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In this exam, a white box (�) at the start of a line signifies the beginning of
new text that is not part of the preceding question.

Problem 1 (25%)

Consider a system that can contain bosons in two different states, labeled ↑
and ↓. The basis state with n↑ ↑-bosons and n↓ ↓-bosons is written |n↑, n↓〉.
Creation and annihilation operators b†α and bα (α =↑, ↓) are defined by their
action on the basis states as follows:

b†↑|n↑, n↓〉 =
√
n↑ + 1|n↑ + 1, n↓〉, b†↓|n↑, n↓〉 =

√
n↓ + 1|n↑, n↓ + 1〉,

b↑|n↑, n↓〉 =
√
n↑|n↑ − 1, n↓〉, b↓|n↑, n↓〉 =

√
n↓|n↑, n↓ − 1〉. (1)

(a) Show that [b↑, b
†
↑] = 1. Also write down (without proof) the other bosonic

commutation relations that follow from (1).

� A spin operator Ŝ = (Ŝx, Ŝy, Ŝz) can be represented in terms of the ↑- and
↓-boson operators by defining (here Ŝ± = Sx ± iSy)

Ŝ+ = b†↑b↓, (2)

Ŝ− = b†↓b↑, (3)

Ŝz =
1

2
(n̂↑ − n̂↓), (4)

where n̂α ≡ b†αbα. This is known as the Schwinger boson representation.

(b) Use the bosonic commutation relations to show that the Schwinger boson
representation satisfies the spin commutation relations

[Ŝ+, Ŝ−] = 2Ŝz and [Ŝz, Ŝ±] = ±Ŝ±. (5)

� Since both n↑ and n↓ range over all the nonnegative integers, the bosonic
Hilbert (or, more precisely, Fock) space spanned by the basis states |n↑, n↓〉
is infinite-dimensional. In contrast, the Hilbert space corresponding to a
value S for the total spin quantum number is (2S + 1)-dimensional, and is
spanned by the basis states |S,m〉 which satisfy Ŝ2|S,m〉 = S(S + 1)|S,m〉
and Ŝz|S,m〉 = m|S,m〉, where m, the eigenvalue of Ŝz, can take the values
m = −S,−S + 1, . . . , S.
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(c) Show from the Schwinger boson representation that

Ŝ2 =
n̂↑ + n̂↓

2

(
n̂↑ + n̂↓

2
+ 1

)
, (6)

and show that if
n↑ + n↓ = 2S, (7)

it follows that
Ŝ2|n↑, n↓〉 = S(S + 1)|n↑, n↓〉. (8)

� As a consequence of these various results, the spin Hilbert space corre-
sponds to a (2S + 1)-dimensional subspace, defined by the constraint (7), of
the infinite-dimensional bosonic Fock space. More precisely, one can take

|S,m〉 = |n↑, n↓〉 where n↑ = S +m and n↓ = S −m. (9)

For some applications it is useful to know how the boson operators are
affected by various transformations. Here we will consider spin rotations
around the z axis.

(d) Give an expression for the operator U(θ) that produces a rotation about
the z axis by the angle θ, and use this to calculate

U(θ)b†αU
†(θ). (10)

As a check of your result for (10), use it to show that

U(2π)|S,m〉 = (−1)2S|S,m〉. (11)

(Hint for proving (11): Up to a normalization factor, the basis state |n↑, n↓〉
can be written

(b†↑)
n↑(b†↓)

n↓|0, 0〉 (12)

where |0, 0〉 is the bosonic vacuum state satisfying b↑|0, 0〉 = b↓|0, 0〉 = 0.)
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Problem 2 (45%)

Consider a system of electrons on a 1-dimensional lattice with periodic bound-
ary conditions. For simplicity we will neglect the spin degree of freedom, thus
treating the electrons as spinless fermions. The Hamiltonian is given by

H = −t
∑
j

(c†jcj+1 + h.c.) + ∆
∑
j

(−1)jc†jcj. (13)

Here, the operators c†j and cj respectively create and annihilate a spinless
fermion at site j (j = 1, 2, . . . , N). The number of lattice sites N is assumed
to be an even number. The first term in H represents hopping between
nearest-neighbour sites with hopping matrix element t. The second term in
H implies that the energy cost for a fermion to occupy a site j equals ∆ for
even j and −∆ for odd j. The constant parameters t and ∆ are both real,
with t > 0, while ∆ can be either positive, negative, or 0. We set the lattice
spacing to 1.

(a) Introduce new fermionic operators ck defined as

ck =
1√
N

∑
j

e−ikjcj. (14)

Show that ck+2πm = ck, where m is an arbitrary integer, and show that the
Hamiltonian can be written in the form

H =
∑
k∈1BZ

[
εkc
†
kck + ∆c†k+πck

]
, (15)

where the k-sum is over the 1st Brillouin zone (1BZ). Give the form of the
function εk and show that it satisfies εk±π = −εk.

(b) Show that H can be rewritten as

H =
∑

k∈MBZ

[
εk(c

†
kck − c

†
k+πck+π) + ∆(c†kck+π + c†k+πck)

]
, (16)

where the k-sum is now restricted to the ”magnetic Brillouin zone” (MBZ)
(i.e. |k| is not greater than π/2).

(c) Introduce new fermionic operators αk and βk by defining

ck = ukαk − vkβk, (17)

ck+π = vkαk + ukβk. (18)
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Here uk and vk are real parameters satisfying u2k + v2k = 1, which can be used
to write uk = cos θk, vk = sin θk. Show that by a proper choice of θk, the
Hamiltonian can be written in the diagonal form

H =
∑

k∈MBZ

[
E

(α)
k α†kαk + E

(β)
k β†kβk

]
(19)

and give the form of the two functions E
(α)
k and E

(β)
k .

In the remainder of the problem we assume that there are N/2 fermions in
the system.

(d) Characterize the ground state in terms of occupation numbers of the ap-
propriate fermionic modes. Based on this, give an expression for the ground
state energy in the form

∑
k∈MBZ fk, where fk is a specific function of k.

(e) Consider the operator

N̂even − N̂odd =
∑
j

(−1)jc†jcj (20)

which measures the difference between the number of fermions on even and
odd sites. Find an expression for the ground state expectation value 〈(N̂even−
N̂odd)〉 in the form

∑
k∈MBZ gk, where gk is a specific function of k. Discuss

whether the expression is physically reasonable by commenting on (i) its
magnitude in the two limits |∆| � t and |∆| � t and (ii) its sign for the two
cases ∆ > 0 and ∆ < 0.
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Problem 3 (30%)

Consider electrons scattering with impurities in a metal (we neglect the elec-
tron spin). In the lectures we developed a perturbation expansion (in the
electron-impurity scattering potential) for the impurity-averaged Matsubara
Green function G(k, ipm). We represented each term in the perturbation ex-
pansion for G(k, ipm) by a Feynman diagram and established the Feynman
rules for translating between the diagrams and their associated mathematical
expressions.

(a) Consider the two Feynman diagrams in Fig. 1 that appear in the pertur-
bation expansion for G(k, ipm).

Figure 1: Two Feynman diagrams.

1. For each diagram, give its mathematical expression (do not attempt to
evaluate any wavevector sums).

2. For each diagram, determine whether it is reducible or irreducible (jus-
tify your conclusion). If the diagram is irreducible, draw the corre-
sponding self-energy diagram.

� In the lectures we showed that Ḡ(k, ipm) can be expressed as

Ḡ(k, ipm) =
1

(G(0)(k, ipm))−1 − Σ(k, ipm)
=

1

ipm − ξk − Σ(k, ipm)
(21)

where Σ(k, ipm) is the self-energy.

(b)

1. Explain (e.g. by drawing diagrams or otherwise) in what way self-
energy diagrams are “building blocks” in the perturbation (Feynman
diagram) expansion for the Green function Ḡ(k, ipm). Include an ex-
planation of how, by using an approximate self-energy that may only
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include a finite number of self-energy diagrams, one still obtains an ap-
proximation to the Green function that includes an infinite subset of
all Feynman diagrams in the full perturbation expansion for the Green
function.

Figure 2: The approximation to the self-energy known as the first Born
approximation.

2. In the lectures we found an approximate result for Ḡ(k, ipm) by ap-
proximating the self-energy Σ(k, ipm) as shown in Fig. 2. This is
called the ”first Born approximation” for the self-energy and denoted by
Σ1B(k, ipm). Determine which (if any) of the Feynman diagrams in Fig.
1 are included when one approximates the self-energy by Σ1B(k, ipm).

(c) In the lectures we showed that for a very short-ranged potential, Σ1B(k, ipm)
is approximately given by

Σ1B(k, ipm) = ∆− i

2τ
sgn(pm), (22)

where ∆ and τ are real constants. Use this to find expressions for the re-
tarded Green function GR(k, ω) and for the spectral function A(k, ω) =
−(1/π)Im GR(k, ω) (for real ω).

(d) Sketch the spectral function as a function of ω for fixed k. Also sketch
the spectral function in the absence of any impurity scattering, i.e. for just
noninteracting electrons. Describe how the parameters ∆ and τ are respon-
sible for the differences between these two functions.
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Formulas

Commutator relations:

[n̂µ, aν ] = −aνδµν , (23)

[n̂µ, a
†
ν ] = a†νδµν . (24)

Baker-Hausdorff theorem:

e−BAeB =
∞∑
n=0

1

n!
[A,B]n, (25)

where [A,B]n is defined recursively as

[A,B]n ≡ [[A,B]n−1, B], (n = 1, 2, . . .) (26)

[A,B]0 ≡ A. (27)

Lattice sum:

1

N

∑
j

eijF (k−k′) =

{
1 if F (k − k′) = 2π × integer,
0 otherwise

(28)

where F (k) is a function of k that satisfies NF (k) = 2π× integer.

Trigonometric identities:

cos 2x = cos2 x− sin2 x, (29)

sin 2x = 2 sinx cosx, (30)

cos2 x =
1

1 + tan2 x
. (31)

Dirac delta function identity:

Im
1

x+ iη
= −πδ(x) (32)

where η = 0+.
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