
Page 1 of 9

NTNU Institutt for fysikk
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Exam in TFY4205 Quantum Mechanics

25. May 2005
9:00–13:00

Allowed help: Alternativ C
Approved Calculator.
K. Rottman: Matematische Formelsammlung

Barnett and Cronin: Mathematical formulae

Fundamental constants, useful relations and tips are given at the end of the exam.

This problem set consists of 9 pages.

Problem 1. Electronic transitions in one-dimensional molecules
Consider the chain polymer in the figure below.

x = 0 x = L

Figure 1: A chain polymer. Carbon atoms at the bond connections are not plotted for clarity.

There are 12 delocalized electrons that propagate freely in the one-dimensional chain between
the nitrogen (N) atoms which act as infinite barriers. The distance between neighboring
carbon atoms is lC−C = 1.40Å and between carbon and nitrogen is lC−N = 1.34Å.
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a) The spin-1/2 delocalized electrons in the chain do not interact but they obey the Pauli

principle. Neglect the small angles between the bonds, what is the wavelength of the
first photon (smallest energy) that the chain may absorb?

Solution: The electrons are non-interacting and moves freely in the one-dimensional
wire, i.e. each electron can be modeled as a single particle in a one dimensional box
with length L = 8lC−C + 2lC−N = 1.39nm with infinite barriers at x = 0 and x = L.
The stationary Schrödinger equation for the one-electron problem is then given by the
kinetic energy only

− ~
2

2me

d2

dx2
ψ(x) = Eψ(x) (1)

with the boundary conditions ψ(x ≤ 0) = ψ(x ≥ L) = 0. The general solution for
Eq.(1) is

ψ(x) = Aeikx +Be−ikx, (2)

where A and B are integration constants and k =
√

2meE/~2. The boundary condition
ψ(x) = 0 leads to A = −B and thus

ψ(x) = C sin(kx) (3)

where C = 2iA. The boundary condition ψ(L) = 0 quantize the energy by forcing
sin(kL) = 0 and thereby k = πn/L. Here, n = 1, 2, 3.... In terms of energy

E =
~

2k2

2me
=

~
2π2n2

2meL2
. (4)

To determine C, we can use normalization of the wavefunction

∫ L

0
dx |ψ(x)|2 =

∫ L

0
dx |C|2 sin2(πnx/L) = 1 (5)

→ C =

√

2

L
(6)

The 12 electrons (fermions with spin-1/2) obey the Pauli principle, i.e they can not
share the same state. There are two states each energy level, due to the electron spins.
Thus all states up to energy level 6 are occupied. The photon with the lowest energy
that can be absorbed by the system (at low temperature) has the energy

Ephoton = E7 − E6 =
~

2π2

2meL2
(72 − 62) ≃ 4.11 × 10−19J (7)

with the corresponding photon wavelength

λ = hc
Ephoton

≃ 484 nm

i.e. violet light.
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b) Substituting the hydrogen atom in the middle (x = L/2) with another atom or group
may perturb the potential of the chain. Assume that the weak perturbing potential is
given by

V (x) = V0 |x− L

2
| ≤ x0 (8)

0 |x− L

2
| > x0. (9)

Here, V0 = 10−19J and x0 = L/4. Find the new sixth and seventh energy level using
first order perturbation theory.

Solution: The new energy for level n is, to the first order perturbation, given by

En = E0
n + 〈ψold

n |V (x)|ψold
n 〉 (10)

where the superscript 0 denotes the unperturbed problem. Thus,

En = E0
n +

∫ 3L/4

L/4
dx V0

2

L
sin2(

nπx

L
) (11)

= E0
n +

2V0

πn

∫ nπ3/4

nπ/4
du sin2(u) (12)

= E0
n +

2V0

πn
[
u

2
− 1

2
sin(u) cos(u)]

3nπ/4
nπ/4 (13)

= E0
n +

V0

2
+
V0

πn
[sin(

nπ

4
) cos(

nπ

4
) − sin(

3nπ

4
) cos(

3nπ

4
)] (14)

= E0
n +

V0

2
∀n = 2, 4, 6, 8... (15)

= E0
n +

V0

2
+
V0

πn
∀n = 1, 5, 9, 13... (16)

= E0
n +

V0

2
− V0

πn
∀n = 3, 7, 11, 15... (17)

where we have used the substitution u = nπx/L. For n = 6

E6 =
~

2π262

2meL2
+
V0

2
(18)

≃ 1.14 × 10−18J + 0.05 × 10−18J ≃ 1.19 × 10−18J (19)

and for For n = 7

E7 =
~

2π272

2meL2
+
V0

2
− V0

7π
(20)

≃ 1.548 × 10−18J + 4.55 × 10−20J ≃ 1.59 × 10−18J (21)
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Figure 2: Miscellaneous diagrams and a figure of the benzene molecule.

Problem 2. Particle in a ring
A benzene molecule, see figure below, may be treated as an one dimensional ring with radius
R = 1.34Å in which six delocalized electrons can move freely around. The delocalized
electrons in the ring do not interact but they obey the Pauli principle.

a) Find all the stationary single particle wavefunctions and their energies for the delocalized
electrons.

Solution: The electrons are non-interacting and moves freely in the one-dimensional
ring, i.e. each electron can be modeled as a single particle in a one dimensional ring
with radius R = 0.134nm. The stationary Schrödinger equation for the one-electron
problem is then to a good approximation given by the kinetic energy only

− ~
2

2me
(
d2

dx2
+

d2

dy2
)ψ(x, y) = Eψ(x, y) (22)

with the constrain that the electron must moves along the ring. Since the problem is
rotational invariant, it is useful to formulate it in cylindrical coordinate

− ~
2

2me

1

R2

d2

dφ
ψ(φ) = Eψ(φ) (23)

where the fact of constant radius and thereby dψ/dr = 0 is used. A general solution for
Eq.(23) is

ψ(x) = AeikRφ +Be−ikRφ, (24)

where A and B are integration constants, and k =
√

2meE/~2. In contrast to the
particle in a 1D box, here the ± solutions are independent from each other. Thus,

ψ(x) = Ae±ikRφ, (25)

Normalization

∫ 2π

0
dφ A2 |ψ|2 = 1 (26)

→ A =

√

1

2π
(27)
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The boundary condition ψ(φ) = ψ(φ + 2π), coming from the demand that the wave-
function is single valued, leads to energy quantization

ψ(φ) = ψ(φ+ 2π) (28)

e±ikRφ = e±ikR(φ+2π) (29)

1 = e±ikR2π (30)

This leads to kR = n, where n = 0, 1, 2, 3... and consequently

E =
~

2k2

2me
=

~
2n2

2meR2
. (31)

Giving the final wavefunction

ψ(φ) =
1√
2π
e±inφ (32)

b) Find the angular momentum for the wavefunctions in a).

Solution: The angular momentum operator is

~L = ~r × ~p (33)

Since the electron moves in a ring in the xy-plane only Lz is none zero. In spherical
coordinate

Lz =
~

i

∂

∂φ
(34)

giving the eigenvalues

Lz ψ =
~

i

∂

∂φ
ψ (35)

= ±n~ ψ (36)

Note that the total angular momentum L2 = L2
x +L2

y +L2
z = L2

z, will in this case gives
the eigenvalues

L2 ψ = L2
z ψ = ~

2n2 ψ (37)

an not the standard l(l + 1) as in 3-dimensions.

Problem 3. Addition of spin
Assume that ~S = ~S1 + ~S2 + ~S3 is the total spin of a collection of three electrons. What are
the possible eigenvalues of S2?
Solution: The eigenvalues of ~SA = ~S1 + ~S2 are SA = 0, 1. The eigenvalues of ~S = ~SA + ~S3

are therefore S = 1/2, 3/2.
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Figure 3: Left: schematic figure of the scattering problem. Right: scattering of a plane

wave against a sickle shaped potential. Note that the Yukawa-Coulomb potential has spherical

symmetry.

Problem 4. Scattering problem
Consider a three-dimensional, stationary scattering problem of an electron with a large mo-
mentum ~p = ~~k hitting an aluminium atom with a Yukawa-Coulomb potential V (~r) =
U0e

−αr/r. Here, U0 = −13e2/4πǫ0 and 1/α is a screening length.

a) Formulate the problem in terms of a stationary Schrödinger equation and state the
boundary conditions. Propose a form of the wavefunction that is valid at distances far
away from the scattering center.

Solution: The Schrödinger equation for the problem is

[− ~
2

2me
∇2 + V (r)] ψ(~r) = Eψ(~r) (38)

With the boundary conditions: 1) An incoming electron described by a plane wave ei
~k·~r

and 2) The scattered wave is purely outgoing. Time invariance and inelastic scattering

leads to energy conservation E = ~
2k2

2me
which is the kinetic energy of the incoming

electron.

Far away from the scattering center where the potential is approximately zero, the
solutions of − ~2

2me
∇2ψ(~r) = Eψ(~r) should describe free propagating waves . In 3D the

free propagating waves can take different forms depend on the initial conditions. For

our problem the incoming electron dictates a plane wave (ei
~k·~r) solution and the “point”

scattering propose a spherical wave (eikr/r) solution. The large r solution for Eq. (38)
is then

ψ(~r) = ei
~k·~r + f(θ, φ)eikr/r (39)

where the angular function f(θ, φ) depend on the details of the scattering process.

b) A formal solution of the wavefunction for the scattering problem given in a) is

ψ(~r) = ψ0(~r) +

∫

d3r′ G(~r − ~r′)
2m

~2
V (~r′) ψ(~r′) (40)

G(~r − ~r′) = − eik|~r−~r′|

4π|~r − ~r′| (41)



Exam in TFY4205 , May 25 Page 7 of 9

where ψ0(~r) is the solution of the problem without the scattering potential. Use the
first order Born-approximation and the large r approximation: i.e. k|~r−~r′| ≈ kr−~k′ ·~r′,
~k′ = k~r/r and 1/|~r − ~r′| ≈ 1/r to find the differential scattering cross section for the
electron expressed by fundamental constants, α and |~q| = |~k′ − ~k| = 2k sin(θ/2).

Solution: To the first order Born approximation

ψ(~r) ≃ ψ0(~r) +

∫

d3r′ G(~r − ~r′)
2me

~2
V (~r′) ψ0(~r

′) (42)

= ei
~k·~r +

∫

d3r′ G(~r − ~r′)
2me

~2
V (~r′) ei

~k·~r′ (43)

= ei
~k·~r +

−2me

~24π

∫

d3r′
eik|~r−~r′|

|~r − ~r′| V (~r′) ei
~k·~r′ (44)

(45)

where we have used ψ0 = ei
~k·~r. Using the and the large r approximation, we find

ψ(~r) ≃ ei
~k·~r +

−me

~22π

eikr

r

∫

d3r′ ei(
~k−~k′)·~r′ V (~r′) (46)

Giving the scattering amplitude

f(θ, φ) =
−me

~22π

eikr

r

∫

d3r′ e−i~q·~r′ V (~r′) (47)

where ~q = ~k′ − ~k and q = 2k sin(θ/2). Integrating over the angles

f(θ, φ) =
−me

~22π

∫ π

0
dθ′ sin(θ′)

∫ 2π

0
dφ′

∫ ∞

0
dr′ e−iqr′ cos θ′ V (~r′) (48)

=
−2me

~2q

13e2

4πǫ0

q

α2 + q2
(49)

The differential scattering cross section is

dσ

dΩ
= |f(θ, φ)|2 (50)

Useful fundamental constants and relations:

a) Fundamental constants:
Elementary charge e = 1.60 × 10−19C
Electron mass me = 9.11 × 10−31kg
Planck constant h = 6.63 × 10−34Js
Velocity of light c = 3.00 × 108m/s
Permitivity ǫ0 = 8.85 × 10−12C2/Nm2
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b) The differential equation

d2

dx2
f(x) + k2f(x) = 0 (51)

(52)

has the general solution

f(x) = Aeikx +Be−ikx (53)

c) Useful integral #1
∫

dx sin2(x) =
1

2
x− 1

2
sin(x) cos(x) (54)

d) Laplace operator in cylindrical coordinates (ρ, φ, z)

x = ρ cosφ (55)

y = ρ sinφ (56)

z = z (57)

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
=

1

ρ

∂

∂ρ
(ρ
∂f

∂ρ
) +

1

ρ2

∂2f

∂φ2 +
∂2f

∂z2
(58)

e) Derivative operator in spherical coordinate (r, θ, φ)

x = r sin θ cosφ (59)

y = r sin θ sinφ (60)

z = r cos θ (61)

∂

∂x
= sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ
(62)

∂

∂y
= sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ
(63)

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
(64)

f) Useful Jacobians
∫

d3r =

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞

0
dr r2 (65)

=

∫ 2π

0
dφ

∫ 1

−1
d(cos θ)

∫ ∞

0
dr r2 (66)

(67)

g) A vector relation

~q = ~k′ − ~k (68)

if k = k′ then

q = 2k sin(θ/2) (69)

where θ is the angle between ~k and ~k′.
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h) Useful integral #2

∫ ∞

0
dr e−αr sin(qr) =

q

α2 + q2
(70)


