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Problem 1

Consider a gas of noninteracting electrons. For simplicity, neglect the elec-
tron spin and assume that the electrons are constrained to move in one spatial
dimension. The length of the system is L, and periodic boundary conditions
are imposed.

(a) In first quantization, the Hamiltonian of the system is given by

H = − h̄2

2m

N∑
j=1

∂2

∂z2j
(1)

where N is the number of electrons and zj is the coordinate of the j’th
electron (j = 1, 2, . . . , N). Show that in second quantization the Hamiltonian
can be written as

H =
∑
k

εkc
†
kck (2)

and determine εk. Here the operators c†k and ck respectively create and anni-
hilate an electron with wavevector k (due to the periodic boundary conditions
the allowed (discrete) wavevectors are given by k = 2πn/L where n is an ar-
bitrary integer).

****

In the remainder of the problem you will work in the grand canonical ensem-
ble, so the Hamiltonian is modified to

H =
∑
k

(εk − µ)c†kck ≡
∑
k

ξkn̂k, (3)

where ξk = εk − µ with µ being the chemical potential and n̂k = c†kck. Here
ξk is an even function of k which increases monotonically with |k|.

(b) Consider many-particle states of the form

|`〉 ≡
∏
k∈S`

c†k|0〉 (4)
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where |0〉 is the state containing no fermions (implying ck|0〉 = 0 = n̂k|0〉
for all k) and S` is an arbitrary set of distinct wavevectors. Thus the set
S` defines which single-particle k-states are occupied by an electron in the
many-particle state |`〉. (To define |`〉 unambiguously, we take the order of
the creation operators in the product to be such that if k1 and k2 are both
in S`, and k2 > k1, then c†k2 is to the right of c†k1 .)

1. Show that the states |`〉 defined in (4) are eigenstates of H defined in
(3) and determine an expression for the associated eigenvalue E`.

2. What is the ground state, i.e. the state with the smallest value of E`?
Give an expression for the ground state energy.

(c) For a general many-fermion system the single-particle spectral function
A(ν, ω) can be written

A(ν, ω) =
1

Z

∑
`,m

|〈m|c†ν |`〉|2
(
e−βE` + e−βEm

)
δ(ω + E` − Em). (5)

Here the sums are over the complete and orthonormal set of eigenstates
|`〉 of the Hamiltonian H with E` being the corresponding eigenvalues, Z =∑
` e
−βE` is the partition function, and c†ν creates a fermion in a single-particle

state characterized by the quantum number ν.

1. For a general many-fermion system, prove the sum rule∫ ∞
−∞

dω A(ν, ω) = 1. (6)

2. For the specific case of the fermionic system with Hamiltonian (3),
calculate the right-hand side of (5) to show that

A(k, ω) = δ(ω − ξk). (7)
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Problem 2

A model of a ferromagnet on a square lattice has the Hamiltonian

H = −J
∑
〈i,j〉

Si · Sj − J ′
∑
〈〈i,j〉〉

Si · Sj (8)

with J, J ′ > 0. The two terms in H only differ in the possible values of
the relative position vectors rj − ri (here ri is the position vector of site i):
The sum in the first term is over pairs of nearest-neighbour sites and the
sum in the second term is over pairs of next-nearest-neighbour sites (in both
sums, each pair is counted once). The nearest-neighbour and next-nearest-
neighbour sites of a given site on the square lattice are shown in Fig. 1.

Figure 1: A given site (shown in white) has 4 nearest-neighbour sites (shown
in black) and 4 next-nearest-neighbour sites (shown in grey). The unit vectors
x̂ and ŷ are also shown (the lattice spacing is set to 1).

(a) Use spin-wave theory to calculate the ground state energy E0 and the
magnon dispersion ωk (in this analysis, neglect terms describing interactions
between magnons).

(b)

1. Based on your results in (a), determine whether the magnons are gap-
less or gapped.

2. Briefly explain whether your answer to (b)1 is consistent with argu-
ments/results based on symmetry.
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3. Propose a term that, if added to the Hamiltonian (8), would change
your answer to (b)1.

Problem 3

Consider fermions in a disordered potential (e.g. electrons interacting with
impurities in a metal). In the lectures we developed a perturbation expan-
sion for the single-particle Matsubara Green function G(k,k′; ipm) where
pm is a fermionic Matsubara frequency. Upon averaging over the posi-
tions of the impurities, the resulting Green function became k-diagonal:
Ḡ(k,k′; ipm) = Ḡ(k, ipm)δk,k′ . We represented each term in the perturbation
expansion for Ḡ(k, ipm) by a Feynman diagram and established the Feynman
rules for translating between the diagrams and their associated mathematical
expressions.

Figure 2: Three Feynman diagrams.

(a) Consider the Feynman diagrams in Fig. 2 that appear in the perturbation
expansion for Ḡ(k, ipm).

1. For the first two diagrams, give the mathematical expression (do
not attempt to evaluate any wavevector sums).

2. For all three diagrams, determine whether the diagram is reducible
or irreducible (justify your conclusion). If the diagram is irreducible,
draw the corresponding self-energy diagram.

(b) Taking as your starting point the way in which self-energy diagrams enter
into the Feynman diagrams for Ḡ(k, ipm), prove the Dyson equation

Ḡ(k, ipm) =
1

[G(0)(k, ipm)]−1 − Σ(k, ipm)
(9)
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where G(0)(k, ipm) = 1/(ipm − ξk) is the unperturbed Green function and
Σ(k, ipm) is the self-energy.

The rest of the problem concerns some approximations to the self-energy.

(c) First consider ”the full Born approximation” (FBA) ΣFB(k, ipm), defined
as the sum of all self-energy diagrams with a single impurity cross (see Fig. 3).

Figure 3: The full Born approximation (FBA) for the self-energy.

Let ḠFB(k, ipm) be the approximate Green function that corresponds to the
FBA for the self-energy. According to the Dyson equation,

ḠFB(k, ipm) =
1

ipm − ξk − ΣFB(k, ipm)
. (10)

1. Which (if any) of the three Feynman diagrams in Fig. 2 are included
in the diagrammatic expansion of ḠFB? Justify your answer.

2. Give an example of a Feynman diagram in the expansion of ḠFB that is
proportional to the square of the impurity density and is of sixth order
in the scattering potential.
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(d) Next consider a different approximation to the self-energy, ”the self-
consistent Born approximation” (SCBA) ΣSCB(k, ipm). The Dyson equation
for the associated Green function GSCB(k, ipm) is

ḠSCB(k, ipm) =
1

ipm − ξk − ΣSCB(k, ipm)
. (11)

ΣSCB is obtained from ΣFB as follows (see Fig. 4): In each self-energy diagram
in ΣFB, replace each unperturbed Green function G(0)(k′, ipm) (shown as full
thin lines in Fig. 3) by the Green function ḠSCB(k′, ipm) (shown as full thick
lines in Fig. 4). This approximation is called ”self-consistent” because the
rhs of (11) depends on ḠSCB through ΣSCB. Using this approximation for the
self-energy, many more Feynman diagrams are included in the approximation
for the Green function.

Figure 4: The self-consistent Born approximation (SCBA) for the self-energy.
The full thick lines represent the Green function ḠSCB.

1. Which of the diagrams in Fig. 2 are included in the diagrammatic
expansion of ḠSCB? Explain your reasoning.

2. Give an(other) example of a Feynman diagram that is included in the
expansion of ḠSCB but not in ḠFB.
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Formulas

From first to second quantisation:

Ĥ0 =
N∑
i=1

ĥ(xi) =⇒
∑
α,β

〈α|ĥ|β〉c†αcβ,

〈α|ĥ|β〉 =
∫
dx φ∗α(x)ĥ(x)φβ(x).

ĤI =
1

2

N∑
i,j=1

i 6=j

v̂(xi, xj) =⇒ 1

2

∑
α,β,γ,δ

〈αβ|v̂|γδ〉c†αc
†
βcδcγ,

〈αβ|v̂|γδ〉 =
∫ ∫

dx dx′ φ∗α(x)φ∗β(x′)v̂(x, x′)φγ(x)φδ(x
′).

A commutator:
[n̂ν , c

†
ν′ ] = δν,ν′c

†
ν

Spin interactions:

Si · Sj =
1

2
(S+

i S
−
j + S−i S

+
j ) + Szi S

z
j .

Holstein-Primakoff representation:

S+
j =

√
2S − n̂j aj,

S−j = a†j
√

2S − n̂j,
Szj = S − n̂j,

where n̂j ≡ a†jaj.

Fourier transform:

aj =
1√
N

∑
k

eik·rjak

Lattice sum:
1

N

∑
j

ei(k−k
′)·rj = δk,k′
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