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NTNU Institutt for fysikk

Contact during the exam:
Professor Arne Brataas
Telephone: 73593647

Exam in TFY4205 Quantum Mechanics
December 4, 2009
09:00-13:00

Allowed help: Alternativ C
Approved calculator
K. Rottman: Matematisk formelsamling
Barnett and Cronin: Mathematical formulae

Some relations that might be useful are given at the end of this exam.

This problem set consists of 9 pages.

Problem 1. Time-dependent perturbation theory
Consider the initially unperturbed system described by the Hamiltonian Hy(7), and the sta-
tionary, orthonormal eigenstates W9 (7, ¢):

W7, ) = oy (Pt (1)

where
Ho (7)1 () = Enty, (7). (2)

We introduce the time-dependent perturbation V (7, t), so that the total Hamiltonian is

a) We let U(7,t) be eigenstates of the total Hamiltonian H (7, t), and expand them in terms
of the known stationary states:

V(1) =Y ar(t) V(7. t). (4)
k

What is the physical interpretation of the expansion coefficients ay(¢)?

Solution: ay(t) is the probability ampitude for finding the system in the state W9 (7, t)
at time t. The probability of finding the system in the state k at time ¢ is given by

Py(t) = law(t).

In the rest of this problem, we will restrict ourselves to first-order time-dependent perturbation
theory. If we assume that our unperturbed system was in the state described by W9(7 t) at
t — —oo, one can show that

1/t o
n(t) = Ons + — / At’ Vi (t')ewnit’, (5)

in ) .
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where

Vni(t) = /d77 (¥ (7)) V(7 )05(F) = (n|V (7, £)]d), (6a)

and £ E
Wni = % (6Db)
b) Consider an electron, moving in the z-direction, in a one dimensional harmonic oscillator

potential:
Hy(z) = ﬁ + 177%12:132. (7)
2m 2

The electron is in the ground state at £ — —oo. The electron is then subject to a
time-dependent electric field £(t), so that the perturbation reads

2

V(z,t) = —e&(t)x = eEome /T, (8)

In which excited states is it possible to find the electron as t — +o00?

Solution: We introduce the ladder operators
h
=1\ =— (A + dT) )
2mw

and write

Viicolt) = (lV (2, )[0) = —e€(0)y 5 —(nla -+ a'|0) = —c(0)\/ 5.

Thus, to first order in V', the only non-zero expansion coefficients are ay(t) and a;(t),
and the only possible excited state is the first excited state |1).

c) Show that the probability P of finding the electron in an excited state as ¢ — +o00 can

be written 202 2 5 o
p_ TC&T Xp<—WT>. )

omhw 2
You might find the following integral useful:

/OO dt exp <—Z n iwt) — 7/Texp [— (“‘g)z] .

—00

Solution: Since the only possible excited state is the first excited one, P is given by

o0 t/2
/ dt’ exp <— — + iwt')
oo T

where we have used that wig = (E1 — Ey)/h = w. Making use of the integral given in
the text, we obtain the desired expression for P.

202 2
e“&;

P=la(o)f? = 5L

9

d) How should we choose 7 in order to maximize the transition probability? Call the
maximum transition probability Pax, and derive an expression for Py ax.
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Solution: We consider the partial derivative:

oP - me2&l ox [_uﬂ;%

or 27, — 78 W?).
or | ., 2mhw }( Tm = Tt

Setting the final parenthesis to zero yields

Tm =

V2
o
Thus, the maximum transition probability is

2022 2.2 2¢02
me*E5Th, {_w Tm:| _ me*&

Prax = exXp <_1)

2mhw eXP 2 - mhw3

e) What happens to Ppax when &, the amplitude of the electric field, is increased towards
4007 Derive an expression describing the validity of Puax.

(Comment: If you did not find an expression for Py.x in 1 d), you can solve this problem
by instead using P from Eq. (9), with 7 as a positive constant.)

Solution: This is only first-order perturbation theory, so we demand that the tran-
sition probability is much smaller than unity, i.e. we demand that Py, < 1. Using
this restriction, we must have

2 2h2
TSN ep(—1) < (hw)?,

for Ppax to be valid.

Problem 2. Scattering theory
In this problem we will consider a three dimensional stationary scattering problem, described
by the stationary Schrodinger equation

(V2 + k%) (7) = U (P (7), (10)

where k = \/2mFE/h? and U(7) = 2mV (¥)/h%. This equation describes a particle of mass m
and energy F that scatters at the potential V' (7), that we take to be at rest at the origin. At
large (asymptotic) distances, the wave function of the particle is
- elkr
V() = T (0, 0)—, (11)

where f(19, ) is the scattering amplitude.

a) Give a physical definition of the differential and the total scattering cross section, and
write down how these quantities are related to the scattering amplitude f(¥,p) (no
derivations are required).
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Solution: The number of particles scattered into the angular element d{) must be
proportional to the incoming particle current density jin. as well as the size of dQ itself.
The differential scattering cross section is defined as the constant of proportionality:

do  number of particles scattered into d€) per unit time
dQ dQjinc ‘

The number of particles scattered out in df) per unit time, equals the number of
incoming particles passing through the area do per unit time. The total cross section
is obtained if we integrate the differential cross section over all scattering angles:

do
= [dQ —.
7 / T
The total number of particles scattered by the potential (in any direction), equals

the number of incoming particles passing through the cross section ¢ of the incoming
particle beam. The relation between the scattering amplitude and the cross section is

do

o 2

In the first Born approximation, the scattering amplitude is

£P0.0) = -4 [ 4 T, (12

T
where =K — k = ki'/r — k.
b) Consider the spherically symmetric potential described by

Ve—)\r
Var) = 2 2 (13)

where A\™! characterizes the range of the potential. Use the first Born approximation to
find an expression for the scattering amplitude, and show that the differential scattering
cross section for this potential can be written

do  (2mWp)® 1 (14)
de A2 ) a2y g2)?

where ¢ = 2ksin /2.




Exam IN TFY4205 QuaNTUM MECHANICS, DEC. 4, 2009 Page 5 of 9

Solution: Vg is the Yukawa potential, a screened Coulomb potential. We let ¢ point
along the z-direction, so that ¢- 7 = qr’ cos. We get

L, —r! T oo o, ,
) = mVo /df’ eITE__ mVo / de sin9/ dr’ e iar cos O =
0 0

C27AR2 P AR
We use that - 2sin(gr’)
. ior cosf sin(qr
/ df sinfe 1" P = ——2=,
0 qr
and
/oo s N —Ar’ q
dr’ sin(gr')e =5,
0 ( ) A2 + q2
and obtain
2mVy

B e
fr) = AR2 (A + ¢2)’

with ¢ = 2k sin g. The differential cross section reads

(daB> <2mV0>2 1
a0 Jq N2 ) (N2 1 g2)?

c) The Coulomb potential is
77

Vo(r) = dmegr

(15)

Use the result from b) to find the differential scattering cross section for the potential
Ve.

Solution: We let A — 0, while we take Vy/\ — ZZ'e?/(4mep), and find

doB\ [ z7e N\ 1

dQ C_ 16meg B sjrflg7
which is the (hopefully) well-known differential scattering cross section for the
Coulomb potential.

d) The Born approximation is valid if the following inequality holds:
o0
/ &' U] < 1. (16)
0

The potential Vg is strong enough to form a bound state if

>27. (17)

Discuss the validity of the Born approximation for the potential Vg based on the re-
quirement in Eq. (16) and the condition in Eq. (17)! Is the first Born approximation
valid for the potential V7
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Solution: From the requirement in Eq. (16), we find for Vg the following condition:

2m|Vo|
A2h2

This agrees with the observation made during the lectures, that the first Born ap-
proximation may be used if the potential is not strong enough to form bound states.
The situation is different for the Coulomb potential, however, because the integral
in Eq. (16) diverges when V¢ is used. Thus, the condition for validity of the first
Born approximation is not fulfilled. However, the first Born approximation gives the
correct result for the differential scattering cross section, a fact that must be consid-
ered a lucky coincidence (f? differs from the exact scattering amplitude by a complex
phase factor; a factor that is important for scattering of identical particles, but not
for potential scattering that is considered in this problem).

Problem 3. Quantization of the Electromagnetic Fields
The Hamiltonian for the electromagnetic field in vacuum is

1
H:Q/fMED+BJﬁ. (18)
We choose the Coulomb gauge, V - A = 0, where A is the electromagnetic vector potential.

The electromagnetic fields can be expressed in terms of the electromagnetic vector potential
as

B = VxA,
H = B//’LO7
0A
E = - =
ot’
D = 80E,

where € is the dielectricity constant and p is the magnetic permeability that are related by
the velocity of light ¢? = (,uoeo)_l. The Hamiltonian for the electromagnetic field can then
be expressed in terms of the electromagnetic vector potential as

2 2
_ €oC 3 0A 2
H——2 dr[(@ct) +(V><A)].

The electromagnetic field can be quantized and expressed as

A h i(k-r—w —i(kr—w
A(r,t) = ZekM/ SeaVek [akAel(k e 4 GL,\B (ke ’“t)} ; (19)
kX

where A\ denotes the two polarization directions (A = 1 or A = 2) , ek is the polarization
vector, and k is the wavevector. The operator ay ) satisfies

T _
|:ak)\a akQ\/ - 5k)\,k’)\/‘
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The polarization vectors satisfy

ey ey = Oy,
ey k = 0,

e ey = 1,

ex2 ey = —L.

a) Using the expression for the electromagnetic vector potential (19), the Hamiltonian can

be written as )
_ i
H= %: hwi <akAakA + 2) ,

where wy = ck. What are the physical interpretations of the quantitites Awy, axy, aLA,
and aL)\akA ?

Solution: ay) (aL)\) annihilates (creates) a photon with wave vector k and polariza-

tion A, aL/\akA is the number of photons with wave vector k and polarization A and
hwy is the energy of these photons.

b) Explicitly demonstrate that the Hamiltonian (18) can be written as

1
H = Zhwk,\ (aL)\akA + 2> .
kA
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Solution:
We first compute

h
2€0VC]C

(VxA)=1i) (exr x k)
kA

0A\ wg | h ikr—wpt) _ T —i(kr—wyt)
<8ct> - Y Gl 2eoVck [ak,\e Hr© }

Second, we use

[akAei(kr—wkt) . aL)\e—i(k-r—wkt)]

and

/d3r [akAei(k-l‘fwkt) o aTkAefi(k-rfwkt)} [ak/A,ei(k’-rfwk/t) o aL/)\lefi(k'-rfwk/t)} —
(20)
—Voy {ak/\ab + achAak/\} + Viy,w [akke_mkta—m' + aLAaT_k,\'emkt} (21)
where V' is the volume of the system. Thirdly, we need
(exa x k) - (espen % (£k)) = = (exn-eqpn) (k- k) F (ewr - k) (k- eqpy)
= :tkz (ek)\ . e:th)

We then find

2 2 2
gocC s | (OA 2| _ eoc h 2 f t
5 d’r [<8ct> +(VxA) ] = = kg)\ 250Vck:2Vk [ak,\ak/\ + ak/\ak,\}

1
= Z hck [a};/\ak,\ + 2]

kA

1
H = Y hwy [abakx—i-z}
kA

as we should demonstrate.
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Some potentially useful relations

Harmonic oscillator

The Hamiltonian of a one dimensional harmonic oscillator is

=2 Lt = ho (atat ) (22)
—2m 2qu- a' a B y

where the ladder operators are defined as

a= me + ! and aof = me - !
V 2hq \/2mhwp’ 2hq 2mﬁwp'

This is equivalent to

The ladder operators satisfy

and

aln) = v/n|n — 1),
a'ln) = vn+ 1jn + 1),

where |n) are the orthonormalized eigenstates of H in Eq. (22):
1
H|n) = hw <n+ 2) |n) = En|n).

Vector algebra
For the vectors A, B, C, and D, this holds

(AxB)-(CxD)=(A-C)(B-D)-(A-D)(B-C).



