Contact during the exam:
Faglærer: Professor Arne Brataas
Kontakt under eksamen: Dr. Anh Kiet Nguyen
Telephone: 73593647

Exam in TFY4205 Quantum Mechanics<br>August, 2006<br>9:00-13:00

Allowed help: Alternativ C
Approved Calculator.
K. Rottman: Matematische Formelsammlung

Barnett and Cronin: Mathematical formulae
At the end of the problem set some relations are given that might be helpful.
This problem set consists of 6 pages.

## Problem 1. Momentum Representation

A particle of mass $m$ is subjected to a force $\mathbf{F}(\mathbf{r})=-\nabla V(\mathbf{r})$ such that the wave function $\phi(\mathbf{p})$ satisfies the momentum-space Schrödinger equation

$$
\begin{equation*}
\left(\frac{\mathbf{p}^{2}}{2 m}-a \nabla_{p}^{2}\right) \phi(\mathbf{p}, t)=i \hbar \frac{\partial}{\partial t} \phi(\mathbf{p}, t), \tag{1}
\end{equation*}
$$

where $a$ is a real constant and

$$
\begin{equation*}
\nabla_{p}^{2}=\frac{\partial^{2}}{\partial p_{x}^{2}}+\frac{\partial^{2}}{\partial p_{y}^{2}}+\frac{\partial^{2}}{\partial p_{z}^{2}} . \tag{2}
\end{equation*}
$$

Find the force $\mathbf{F}(\mathbf{r})$.

## Solution

The coordinate and momentum representations of a wave function are related by

$$
\begin{align*}
\psi(\mathbf{r}, t) & =\left(\frac{1}{2 \pi \hbar}\right)^{3 / 2} \int d \mathbf{p} \phi(\mathbf{p}, t) \exp i \mathbf{p} \cdot \mathbf{r} / \hbar  \tag{3}\\
\phi(\mathbf{p}, t) & =\left(\frac{1}{2 \pi \hbar}\right)^{3 / 2} \int d \mathbf{r} \psi(\mathbf{r}, t) \exp -i \mathbf{p} \cdot \mathbf{r} / \hbar \tag{4}
\end{align*}
$$

Thus

$$
\begin{array}{r}
\mathbf{p}^{2} \phi(\mathbf{p}, t) \rightarrow-\hbar^{2} \nabla^{2} \psi(\mathbf{r}, t), \\
\nabla_{p}^{2} \phi(\mathbf{p}, t) \rightarrow-r^{2} \psi(\mathbf{r}, t), \tag{6}
\end{array}
$$

and the Schrödinger equation becomes in coordinate space

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m}+a r^{2}\right) \psi(\mathbf{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) . \tag{7}
\end{equation*}
$$

Hence the potential is

$$
\begin{equation*}
V(\mathbf{r})=a r^{2} \tag{8}
\end{equation*}
$$

and the force is

$$
\begin{equation*}
\mathbf{F}(\mathbf{r})=-\nabla V(\mathbf{r})=-\frac{\mathbf{r}}{r} \frac{d}{d r} V(r)=-2 a \mathbf{r} \tag{9}
\end{equation*}
$$

## Problem 2. Harmonic Oscillator

The Hamiltonian for a harmonic oscillator can be written in dimensionless units $(m=\hbar=$ $\omega=1$ ) as

$$
\begin{equation*}
\hat{H}=\hat{a}^{\dagger} \hat{a}+\frac{1}{2} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{p}), \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{p}) \tag{11}
\end{equation*}
$$

and $\hat{x}$ is the position operator and $\hat{p}$ is the momentum operator. One unnormalized energy eigenfunction is

$$
\begin{equation*}
\psi_{a}=\left(2 x^{3}-3 x\right) \exp -x^{2} / 2 \tag{12}
\end{equation*}
$$

a) Find two other (unnormalized) eigenfunctions which are closest in energy to $\psi_{a}$.

Hint: In the Fock representation of harmonic oscillation, $\hat{a}$ and $\hat{a}^{\dagger}$ are the annihilation and creation operators such that

$$
\begin{align*}
\hat{a}|n\rangle & =\sqrt{n}|n-1\rangle  \tag{13}\\
\hat{a}^{\dagger}|n\rangle & =\sqrt{n+1}|n+1\rangle \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{H}|n\rangle=\left(n+\frac{1}{2}\right)|n\rangle \tag{15}
\end{equation*}
$$

## Solution

Using the definitions for the operators $\hat{a}$ and $\hat{a}^{\dagger}$, we find

$$
\begin{equation*}
\hat{a} \hat{a}^{\dagger}|n\rangle=(n+1)|n\rangle \tag{16}
\end{equation*}
$$

As

$$
\begin{align*}
\hat{a} \hat{a}^{\dagger} \psi_{a} & =\frac{1}{2}\left(x+\frac{d}{d x}\right)\left(x-\frac{d}{d x}\right)\left(2 x^{3}-3 x\right) \exp -x^{2} / 2  \tag{17}\\
& =\frac{1}{2}\left(x+\frac{d}{d x}\right)\left(3 x^{4}-12 x^{2}+3\right) \exp -x^{2} / 2  \tag{18}\\
& =4\left(2 x^{3}-3 x\right) \exp -x^{2} / 2  \tag{19}\\
& =(3+1) \psi_{a} \tag{20}
\end{align*}
$$

we have $n=3$. Hence the eigenfunctions closest in energy to $\psi_{a}$ have $n=2$ and $n=4$, the unnormalized wave functions being

$$
\begin{align*}
\psi_{2} & =\frac{1}{\sqrt{3}} \hat{a} \psi_{a}  \tag{21}\\
& =\frac{1}{\sqrt{6}}\left(x+\frac{d}{d x}\right)\left(2 x^{3}-3 x\right) \exp -x^{2} / 2  \tag{22}\\
& \sim\left(2 x^{2}-1\right) \exp -x^{2} / 2 \tag{23}
\end{align*}
$$

and

$$
\begin{align*}
\psi_{4} & =\frac{1}{2} \hat{a}^{\dagger} \psi_{a}  \tag{24}\\
& =\frac{1}{2 \sqrt{2}}\left(x-\frac{d}{d x}\right)\left(2 x^{3}-3 x\right) \exp -x^{2} / 2  \tag{25}\\
& \sim\left(4 x^{4}-12 x^{2}+3\right) \exp -x^{2} / 2 \tag{26}
\end{align*}
$$

where the unimportant constant prefactors have been omitted.
b) We now reintroduce the dimensions and write the Hamiltonian using the momentum and position operators:

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \tag{27}
\end{equation*}
$$

Find the time dependence of the expectation values of the "initial position" and "initial momentum" operators

$$
\begin{align*}
& \hat{x}_{0}=\hat{x} \cos \omega t-\frac{\hat{p}}{m \omega} \sin \omega t  \tag{28}\\
& \hat{p}_{0}=\hat{p} \cos \omega t+m \omega \hat{x} \sin \omega t \tag{29}
\end{align*}
$$

## Solution

Making use of the relation (in the Heisenberg representation)

$$
\begin{equation*}
\frac{d \hat{f}}{d t}=\frac{1}{i \hbar}[\hat{f}, \hat{H}]+\frac{\partial \hat{f}}{\partial t} \tag{30}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{1}{i \hbar}[\hat{x}, \hat{H}] & =\frac{1}{2 m} \frac{1}{i \hbar}\left[\hat{x}, \hat{p}^{2}\right]=\frac{\hat{p}}{m}  \tag{31}\\
\frac{1}{i \hbar}[\hat{p}, \hat{H}] & =\frac{1}{2} m \omega^{2} \frac{1}{i \hbar}\left[\hat{p}, \hat{x}^{2}\right]=-m \omega^{2} \hat{x} \tag{32}
\end{align*}
$$

so that

$$
\begin{align*}
\frac{d \hat{x}}{d t} & =\frac{\hat{p}}{m}  \tag{34}\\
\frac{d \hat{p}}{d t} & =-m \omega^{2} \hat{x} \tag{35}
\end{align*}
$$

That means that for the expectation values, we have the two coupled differential equations

$$
\begin{align*}
\frac{d x}{d t} & =\frac{p}{m}  \tag{36}\\
\frac{d p}{d t} & =-m \omega^{2} p \tag{37}
\end{align*}
$$

with the solutions

$$
\begin{gather*}
x(t)=x(t=0) \cos \omega t-\frac{p(t=0)}{m} \sin \omega t  \tag{38}\\
p(t)=p(t=0) \cos \omega t+m \omega x(t=0) \sin \omega t \tag{39}
\end{gather*}
$$

We then have

$$
\begin{align*}
\frac{d x_{0}(t)}{d t} & =\frac{p(t)}{m} \cos \omega t-\omega x(t) \sin \omega t=0  \tag{40}\\
\frac{d \hat{p}_{0}}{d t} & =\frac{\hat{p}}{m} \cos \omega t+\omega \hat{x} \sin \omega t=0 \tag{41}
\end{align*}
$$

c) Compute the commutator $\left[\hat{p}_{0}, \hat{x}_{0}\right]$. What is the significance for measurements theory?

## Solution

Using the expression for $\hat{p}_{0}$ and $\hat{x}_{0}$, we find

$$
\begin{align*}
{\left[\hat{p}_{0}, \hat{x}_{0}\right] } & =\left[\hat{x} \cos \omega t-\frac{\hat{p}}{m \omega} \sin \omega t, \hat{p} \cos \omega t+m \omega \hat{x} \sin \omega t\right]  \tag{42}\\
& =\cos ^{2} \omega t[\hat{x}, \hat{p}]-\sin ^{2} \omega t\left[\frac{\hat{p}}{m \omega}, m \omega \hat{x}\right]  \tag{43}\\
& =[\hat{p}, \hat{x}]  \tag{44}\\
& =\frac{\hbar}{i} \tag{45}
\end{align*}
$$

Thus, we have the same uncertainty as between the the operators $\hat{p}$ and $\hat{x}$, so that

$$
\begin{equation*}
\Delta p_{0} \Delta x_{0} \geq \frac{\hbar}{2} \tag{46}
\end{equation*}
$$

## Problem 3. Particle in a Periodic Potential

A particle of mass $m$ moves in one dimension in a periodic potential of of infinite exten. The potential is zero at most places, but in narrow regions of width $b$ separated by spaces of length $a(b \ll a)$ the potential is $V_{0}$, where $V_{0}$ is a large positive constant. One may think of the potential as a sum of Dirac delta functions:

$$
\begin{equation*}
V(x)=\sum_{n=-\infty}^{\infty} V_{0} b \delta(x-n a) . \tag{47}
\end{equation*}
$$

a) Show that the appropriate boundary conditions to apply to the wave function are

$$
\begin{equation*}
\left(\frac{d \psi}{d x}\right)_{x=n a+\epsilon}-\left(\frac{d \psi}{d x}\right)_{x=n a-\epsilon}=2 \Omega \psi(n a), \tag{48}
\end{equation*}
$$

where $\epsilon \rightarrow 0$ and $\Omega=m V_{0} b / \hbar^{2}, n$ is an integer, and

$$
\begin{equation*}
\psi(n a+\epsilon)-\psi(n a-\epsilon)=0 . \tag{49}
\end{equation*}
$$

## Solution

The Schrödinger equation is

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\sum_{n=-\infty}^{\infty} V_{0} b \delta(x-n a)\right] \psi(x)=E \psi(x) . \tag{50}
\end{equation*}
$$

Integrating it from $x=a-\epsilon$ to $x=a+\epsilon$ and letting $\epsilon \rightarrow 0$, we get

$$
\begin{equation*}
\left(\frac{d \psi}{d x}\right)_{x=n a+\epsilon}-\left(\frac{d \psi}{d x}\right)_{x=n a-\epsilon}=2 \Omega \psi(n a) . \tag{51}
\end{equation*}
$$

The wave function must be continous since otherwise the kinetic energy would become infinitely large. Consequently,

$$
\begin{equation*}
\psi(n a+\epsilon)-\psi(n a-\epsilon)=0 \tag{52}
\end{equation*}
$$

b) Let the lowest energy of a wave that can propagate through this potential be $E_{0}=\hbar^{2} k_{0}^{2}$ (this defines $k_{0}$ ). Write down a transcendental equation (not a differential equation) that can be solved to give $k_{0}$ and thus $E_{0}$. (It is not necessary to solve the transcendental equation).

## Solution

For $x \neq n a$, there are two fundamental solutions to the Schrödinger equation:

$$
\begin{equation*}
u_{1}(x)=\exp i k x, u_{2}(x)=\exp i k x \tag{53}
\end{equation*}
$$

the corresponding energy being

$$
\begin{equation*}
E=\frac{\hbar^{2} k^{2}}{2 m} \tag{54}
\end{equation*}
$$

Let

$$
\begin{equation*}
\psi(x)=A \exp i k x+B \exp -i k x, 0 \leq x \leq a . \tag{55}
\end{equation*}
$$

According to Bloch's Theorem, in the region $a \leq x \leq 2 a$

$$
\begin{equation*}
\psi(x)=\exp i K a[A \exp i k(x-a)+B \exp -i k(x-a)] \tag{56}
\end{equation*}
$$

where $K$ is the Bloch wave number. The boundary condition give

$$
\begin{align*}
e^{i K a}(A+B) & =A e^{i k a}+B e^{-i k a}  \tag{57}\\
i k e^{i K a}+(A-B) & =i k\left(A e^{i k a}-B e^{-i k a}\right)+2 \Omega\left(A e^{i k a}+B e^{-i k a}\right) . \tag{58}
\end{align*}
$$

For non-zero solutions of $A$ and $B$ we require

$$
\left|\begin{array}{cc}
e^{i K a}-e^{i k a} & e^{i K a}-e^{-i k a}  \tag{59}\\
i k e^{i K a}-(i k+2 \Omega) e^{i k a} & -i k e^{i K a}+(i k-2 \Omega) e^{-i k a}
\end{array}\right|=0
$$

or

$$
\begin{equation*}
\cos k a+\frac{\Omega}{k} \sin k a=\cos K a \tag{60}
\end{equation*}
$$

which determines the Bloch wave number $K$. Consequently, the allowed values of $k$ are limited to the range given by

$$
\begin{equation*}
\left|\cos k a+\frac{\Omega}{k} \sin k a\right| \leq 1, \tag{61}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\cos k a+\frac{\Omega}{k} \sin k a\right)^{2} \leq 1 \tag{62}
\end{equation*}
$$

$k_{0}$ is the minimum of $k$ that satisfy this inequality.
c) Write down the wave function at energy $E_{0}$ valid in the region $0 \leq x \leq a$. (For uniformity, let us choose normalization and phase such that $\psi(x=0)=1)$. What happens to the wave function between $x=a$ and $x=a+b$ ?

## Solution

For $E=E_{0}$,

$$
\begin{equation*}
\psi(x)=A e^{i k_{0} x}+B e^{-i k_{0} x}, 0 \leq x \leq a \tag{63}
\end{equation*}
$$

where $k_{0}=\sqrt{2 m E_{0} / \hbar^{2}}$. A normalization choice, $\psi(x=0)=1$ gives

$$
\begin{equation*}
\psi(x)=2 i A \sin k_{0} x+e^{-i k_{0} x}, 0 \leq x \leq a \tag{64}
\end{equation*}
$$

The boundary conditions at $x=a$ give

$$
\begin{equation*}
e^{i K a}=2 i A \sin k_{0} a+e^{-i k_{0} a} \tag{65}
\end{equation*}
$$

or

$$
\begin{equation*}
2 i A=\frac{\left(e^{i K a}-e^{-i k_{0} a}\right)}{\sin k_{0} a} \tag{66}
\end{equation*}
$$

So

$$
\begin{equation*}
\psi(x)=\left(e^{i K a}-e^{-i k_{0} a}\right) \frac{\sin k_{0} x}{\sin k_{0} a}+e^{-i k_{0} x}, 0 \leq x \leq a \tag{67}
\end{equation*}
$$

For $x$ in the interval $a$ to $a+b$, the wave function has the form $\exp \pm i k_{1} x$, where

$$
\begin{equation*}
k_{1}=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} \tag{68}
\end{equation*}
$$

d) Show that there are ranges of values of $E$, greater than $E_{0}$, for which there is no eigenfunction. Find (exactly) the energy at which the first such gap begins.

## Solution

For $k a=n \pi+\delta$, where $\delta$ is a small positive number, we have

$$
\begin{align*}
\left|\cos k a+\frac{\Omega}{k} \sin k a\right| & =\left|\cos n \pi+\delta+\frac{\Omega}{k} \sin n \pi+\delta\right|  \tag{69}\\
& \approx\left|1-\frac{\delta^{2}}{2}+\frac{\Omega}{k} \delta\right| \tag{70}
\end{align*}
$$

When $\delta$ is quite small, the left side $\approx 1+\Omega \delta / k \geq 1$. Therefore, in a certain region of $k>n \pi / a$, there is no eigenfunction. On the other hand, $k a=n \pi$ corresponds to eigenvalues. So the energy at which the first energy gap begins satisfies the relation $k a=\pi$,

$$
\begin{equation*}
E=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{71}
\end{equation*}
$$

