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NTNU Institutt for fysikk

Contact during the exam:
Professor Arne Brataas
Telephone: 73593647/90643170

Exam in TFY4205 Quantum Mechanics
December 4, 2009

09:00–13:00

Allowed help: Alternativ C
Approved calculator
K. Rottman: Matematisk formelsamling
Barnett and Cronin: Mathematical formulae

Some relations that might be useful are given at the end of this exam.

This problem set consists of 5 pages.

Problem 1. Time-dependent perturbation theory
Consider the initially unperturbed system described by the Hamiltonian H0(~r), and the sta-
tionary, orthonormal eigenstates Ψ0

n(~r, t):

Ψ0
n(~r, t) = ψn(~r)e−iEnt/~, (1)

where
H0(~r)ψn(~r) = Enψn(~r). (2)

We introduce the time-dependent perturbation V (~r, t), so that the total Hamiltonian is

H(~r, t) = H0(~r) + V (~r, t). (3)

a) We let Ψ(~r, t) be eigenstates of the total Hamiltonian H(~r, t), and expand them in terms
of the known stationary states:

Ψ(~r, t) =
∑

k

ak(t)Ψ0
k(~r, t). (4)

What is the physical interpretation of the expansion coefficients ak(t)?

In the rest of this problem, we will restrict ourselves to first-order time-dependent perturbation
theory. If we assume that our unperturbed system was in the state described by Ψ0

i (~r, t) at
t→ −∞, one can show that

an(t) = δn,i +
1
i~

∫ t

−∞
dt′ Vni(t′)eiωnit

′
, (5)

where
Vni(t) =

∫
d~r (ψn(~r))∗ V (~r, t)ψi(~r) = 〈n|V (~r, t)|i〉, (6a)

and
ωni =

En − Ei

~
. (6b)
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b) Consider an electron, moving in the x-direction, in a one dimensional harmonic oscillator
potential:

H0(x) =
p2

x

2m
+

1
2
mω2x2. (7)

The electron is in the ground state at t → −∞. The electron is then subject to a
time-dependent electric field E(t), so that the perturbation reads

V (x, t) = −eE(t)x = eE0xe−t2/τ2
. (8)

In which excited states is it possible to find the electron as t→ +∞?

c) Show that the probability P of finding the electron in an excited state as t→ +∞ can
be written

P =
πe2E2

0 τ
2

2m~ω
exp

(
−ω

2τ2

2

)
. (9)

You might find the following integral useful:∫ ∞

−∞
dt exp

(
− t

2

τ2
+ iωt

)
= τ

√
πexp

[
−

(ωτ
2

)2
]
.

d) How should we choose τ in order to maximize the transition probability? Call the
maximum transition probability Pmax, and derive an expression for Pmax.

e) What happens to Pmax when E0, the amplitude of the electric field, is increased towards
+∞? Derive an expression describing the validity of Pmax.

(Comment: If you did not find an expression for Pmax in 1 d), you can solve this problem
by instead using P from Eq. (9), with τ as a positive constant.)

Problem 2. Scattering theory
In this problem we will consider a three dimensional stationary scattering problem, described
by the stationary Schrödinger equation(

∇2 + k2
)
ψ(~r) = U(~r)ψ(~r), (10)

where k =
√

2mE/~2 and U(~r) = 2mV (~r)/~2. This equation describes a particle of mass m
and energy E that scatters at the potential V (~r), that we take to be at rest at the origin. At
large (asymptotic) distances, the wave function of the particle is

ψ(~r) ' ei~k·~r + f(ϑ, ϕ)
eikr

r
, (11)

where f(ϑ, ϕ) is the scattering amplitude.

a) Give a physical definition of the differential and the total scattering cross section, and
write down how these quantities are related to the scattering amplitude f(ϑ, ϕ) (no
derivations are required).
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In the first Born approximation, the scattering amplitude is

fB(ϑ, ϕ) = − 1
4π

∫
d~r ′ e−i~q·~r ′

U(~r ′), (12)

where ~q = ~k′ − ~k = k~r/r − ~k.

b) Consider the spherically symmetric potential described by

VS(r) =
V0e−λr

λr
, (13)

where λ−1 characterizes the range of the potential. Use the first Born approximation to
find an expression for the scattering amplitude, and show that the differential scattering
cross section for this potential can be written

dσ
dΩ

=
(

2mV0

λ~2

)2 1(
λ2 + q2

)2 , (14)

where q = 2k sin θ/2.

c) The Coulomb potential is

VC(r) =
ZZ ′e2

4πε0r
. (15)

Use the result from b) to find the differential scattering cross section for the potential
VC.

d) The Born approximation is valid if the following inequality holds:∫ ∞

0
dr′ r′|U(r′)| � 1. (16)

The potential VS is strong enough to form a bound state if

2m|V0|
λ2~2

≥ 2.7 . (17)

Discuss the validity of the Born approximation for the potential VS based on the re-
quirement in Eq. (16) and the condition in Eq. (17)! Is the first Born approximation
valid for the potential VC?

Problem 3. Quantization of the Electromagnetic Fields
The Hamiltonian for the electromagnetic field in vacuum is

H =
1
2

∫
d3r (E ·D + B ·H) . (18)

We choose the Coulomb gauge, ∇ ·A = 0, where A is the electromagnetic vector potential.
The electromagnetic fields can be expressed in terms of the electromagnetic vector potential
as

B = ∇×A,

H = B/µ0,

E = −∂A
∂t

,

D = ε0E,



Exam in TFY4205 Quantum Mechanics, Dec. 4, 2009 Page 4 of 5

where ε0 is the dielectricity constant and µ0 is the magnetic permeability that are related by
the velocity of light c2 = (µ0ε0)

−1. The Hamiltonian for the electromagnetic field can then
be expressed in terms of the electromagnetic vector potential as

H =
ε0c

2

2

∫
d3r

[(
∂A
∂ct

)2

+ (∇×A)2
]
.

The electromagnetic field can be quantized and expressed as

Â(r, t) =
∑
kλ

ekλ

√
~

2ε0V ck

[
akλe

i(k·r−ωkt) + a†kλe
−i(k·r−ωkt)

]
, (19)

where λ denotes the two polarization directions (λ = 1 or λ = 2) , ek,λ is the polarization
vector, and k is the wavevector. The operator ak,λ satisfies[

akλ, a
†
k′λ′

]
= δkλ,k′λ′ .

The polarization vectors satisfy

ekλ · ekλ′ = δλλ′ ,

ekλ · k = 0,
ek1 · ek1 = 1,
ek2 · ek2 = −1.

a) Using the expression for the electromagnetic vector potential (19), the Hamiltonian can
be written as

H =
∑
kλ

~ωk

(
a†kλakλ +

1
2

)
,

where ωk = ck. What are the physical interpretations of the quantitites ~ωk, akλ, a†kλ,
and a†kλakλ ?

b) Explicitly demonstrate that the Hamiltonian (18) can be written as

H =
∑
kλ

~ωkλ

(
a†kλakλ +

1
2

)
.
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Some potentially useful relations

Harmonic oscillator

The Hamiltonian of a one dimensional harmonic oscillator is

H =
p2

2m
+

1
2
mω2q2 = ~ω

(
a†a+

1
2

)
, (20)

where the ladder operators are defined as

a =
√
mω

2~
q +

i√
2m~ω

p, and a† =
√
mω

2~
q − i√

2m~ω
p.

This is equivalent to

q =

√
~

2mω

(
a† + a

)
, and p = i

√
m~ω

2

(
a† − a

)
.

The ladder operators satisfy [
a, a†

]
= 1,

and

a|n〉 =
√
n|n− 1〉,

a†|n〉 =
√
n+ 1|n+ 1〉,

where |n〉 are the orthonormalized eigenstates of H in Eq. (20):

H|n〉 = ~ω
(
n+

1
2

)
|n〉 = En|n〉.

Vector algebra

For the vectors A, B, C, and D, this holds

(A×B) · (C×D) = (A ·C) (B ·D)− (A ·D) (B ·C) .


