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Exam, May 14, 2004: Suggested solution

Problem 1

a) System matrix:
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Transfer matrix:
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For conjugate planes we have B’ = 0, and the transfer matrix reduces to the imaging
matrix: 
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where β is the magnification and P is the power. 

b) From B’=0 we obtain the image relation: ( ) d
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The magnification is: 12' ffA −==β = -1/6.

The principal planes H and H’ are conjugate planes (images of each other) for which
the magnification is: .1+=β  Here the magnification is 12 ff−=β = -1/6 for all
conjugate planes. Therefore this system does not have principal planes. 

We here have P = 0, so this is a so-called afocal system (a telescope).

c)
• The aperture stop is the physical stop that limits the ray bundle from an object point on

axis to the corresponding image point.
• The entrance pupil is the aperture stop imaged to the object space (i.e., seen from the

object side).
• The exit pupil is the aperture stop imaged to the image space (i.e., seen from the image

side).
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• A chief ray is the ray from an object point to the corresponding image point that
passes through the center of the aperture stop (and the associated pupils).

• The field stop is the stop that limits the bundle of chief rays from the object to the
image.

• The entrance window is the field stop imaged to the object space (i.e., seen from the
object side).

• The exit window is the field stop imaged to the image space (i.e., seen from the image
side).

For the ray bundle from an object point on-axis we now have the situation illustrated
in the figure above, and we immediately see that L1 is the aperture stop and the
entrance pupil. Since we only have two stops in the system, L2 is the field stop and the
exit window. 
The exit pupil is L1  imaged into image space by L2. It is located at the image distance

dEP’ where  
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The entrance window is L2  imaged into object space by L1. It is located at the object

distance dEW  where  
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, which yields: ( )21
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d ) This is a telescope. The observer looks at a virtual image with image heigth

6/'
1

2 yy
f
fyy −=−== β . This image is both demagnified and inverted but it is

observed from a distance that is much less than the original object distance. From the
image relation in b) we see that the distance from the exit pupil to the image is:
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The angle subtended by the object at the entrance pupil is y/d, but the corresponding

angle subtended by the image at the exit pupil is 
d
y
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y
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−

. So although the

magnification is β = -1/6, the visual magnification is: 21/1 ff−=β = -6.

Problem 2

a) The coherence function is:
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Substitution into the given formula yields:
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and we see that the interference term is the product )cos(
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sinc-term describes the envelope function. QED!

b) The visibility is defined as 
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≡ , where Imax and Imin are, respectively, the

maximum and minimum intensity as we move from one fringe to the next by changing
the path-length difference. 

In the interference signal 
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describes the interference fringes while the sinc-term is the slowly varying envelope
that determines the visibility. We then have
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The first zero of the visibility function is at πω
=

∆
c

s
2

 , which yields for the

longitudinal coherence length: ./2 ωπ ∆= clc

c) When we go from one fringe to the next, s is changed by the amount: 00/2 λωπ =c .
The number of interference fringes that can be observed with good visibility in the
range 2/2/ cc lsl ≤≤−  is therefore: ωωλ ∆= // 00cl .

d) From the given data we obtain: lc = 20λ0 = 10 µm, 00 2 λπω c= = 3.77⋅1015 s-1, and
=⋅==∆ -113

0 s 10620/ πωω 18.85⋅1013 s-1.

Problem 3

a) From the given formulas the Fourier series expansion is given by:
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We here have
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and direct substitution yields the given formula. QED!

b) The field immediately behind the object can now be written as:
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A plane wave with amplitude A is given by:

( ) ( )[ ];expexp 222 vukzvyuxiAiA −−++=⋅rk

For z = 0 it reduces to: ( )[ ].exp vyuxiA +  Each term in the sum above has precisely this

form: ( )[ ]yvxuiA mmm +exp  with ( )amd
a
dAAm πsinc0= , um = 0, and vm =2πm/a. 

For z ≥ 0 the m-th term in the Fourier series therefore gives rise to the plane wave: 
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c) The m-th plane wave propagates at the angle θm with the axis. From the given formula
we then have 

( )( )[ ] ( )[ ]mmmm zyikAamkzamyiA θθππ cossinexp/2/2exp 22 +=−+
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and immediately see that mkam θπ sin/2 = , which yields the well-known  grating
equation: λθ ma m =sin .

d) Only a finite number of plane waves will be freely propagated because, for λ/am > ,
we have so-called, evanescent plane waves that are exponentially damped in the z
direction. With the given parameters we can have freely propagated waves for

20/ =≤ λam , so that 41 plane waves may be freely propagated (one for m=0, 20 for
m<0, and 20 for m>0).  However, some of these plane waves may be absent (“missing
orders”) because the amplitude Am vanishes. With the given parameters we have:

( )2sinc
2
1

0 mAAm π= , which vanishes for all m = ±2,±4, ±6,..etc.

In this case we only have 21 freely propagated plane waves.


