore have for the path-length difference:

( )0sinsinBCAD θθ −=−= as  QED!

b) The light in the two rays are in-phase if s = mλ where m = 0, ±1, ±2,.. etc. and λ is the

wavelength.  Then the light reflected from any two groves are also in-phase, so that the

reflected waves from all the groves interfere constructively.  Therefore the diffraction

orders are in the directions mθθ = where mθ  is given by the grating equation:

                        ( ) etc.,...2,1,0 ;sinsin 0 ±±==− mma m λθθ

c) For the order at the height h= 0, we have

 [ ] [ ]))30/500(sin(arctan1sin)2/sin( 0 −=−=
λ

θπ
λ

aammax ,

and for the order closest to h = 3h0 we have 
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[ ]))30/500(sin(arctan))90/500(sin(arctanmin −=
λ
am .

The difference is

[ ] 987.24))90/500(sin(arctan1min =−=−
λ
ammmax

We therefore have 24 diffraction orders with a height < 3h0.

d) We now have [ ])/2cos(1
2

)()0,,( axAxAtyxU π+==  and obtain for the Fourier

spectrum at z = 0:
                                  )()(2)0,,( vuATvuA δπ= , 

where    
      { } { }[ ])/2()/2()(2)()( 2

1 auauuAxtuT πδπδδπ −+−+== F
because { } )(21 uπδ=F and { } [ ])()()cos( αδαδπα ++−= uuxF  (see Øving 12 and

Eq.(1.3) in the lecture notes).  The angular spectrum representation of the diffracted

field (Eq. (2.9) in the notes) then yields:

 
( )[ ]

{ }[ ] ( )[ ]∫ ∫

∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

−−++++−+=

−−++





=

.exp)()/2()/2()(

exp)0,,(
2
1),,(

222
2
1

222
2

dudvvukzvyuxivauauuA

dudvvukzvyuxivuAzyxU

δπδπδδ

π

Here we have contributions for v = 0 and u= 0, ±2π/a, which give rise to only three

plane waves:
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The first term is a plane wave in the z direction, the two last terms are plane waves

propagating at angles θ±  with the z axis.  Since ( )[ ]θθ cossinexp zxikA +  describes a

plane wave at an angle θ  with the axis, we see that 
aka
λπθ ==

2sin .  QED!

For a < λ , the factor 222
2

2 )/(12/1/122 λπλππ a
a
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purely imaginary, so that the two last plane waves are exponentially damped in the z-

direction.  



SIF 4040 Optikk/Optics

6


