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Exam in TFY4205 Quantum Mechanics
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Barnett and Cronin: Mathematical formulae

Some relations that might be useful are given at the end of this exam.

This problem set consists of 9 pages.

Problem 1. Time-dependent perturbation theory
Consider the initially unperturbed system described by the Hamiltonian H0(~r), and the sta-
tionary, orthonormal eigenstates Ψ0

n(~r, t):

Ψ0
n(~r, t) = ψn(~r)e−iEnt/~, (1)

where
H0(~r)ψn(~r) = Enψn(~r). (2)

We introduce the time-dependent perturbation V (~r, t), so that the total Hamiltonian is

H(~r, t) = H0(~r) + V (~r, t). (3)

a) We let Ψ(~r, t) be eigenstates of the total Hamiltonian H(~r, t), and expand them in terms
of the known stationary states:

Ψ(~r, t) =
∑

k

ak(t)Ψ0
k(~r, t). (4)

What is the physical interpretation of the expansion coefficients ak(t)?

Solution: ak(t) is the probability ampitude for finding the system in the state Ψ0
k(~r, t)

at time t. The probability of finding the system in the state k at time t is given by

Pk(t) = |ak(t)|2.

In the rest of this problem, we will restrict ourselves to first-order time-dependent perturbation
theory. If we assume that our unperturbed system was in the state described by Ψ0

i (~r, t) at
t→ −∞, one can show that

an(t) = δn,i +
1
i~

∫ t

−∞
dt′ Vni(t′)eiωnit

′
, (5)
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where
Vni(t) =

∫
d~r (ψn(~r))∗ V (~r, t)ψi(~r) = 〈n|V (~r, t)|i〉, (6a)

and
ωni =

En − Ei

~
. (6b)

b) Consider an electron, moving in the x-direction, in a one dimensional harmonic oscillator
potential:

H0(x) =
p2

x

2m
+

1
2
mω2x2. (7)

The electron is in the ground state at t → −∞. The electron is then subject to a
time-dependent electric field E(t), so that the perturbation reads

V (x, t) = −eE(t)x = eE0xe−t2/τ2
. (8)

In which excited states is it possible to find the electron as t→ +∞?

Solution: We introduce the ladder operators

x =

√
~

2mω

(
â+ â†

)
,

and write

Vn,i=0(t) = 〈n|V (x, t)|0〉 = −eE(t)

√
~

2mω
〈n|â+ â†|0〉 = −eE(t)

√
~

2mω
δn,1.

Thus, to first order in V , the only non-zero expansion coefficients are a0(t) and a1(t),
and the only possible excited state is the first excited state |1〉.

c) Show that the probability P of finding the electron in an excited state as t→ +∞ can
be written

P =
πe2E2

0 τ
2

2m~ω
exp

(
−ω

2τ2

2

)
. (9)

You might find the following integral useful:∫ ∞

−∞
dt exp

(
− t

2

τ2
+ iωt

)
= τ

√
πexp

[
−

(ωτ
2

)2
]
.

Solution: Since the only possible excited state is the first excited one, P is given by

P = |a1(∞)|2 =
e2E2

0

2m~ω

∣∣∣∣∫ ∞

−∞
dt′ exp

(
− t

′2

τ2
+ iωt′

)∣∣∣∣2 ,
where we have used that ω10 = (E1 −E0)/~ = ω. Making use of the integral given in
the text, we obtain the desired expression for P .

d) How should we choose τ in order to maximize the transition probability? Call the
maximum transition probability Pmax, and derive an expression for Pmax.
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Solution: We consider the partial derivative:

∂P

∂τ

∣∣∣∣
τ=τm

= 0 =
πe2E2

0

2m~ω
exp

[
−ω

2τ2
m

2

]
(2τm − τ3

mω
2).

Setting the final parenthesis to zero yields

τm =
√

2
ω
.

Thus, the maximum transition probability is

Pmax =
πe2E2

0 τ
2
m

2m~ω
exp

[
−ω

2τ2
m

2

]
=
πe2E2

0

m~ω3
exp (−1) .

e) What happens to Pmax when E0, the amplitude of the electric field, is increased towards
+∞? Derive an expression describing the validity of Pmax.

(Comment: If you did not find an expression for Pmax in 1 d), you can solve this problem
by instead using P from Eq. (9), with τ as a positive constant.)

Solution: This is only first-order perturbation theory, so we demand that the tran-
sition probability is much smaller than unity, i.e. we demand that Pmax � 1. Using
this restriction, we must have

πe2E2
0~2

m
exp(−1) � (~ω)3,

for Pmax to be valid.

Problem 2. Scattering theory
In this problem we will consider a three dimensional stationary scattering problem, described
by the stationary Schrödinger equation(

∇2 + k2
)
ψ(~r) = U(~r)ψ(~r), (10)

where k =
√

2mE/~2 and U(~r) = 2mV (~r)/~2. This equation describes a particle of mass m
and energy E that scatters at the potential V (~r), that we take to be at rest at the origin. At
large (asymptotic) distances, the wave function of the particle is

ψ(~r) ' ei~k·~r + f(ϑ, ϕ)
eikr

r
, (11)

where f(ϑ, ϕ) is the scattering amplitude.

a) Give a physical definition of the differential and the total scattering cross section, and
write down how these quantities are related to the scattering amplitude f(ϑ, ϕ) (no
derivations are required).
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Solution: The number of particles scattered into the angular element dΩ must be
proportional to the incoming particle current density jinc as well as the size of dΩ itself.
The differential scattering cross section is defined as the constant of proportionality:

dσ
dΩ

=
number of particles scattered into dΩ per unit time

dΩjinc
.

The number of particles scattered out in dΩ per unit time, equals the number of
incoming particles passing through the area dσ per unit time. The total cross section
is obtained if we integrate the differential cross section over all scattering angles:

σ =
∫

dΩ
dσ
dΩ

.

The total number of particles scattered by the potential (in any direction), equals
the number of incoming particles passing through the cross section σ of the incoming
particle beam. The relation between the scattering amplitude and the cross section is

dσ
dΩ

= |f(ϑ, ϕ)|2 .

In the first Born approximation, the scattering amplitude is

fB(ϑ, ϕ) = − 1
4π

∫
d~r ′ e−i~q·~r ′

U(~r ′), (12)

where ~q = ~k′ − ~k = k~r/r − ~k.

b) Consider the spherically symmetric potential described by

VS(r) =
V0e−λr

λr
, (13)

where λ−1 characterizes the range of the potential. Use the first Born approximation to
find an expression for the scattering amplitude, and show that the differential scattering
cross section for this potential can be written

dσ
dΩ

=
(

2mV0

λ~2

)2 1(
λ2 + q2

)2 , (14)

where q = 2k sin θ/2.
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Solution: VS is the Yukawa potential, a screened Coulomb potential. We let ~q point
along the z-direction, so that ~q · ~r′ = qr′ cos θ. We get

fB(ϑ) = − mV0

2πλ~2

∫
d~r′ e−i~q·~r′ e−λr′

r′
= −mV0

λ~2

∫ π

0
dθ sin θ

∫ ∞

0
dr′ r′e−iqr′ cos θe−λr′

.

We use that ∫ π

0
dθ sin θe−iqr′ cos θ =

2 sin(qr′)
qr′

,

and ∫ ∞

0
dr′ sin(qr′)e−λr′

=
q

λ2 + q2
,

and obtain
fB(ϑ) = − 2mV0

λ~2
(
λ2 + q2

) ,
with q = 2k sin ϑ

2 . The differential cross section reads(
dσB

dΩ

)
S

=
(

2mV0

λ~2

)2 1(
λ2 + q2

)2 .

c) The Coulomb potential is

VC(r) =
ZZ ′e2

4πε0r
. (15)

Use the result from b) to find the differential scattering cross section for the potential
VC.

Solution: We let λ→ 0, while we take V0/λ→ ZZ ′e2/(4πε0), and find(
dσB

dΩ

)
C

=
(
ZZ ′e2

16πε0E

)2 1
sin4 ϑ

2

,

which is the (hopefully) well-known differential scattering cross section for the
Coulomb potential.

d) The Born approximation is valid if the following inequality holds:∫ ∞

0
dr′ r′|U(r′)| � 1. (16)

The potential VS is strong enough to form a bound state if

2m|V0|
λ2~2

≥ 2.7 . (17)

Discuss the validity of the Born approximation for the potential VS based on the re-
quirement in Eq. (16) and the condition in Eq. (17)! Is the first Born approximation
valid for the potential VC?
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Solution: From the requirement in Eq. (16), we find for VS the following condition:

2m|V0|
λ2~2

� 1.

This agrees with the observation made during the lectures, that the first Born ap-
proximation may be used if the potential is not strong enough to form bound states.
The situation is different for the Coulomb potential, however, because the integral
in Eq. (16) diverges when VC is used. Thus, the condition for validity of the first
Born approximation is not fulfilled. However, the first Born approximation gives the
correct result for the differential scattering cross section, a fact that must be consid-
ered a lucky coincidence (fB differs from the exact scattering amplitude by a complex
phase factor; a factor that is important for scattering of identical particles, but not
for potential scattering that is considered in this problem).

Problem 3. Quantization of the Electromagnetic Fields
The Hamiltonian for the electromagnetic field in vacuum is

H =
1
2

∫
d3r (E ·D + B ·H) . (18)

We choose the Coulomb gauge, ∇ ·A = 0, where A is the electromagnetic vector potential.
The electromagnetic fields can be expressed in terms of the electromagnetic vector potential
as

B = ∇×A,

H = B/µ0,

E = −∂A
∂t

,

D = ε0E,

where ε0 is the dielectricity constant and µ0 is the magnetic permeability that are related by
the velocity of light c2 = (µ0ε0)

−1. The Hamiltonian for the electromagnetic field can then
be expressed in terms of the electromagnetic vector potential as

H =
ε0c

2

2

∫
d3r

[(
∂A
∂ct

)2

+ (∇×A)2
]
.

The electromagnetic field can be quantized and expressed as

Â(r, t) =
∑
kλ

ekλ

√
~

2ε0V ck

[
akλe

i(k·r−ωkt) + a†kλe
−i(k·r−ωkt)

]
, (19)

where λ denotes the two polarization directions (λ = 1 or λ = 2) , ek,λ is the polarization
vector, and k is the wavevector. The operator ak,λ satisfies[

akλ, a
†
k′λ′

]
= δkλ,k′λ′ .
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The polarization vectors satisfy

ekλ · ekλ′ = δλλ′ ,

ekλ · k = 0,
ek1 · ek1 = 1,
ek2 · ek2 = −1.

a) Using the expression for the electromagnetic vector potential (19), the Hamiltonian can
be written as

H =
∑
kλ

~ωk

(
a†kλakλ +

1
2

)
,

where ωk = ck. What are the physical interpretations of the quantitites ~ωk, akλ, a†kλ,
and a†kλakλ ?

Solution: akλ (a†kλ) annihilates (creates) a photon with wave vector k and polariza-
tion λ, a†kλakλ is the number of photons with wave vector k and polarization λ and
~ωk is the energy of these photons.

b) Explicitly demonstrate that the Hamiltonian (18) can be written as

H =
∑
kλ

~ωkλ

(
a†kλakλ +

1
2

)
.



Exam in TFY4205 Quantum Mechanics, Dec. 4, 2009 Page 8 of 9

Solution:
We first compute

(∇×A) = i
∑
kλ

(ekλ × k)
√

~
2ε0V ck

[
akλe

i(k·r−ωkt) − a†kλe
−i(k·r−ωkt)

]
and (

∂A
∂ct

)
= −i

∑
kλ

ekλ
ωk

c

√
~

2ε0V ck

[
akλe

i(k·r−ωkt) − a†kλe
−i(k·r−ωkt)

]
Second, we use∫

d3r
[
akλe

i(k·r−ωkt) − a†kλe
−i(k·r−ωkt)

] [
ak′λ′ei(k

′·r−ωk′ t) − a†
k′λ′e

−i(k′·r−ωk′ t)
]

=

(20)

−V δk,k′

[
akλa

†
kλ + a†kλakλ

]
+ V δk,−k′

[
akλe

−2iωkta−kλ′ + a†kλa
†
−kλ′e

2iωkt
]

(21)

where V is the volume of the system. Thirdly, we need

(ekλ × k) ·
(
e±kλ′ × (±k)

)
= ±

(
ekλ · e±kλ′

)
(k · k)∓ (ekλ · k)

(
k · e±kλ′

)
= ±k2

(
ekλ · e±kλ′

)
We then find

ε0c
2

2

∫
d3r

[(
∂A
∂ct

)2

+ (∇×A)2
]

=
ε0c

2

2

∑
kλ

~
2ε0V ck

2V k2
[
akλa

†
kλ + a†kλakλ

]
=

∑
kλ

~ck
[
a†kλakλ +

1
2

]
H =

∑
kλ

~ωk

[
a†kλakλ +

1
2

]
as we should demonstrate.
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Some potentially useful relations

Harmonic oscillator

The Hamiltonian of a one dimensional harmonic oscillator is

H =
p2

2m
+

1
2
mω2q2 = ~ω

(
a†a+

1
2

)
, (22)

where the ladder operators are defined as

a =
√
mω

2~
q +

i√
2m~ω

p, and a† =
√
mω

2~
q − i√

2m~ω
p.

This is equivalent to

q =

√
~

2mω

(
a† + a

)
, and p = i

√
m~ω

2

(
a† − a

)
.

The ladder operators satisfy [
a, a†

]
= 1,

and

a|n〉 =
√
n|n− 1〉,

a†|n〉 =
√
n+ 1|n+ 1〉,

where |n〉 are the orthonormalized eigenstates of H in Eq. (22):

H|n〉 = ~ω
(
n+

1
2

)
|n〉 = En|n〉.

Vector algebra

For the vectors A, B, C, and D, this holds

(A×B) · (C×D) = (A ·C) (B ·D)− (A ·D) (B ·C) .


