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A white box (�) at the start of a line signifies the beginning of new text that
is not part of the preceding question.

We set ~ = 1. The lattice spacings in Problems 1 and 2 are also set to 1.

Problem 1

Consider a Heisenberg ferromagnet on a square lattice. The Hamiltonian is

HHeis = −J
∑
〈i,j〉

Ŝi · Ŝj, (1)

where J > 0 and the sum is over all pairs of nearest-neighbour spins. This
model has ferromagnetic order in the ground state.

(a) Explain what is meant by a broken continuous symmetry. You may dis-
cuss this question in the context of the model (1).

� Using spin-wave theory, it can be shown (you should not show it) that (1)
can be expressed as

HHeis = E0 +
∑
k

ωka
†
kak (2)

where E0 = −2NJS2 and ωk = 2JS(2 − cos kx − cos ky). Here N is the
number of sites and S is the total spin quantum number of each spin. Now
we modify the Hamiltonian by adding a spin-anisotropy term

HD = D
∑
j

[
(Ŝxj )2 + (Ŝyj )2

]
, (3)

where D ≥ 0 and the sum is over all sites. Thus the total Hamiltonian be-
comes Htot = HHeis +HD.
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(b) Discuss whether/how you expect the inclusion of HD to affect the con-
ditions for ferromagnetic order. Use spin-wave theory (in which terms de-
scribing interactions between magnons are neglected) to show that HD can
be written in the form

HD = C + ∆
∑
k

a†kak, (4)

and give expressions for the parameters C and ∆.

� It follows from the above that Htot can be written in the form

Htot = Etot
0 +

∑
k

ωtot
k a†kak (5)

where Etot
0 = E0 + C and ωtot

k ≡ ωk + ∆.

(c) Give a physical interpretation of the parameter ∆. Discuss its variation
with D ≥ 0 in light of symmetry properties of Htot.

� Let |G〉 be the ground state of (5) defined by ak|G〉 = 0 for all k. Now
consider the state U |G〉 where U is an operator that rotates all spins in the
same way. To be specific, consider an infinitesimal rotation by an angle dθ
around the x axis.

(d) Based on physical reasoning, for which value(s) of D ≥ 0 do you ex-
pect also U |G〉 to be a ground state of Htot? Also analyze the problem by
calculating Htot(U |G〉) (with Htot given by (5)) and interpreting the result.
[Hint: First show that the total generator involved is the sum of the gener-
ators for the individual spins. Approximate the relevant Holstein-Primakoff
expressions in the same way as usual.]
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Problem 2

Consider a 1-dimensional lattice with N sites. On each lattice site j (where
j = 1, 2, . . . , N) there is a spin with S = 1/2, represented by the spin operator
Ŝj = (Ŝxj , Ŝ

y
j , Ŝ

z
j ). The spins interact with their nearest neighbours as given

by the following Hamiltonian:

H = −
N∑
j=1

[
J⊥
2

(Ŝ+
j Ŝ
−
j+1 + h.c.) + JzŜ

z
j Ŝ

z
j+1

]
, (6)

where Ŝ±j ≡ Ŝxj ± iS
y
j are the standard ladder operators, J⊥ > 0, and Jz is

so far arbitrary. Periodic boundary conditions are imposed on the spins, i.e.
ŜN+1 = Ŝ1.

We will analyze this spin model by making use of the Jordan-Wigner trans-
formation to map it onto a spinless fermion model. The transformation is
given by

Ŝ+
j = Ôjc

†
j, (7)

Ŝ−j = Ôjcj, (8)

Ŝzj = n̂j −
1

2
, (9)

where Ôj =
∏j−1

i=1 (1 − 2n̂i) and n̂j = c†jcj. Here the operator c†j (cj) creates
(annihilates) a spinless fermion at site j. These operators satisfy standard
fermionic anticommutation relations, i.e.,

{cj, c†j′} = δj,j′ , (10)

{cj, cj′} = {c†j, c
†
j′} = 0. (11)

According to Eq. (9), an up-spin (down-spin) on site j corresponds to the
presence (absence) of a fermion on that site.

(a) Use the fermionic anticommutation relations to show that n̂2
j = n̂j. Use

the Jordan-Wigner transformation to show that the spin commutation rela-
tion [Ŝ+

j , Ŝ
−
j ] = 2Ŝzj is satisfied.

(b) Show that Ŝ+
j Ŝ
−
j+1 = c†jcj+1. Express the Hamiltonian (6) in terms

of fermion operators (you may assume without justification that also the
fermions satisfy periodic boundary conditions, i.e. cN+1 = c1).
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� In the remainder of this problem we set Jz = 0.

(c) By introducing new fermion operators ck and c†k via a Fourier transfor-
mation

cj =
1√
N

∑
k

eikjck, (12)

show that the Hamiltonian can be written in the form H =
∑

k εkc
†
kck, and

give an expression for the function εk. What are the allowed wavevectors k?

(d) Describe the ground state (in terms of the fermions).1 Calculate the
ground-state energy per site (you may take the limit N →∞).

(e) Calculate the ground-state expectation value of Ŝzj for an arbitrary site
j (again you may take the limit N →∞).

1Do not concern yourself with potential degeneracy issues (to avoid such complications,
it is possible to choose N such that the ground state is nondegenerate).
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Problem 3

Consider a noninteracting gas of electrons in three dimensions. In first quan-
tization, the Hamiltonian is

H0 =
∑
i

p̂2
i

2m
. (13)

(a) Neglecting the electron spin and working in the grand canonical ensemble
with chemical potential µ, show that in second quantization the Hamiltonian
can be written as

H0 =
∑
k

ξkc
†
kck where ξk = εk − µ. (14)

(You may assume that the electrons are confined within a cube of side length
L and with periodic boundary conditions.) Give an expression for εk. De-
scribe the electron state created by c†k. What are the allowed values of k?

� Consider the Matsubara single-particle Green function

G(k, τ) = −〈Tτ (ck(τ)c†k(0))〉, (15)

where τ takes values between −β and β (where β = 1/(kBT ) is the inverse
temperature), and Tτ orders the operators by increasing time from right
to left, introducing a minus sign when a reordering is needed. The time
dependence of the operators is given by A(τ) = eHτA(0)e−Hτ (where A(0) ≡
A). The Fourier transform of G(k, τ) is given by

G(k, ipm) =

∫ β

0

dτ eipmτG(k, τ) (16)

where pm = (2m+1)π/β is a fermionic Matsubara frequency (m is an integer).

(b) Calculate G(k, ipm) for the Hamiltonian (14). Use the result to find the
retarded single-particle Green function GR(k, ω).

� Next, consider electrons scattering with impurities in a metal (again we
neglect the electron spin). In the lectures we developed a perturbation expan-
sion (in the electron-impurity scattering potential) for the impurity-averaged
Matsubara single-particle Green function G(k, ipm). We represented each
term in the perturbation expansion for G(k, ipm) by a Feynman diagram and
established the Feynman rules for translating between the diagrams and their
associated mathematical expressions.
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(c) Consider the two Feynman diagrams in Fig. 1 that appear in the pertur-
bation expansion for G(k, ipm).

Figure 1: Two Feynman diagrams.

For each diagram:

1. Give its mathematical expression (do not attempt to evaluate any
wavevector sums).

2. Determine whether it is reducible or irreducible (justify your conclu-
sion).

(d) Explain how the self-energy Σ(k, ipm) is defined (feel free to draw dia-
grams as part of your explanation).

� Consider the impurity-averaged retarded single-particle Green function

G
R

(k, ω) for this problem (ω real). It obeys a Dyson equation which can be
written as

G
R

(k, ω) =
1

ω − ξk + iη − ΣR(k, ω)
. (17)

This equation is obtained from the Dyson equation for the Matsubara Green
function G(k, ipm) by the analytic continuation ipm → ω + iη. The quantity
ΣR(k, ω) obtained from Σ(k, ipm) in this way is called the retarded self-
energy. Write it as ΣR(k, ω) = ΣR

r (k, ω) + iΣR
i (k, ω) where ΣR

r and ΣR
i are

its real and imaginary parts, respectively. We will assume that the imagi-
nary part ΣR

i is nonzero, in which case iη in the denominator in (17) can be
neglected.

(e) Use Eq. (17) to find an expression for the single-particle spectral function

A(k, ω) ≡ −(1/π)Im G
R

(k, ω) in terms of ω, ξk, ΣR
r (k, ω) and ΣR

i (k, ω).
Based on your knowledge of the general properties of A(k, ω), can you deduce
the sign of ΣR

i (k, ω)?
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Formulas

Spin operators:

Ŝxj =
1

2
(Ŝ+

j + Ŝ−j ), (18)

Ŝyj =
1

2i
(Ŝ+

j − Ŝ−j ). (19)

Holstein-Primakoff representation:

Ŝ+
j =

√
2S − n̂j aj, (20)

Ŝ−j = a†j
√

2S − n̂j, (21)

Ŝzj = S − n̂j, (22)

where n̂j ≡ a†jaj.

Fourier transform:

aj =
1√
N

∑
k

eik·rjak. (23)

Lattice sum:
1

N

∑
j

ei(k−k
′)·rj = δk,k′ . (24)

General commutator identities:

[A,BC] = [A,B]C +B[A,C], (25)

[A,BC] = {A,B}C −B{A,C}. (26)

Commutator relations:

[n̂µ, aν ] = −aνδµν , (27)

[n̂µ, a
†
ν ] = a†νδµν . (28)

(there are more formulas on the next page)
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From first to second quantization:

Ĥ0 =
N∑
i=1

ĥ(xi) =⇒
∑
α,β

〈α|ĥ|β〉c†αcβ, (29)

〈α|ĥ|β〉 =

∫
dx φ∗α(x)ĥ(x)φβ(x). (30)

ĤI =
1

2

N∑
i,j=1

i 6=j

v̂(xi, xj) =⇒ 1

2

∑
α,β,γ,δ

〈αβ|v̂|γδ〉c†αc
†
βcδcγ, (31)

〈αβ|v̂|γδ〉 =

∫ ∫
dx dx′ φ∗α(x)φ∗β(x′)v̂(x, x′)φγ(x)φδ(x

′). (32)

Fermi-Dirac distribution:

nF (ξ) =
1

eβξ + 1
. (33)
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