

Department of Physics

Examination paper for TFY4210 Quantum theory of many-particle systems

Academic contact during examination: Associate Professor John Ove Fjærestad Phone: 97 94 00 36

Examination date: 21 May 2014 Examination time (from-to): 9-13 Permitted examination support material: C

Approved calculator Rottmann: Matematisk Formelsamling Rottmann: Matematische Formelsammlung Barnett & Cronin: Mathematical Formulae

Other information: The exam has 3 problems. Some formulas can be found on the last page. The problems were developed by John Ove Fjærestad.

Language: English Number of pages (including front page and attachments): 8

Checked by:

Date Signature

Problem 1

Consider a gas of noninteracting electrons. For simplicity, neglect the electron spin and assume that the electrons are constrained to move in one spatial dimension. The length of the system is L , and periodic boundary conditions are imposed.

(a) In first quantization, the Hamiltonian of the system is given by

$$
H = -\frac{\hbar^2}{2m} \sum_{j=1}^{N} \frac{\partial^2}{\partial z_j^2}
$$
 (1)

where N is the number of electrons and z_j is the coordinate of the j'th electron $(j = 1, 2, \ldots, N)$. Show that in second quantization the Hamiltonian can be written as

$$
H = \sum_{k} \varepsilon_{k} c_{k}^{\dagger} c_{k} \tag{2}
$$

and determine ε_k . Here the operators c_k^{\dagger} k_k and c_k respectively create and annihilate an electron with wavevector k (due to the periodic boundary conditions the allowed (discrete) wavevectors are given by $k = 2\pi n/L$ where n is an arbitrary integer).

In the remainder of the problem you will work in the grand canonical ensemble, so the Hamiltonian is modified to

$$
H = \sum_{k} (\varepsilon_k - \mu) c_k^{\dagger} c_k \equiv \sum_{k} \xi_k \hat{n}_k, \tag{3}
$$

where $\xi_k = \varepsilon_k - \mu$ with μ being the chemical potential and $\hat{n}_k = c_k^{\dagger}$ $_{k}^{\mathbb{T}}c_{k}$. Here ξ_k is an even function of k which increases monotonically with $|k|$.

(b) Consider many-particle states of the form

$$
|\ell\rangle \equiv \prod_{k \in S_{\ell}} c_k^{\dagger} |0\rangle \tag{4}
$$

1

where $|0\rangle$ is the state containing no fermions (implying $c_k|0\rangle = 0 = \hat{n}_k|0\rangle$ for all k) and S_{ℓ} is an arbitrary set of distinct wavevectors. Thus the set S_{ℓ} defines which single-particle k-states are occupied by an electron in the many-particle state $|\ell\rangle$. (To define $|\ell\rangle$ unambiguously, we take the order of the creation operators in the product to be such that if k_1 and k_2 are both in S_{ℓ} , and $k_2 > k_1$, then c_k^{\dagger} $\phi^{\dagger}_{k_2}$ is to the right of $c^{\dagger}_{k_2}$ $_{k_{1}}^{\mathsf{T}}$.)

- 1. Show that the states $|\ell\rangle$ defined in (4) are eigenstates of H defined in (3) and determine an expression for the associated eigenvalue E_{ℓ} .
- 2. What is the ground state, i.e. the state with the smallest value of E_{ℓ} ? Give an expression for the ground state energy.

(c) For a general many-fermion system the single-particle spectral function $A(\nu, \omega)$ can be written

$$
A(\nu,\omega) = \frac{1}{Z} \sum_{\ell,m} |\langle m|c_{\nu}^{\dagger}|\ell\rangle|^2 \left(e^{-\beta E_{\ell}} + e^{-\beta E_{m}} \right) \delta(\omega + E_{\ell} - E_{m}). \tag{5}
$$

Here the sums are over the complete and orthonormal set of eigenstates $|\ell\rangle$ of the Hamiltonian H with E_{ℓ} being the corresponding eigenvalues, $Z =$ $\sum_{\ell} e^{-\beta E_{\ell}}$ is the partition function, and c_{ν}^{\dagger} creates a fermion in a single-particle state characterized by the quantum number ν .

1. For a general many-fermion system, prove the sum rule

$$
\int_{-\infty}^{\infty} d\omega A(\nu, \omega) = 1.
$$
 (6)

2. For the specific case of the fermionic system with Hamiltonian (3), calculate the right-hand side of (5) to show that

$$
A(k,\omega) = \delta(\omega - \xi_k). \tag{7}
$$

Problem 2

A model of a ferromagnet on a square lattice has the Hamiltonian

$$
H = -J\sum_{\langle i,j\rangle} \mathbf{S}_i \cdot \mathbf{S}_j - J' \sum_{\langle \langle i,j\rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j
$$
 (8)

with $J, J' > 0$. The two terms in H only differ in the possible values of the relative position vectors $r_j - r_i$ (here r_i is the position vector of site i): The sum in the first term is over pairs of nearest-neighbour sites and the sum in the second term is over pairs of next-nearest-neighbour sites (in both sums, each pair is counted once). The nearest-neighbour and next-nearestneighbour sites of a given site on the square lattice are shown in Fig. 1.

Figure 1: A given site (shown in white) has 4 nearest-neighbour sites (shown in black) and 4 next-nearest-neighbour sites (shown in grey). The unit vectors \hat{x} and \hat{y} are also shown (the lattice spacing is set to 1).

(a) Use spin-wave theory to calculate the ground state energy E_0 and the magnon dispersion $\omega_{\mathbf{k}}$ (in this analysis, neglect terms describing interactions between magnons).

(b)

- 1. Based on your results in (a), determine whether the magnons are gapless or gapped.
- 2. Briefly explain whether your answer to (b)1 is consistent with arguments/results based on symmetry.

3. Propose a term that, if added to the Hamiltonian (8), would change your answer to (b)1.

Problem 3

Consider fermions in a disordered potential (e.g. electrons interacting with impurities in a metal). In the lectures we developed a perturbation expansion for the single-particle Matsubara Green function $\mathcal{G}(\mathbf{k}, \mathbf{k}'; ip_m)$ where p_m is a fermionic Matsubara frequency. Upon averaging over the positions of the impurities, the resulting Green function became k -diagonal: $\bar{\mathcal{G}}(\mathbf{k},\mathbf{k'};ip_m)=\bar{\bar{\mathcal{G}}}(\mathbf{k},ip_m)\delta_{\mathbf{k},\mathbf{k'}}$. We represented each term in the perturbation expansion for $\bar{\mathcal{G}}(\mathbf{k}, ip_m)$ by a Feynman diagram and established the Feynman rules for translating between the diagrams and their associated mathematical expressions.

Figure 2: Three Feynman diagrams.

(a) Consider the Feynman diagrams in Fig. 2 that appear in the perturbation expansion for $\mathcal{G}(\mathbf{k}, i p_m)$.

- 1. For the first two diagrams, give the mathematical expression (do not attempt to evaluate any wavevector sums).
- 2. For all three diagrams, determine whether the diagram is reducible or irreducible (justify your conclusion). If the diagram is irreducible, draw the corresponding self-energy diagram.

(b) Taking as your starting point the way in which self-energy diagrams enter into the Feynman diagrams for $\bar{\mathcal{G}}(\mathbf{k}, ip_m)$, prove the Dyson equation

$$
\bar{\mathcal{G}}(\boldsymbol{k},ip_m) = \frac{1}{[\mathcal{G}^{(0)}(\boldsymbol{k},ip_m)]^{-1} - \Sigma(\boldsymbol{k},ip_m)}
$$
(9)

where $\mathcal{G}^{(0)}(\mathbf{k}, ip_m) = 1/(ip_m - \xi_{\mathbf{k}})$ is the unperturbed Green function and $\Sigma(\mathbf{k}, ip_m)$ is the self-energy.

The rest of the problem concerns some approximations to the self-energy.

(c) First consider "the full Born approximation" (FBA) $\Sigma_{FB}(\mathbf{k}, ip_m)$, defined as the sum of all self-energy diagrams with a single impurity cross (see Fig. 3).

Figure 3: The full Born approximation (FBA) for the self-energy.

Let $\bar{\mathcal{G}}_{FB}(\mathbf{k}, ip_m)$ be the approximate Green function that corresponds to the FBA for the self-energy. According to the Dyson equation,

$$
\bar{\mathcal{G}}_{\text{FB}}(\boldsymbol{k}, ip_m) = \frac{1}{ip_m - \xi_{\boldsymbol{k}} - \Sigma_{\text{FB}}(\boldsymbol{k}, ip_m)}.
$$
(10)

- 1. Which (if any) of the three Feynman diagrams in Fig. 2 are included in the diagrammatic expansion of \bar{G}_{FB} ? Justify your answer.
- 2. Give an example of a Feynman diagram in the expansion of $\bar{\mathcal{G}}_{\text{FB}}$ that is proportional to the square of the impurity density and is of sixth order in the scattering potential.

(d) Next consider a different approximation to the self-energy, "the selfconsistent Born approximation" (SCBA) $\Sigma_{\text{SCB}}(\mathbf{k}, ip_m)$. The Dyson equation for the associated Green function $\mathcal{G}_{\text{SCB}}(\mathbf{k}, ip_m)$ is

$$
\bar{\mathcal{G}}_{\text{SCB}}(\boldsymbol{k}, ip_m) = \frac{1}{ip_m - \xi_{\boldsymbol{k}} - \Sigma_{\text{SCB}}(\boldsymbol{k}, ip_m)}.
$$
(11)

 Σ_{SCB} is obtained from Σ_{FB} as follows (see Fig. 4): In each self-energy diagram in Σ_{FB} , replace each unperturbed Green function $\mathcal{G}^{(0)}(\mathbf{k}',ip_m)$ (shown as full thin lines in Fig. 3) by the Green function $\bar{\mathcal{G}}_{\text{SCB}}(\mathbf{k}', ip_m)$ (shown as full thick lines in Fig. 4). This approximation is called "self-consistent" because the rhs of (11) depends on $\bar{\mathcal{G}}_{\text{SCB}}$ through Σ_{SCB} . Using this approximation for the self-energy, many more Feynman diagrams are included in the approximation for the Green function.

Figure 4: The self-consistent Born approximation (SCBA) for the self-energy. The full thick lines represent the Green function $\dot{\bar{\mathcal{G}}}_{\text{SCB}}$.

- 1. Which of the diagrams in Fig. 2 are included in the diagrammatic expansion of $\bar{\mathcal{G}}_{\text{SCB}}$? Explain your reasoning.
- 2. Give an(other) example of a Feynman diagram that is included in the expansion of $\overline{\tilde{\mathcal{G}}}_{\text{SCB}}$ but not in $\overline{\tilde{\mathcal{G}}}_{\text{FB}}$.

Formulas

From first to second quantisation:

$$
\hat{H}_0 = \sum_{i=1}^N \hat{h}(x_i) \implies \sum_{\alpha,\beta} \langle \alpha | \hat{h} | \beta \rangle c_{\alpha}^{\dagger} c_{\beta},
$$

$$
\langle \alpha | \hat{h} | \beta \rangle = \int dx \; \phi_{\alpha}^*(x) \hat{h}(x) \phi_{\beta}(x).
$$

$$
\hat{H}_I = \frac{1}{2} \sum_{\substack{i,j=1 \ i \neq j}}^N \hat{v}(x_i, x_j) \implies \frac{1}{2} \sum_{\alpha,\beta,\gamma,\delta} \langle \alpha \beta | \hat{v} | \gamma \delta \rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma},
$$

$$
\langle \alpha \beta | \hat{v} | \gamma \delta \rangle = \int \int dx \; dx' \; \phi_{\alpha}^*(x) \phi_{\beta}^*(x') \hat{v}(x, x') \phi_{\gamma}(x) \phi_{\delta}(x').
$$

A commutator:

$$
[\hat{n}_{\nu}, c^{\dagger}_{\nu'}] = \delta_{\nu,\nu'} c^{\dagger}_{\nu}
$$

Spin interactions:

$$
\mathbf{S}_{i} \cdot \mathbf{S}_{j} = \frac{1}{2} (S_{i}^{+} S_{j}^{-} + S_{i}^{-} S_{j}^{+}) + S_{i}^{z} S_{j}^{z}.
$$

Holstein-Primakoff representation:

$$
S_j^+ = \sqrt{2S - \hat{n}_j} a_j,
$$

\n
$$
S_j^- = a_j^{\dagger} \sqrt{2S - \hat{n}_j},
$$

\n
$$
S_j^z = S - \hat{n}_j,
$$

where $\hat{n}_j \equiv a_j^{\dagger} a_j$.

Fourier transform:

$$
a_j = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}_j} a_{\mathbf{k}}
$$

Lattice sum:

$$
\frac{1}{N}\sum_{j}e^{i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}_{j}}=\delta_{\mathbf{k},\mathbf{k}'}
$$